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Abstract—Original Karaboga’s artificial bee colony (ABC) 

algorithm was applicable to unconstrained problems only and 

modifications for constrained problems were introduced later. In this 

article we propose an improved artificial bee colony algorithm for 

constrained problems. Since the ABC algorithm for constrained 

problems does not consider the initial population to be feasible we 

introduced a modification, besides penalty function and Deb’s rule, 

in a form of ―smart bee‖ (SB) which uses its historical memories for 

the location and quality of food sources. This modified SB-ABC 

algorithm was tested on standard benchmark functions for 

constrained optimization problems and proved to be better. 
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Nature inspired metaheuristic algorithms, Swarm intelligence.  

I. INTRODUCTION 

LGORITHM that is working with a set of solutions and 

trying to improve them is called population based. 

Population based algorithms can be classified by the nature of 

phenomenon simulated by the algorithm into two groups: 

evolutionary algorithms (EA) and swarm intelligence based 

algorithms [1], [2]. The most popular among EA is genetic 

algorithm (GA). GA attempts to simulate the phenomenon of 

natural evolution. A branch of nature inspired algorithms 

which are called swarm intelligence is focused on collective 

behavior of some self-organized systems in order to develop 

some metaheuristics which can mimic such system’s problem 

solution abilities [3], [4]. Interaction between individuals 

locally with one another and with their environment 

contributes to the collective intelligence of the social colonies 

[5]. Even though there is no centralized component that 

controls the behavior of individuals, local interactions between 

all individuals often lead to the emergence of global behavior. 

These characteristics of swarms inspired huge number of 

researchers to implement such behavior in computer software 

for optimization problems [6]. Flocking of birds and schooling 

of fish are examples of swarm systems. The classical example 
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of a swarm is bees swarming around their hive but the 

metaphor can easily be extended to other systems with a 

similar architecture such as ants [7]. 

Nature inspired algorithms based on the social behavior of 

certain animals and insects can solve many complex problems 

such as the traveling salesman problem (TSP), vehicle routing, 

scheduling, networks design and many more [2]. Generally, 

such algorithms are applied to problems classified as NP-hard 

or NP-complete. Many practical problems in industry and 

business are in the class of intractable combinatorial (discrete) 

or numerical (continuous or mixed) optimization problems. 

Many traditional methods were developed for solving 

continuous optimization problems, while on the other hand, 

discrete problems are being solved using heuristics [8]. 

Complete search algorithms search all possible assignments of 

values to variables in the search space, but they have the 

disadvantage of being time consuming. In the past few years, 

the usage of metaheuristic algorithms has increased in 

popularity. A meta-heuristic is a general algorithmic 

framework which can be used in different optimization 

problems with few modifications to adapt it to a specific 

problem. Several modern metaheuristic algorithms (typically 

high-level strategies which guide an underlying subordinate 

heuristic to efficiently produce high quality solutions and 

increase their performance) that apply to both domains have 

been developed for solving such problems [1]. They include 

population based, iterative based, stochastic, deterministic and 

other approaches. 

 For example, ant colony optimization (ACO) is a quite 

successful technique  proposed by Dorigo in 1992 for solving 

hard combinatorial optimization problems. The inspiring 

source of ACO was the foraging behavior of real ants which 

enables them to find shortest paths between food sources and 

their nests. In nature, researchers have found that during the 

foraging behavior of ants, they have no direct communication 

between each other, but they use an indirect method of 

communication through the segregation of a chemical called 

pheromone. Paths that contain more pheromone concentrations 

are chosen with higher probability by ants than those that 

contain lower pheromone concentrations. This method of 

communication has been defined as stigmergy. Stigmergy 

means any form of indirect communication among a set of 

possibly concurrent and distributed agents which happens 

through acts of local modification of the environment and local 

sensing of the outcomes of these modifications. 
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Particle swarm optimization (PSO) was proposed by 

Kennedy and Eberhart in 1995 to emulate the behavior of a 

flock of birds or a school of fish. It is considered a swarm 

intelligence algorithm because it tries to emulate the behavior 

of social organisms. In the case of birds, they choose a leader 

to guide the search for food so that other individuals will 

follow the leader during this search, however, each individual 

will maintain a personal search of food and try to inform the 

group if they find it. In nature, when there is an individual with 

better attributes than the current leader, the leader is replaced. 

Each individual must be able to get a general idea of their 

surroundings to avoid collisions with other individuals and to 

avoid losing sight of the leader’s direction. PSO is stochastic 

optimization technique which is well adapted to the 

optimization of nonlinear functions in multidimensional space 

and it has been applied to several real-world problems [9]. 

One of the recently used examples of interactive behavior 

and swarm intelligence is the waggle dance of bees during the 

food procuring. By performing this dance, successful foragers 

share the information about the direction and distance to 

patches of flower and the amount of nectar within this flower 

with their hive mates. So this is a successful mechanism by 

which foragers can recruit other bees in their colony to 

productive locations to collect various resources. Bee colony 

can quickly and precisely adjust its searching pattern in time 

and space according to changing nectar sources. The 

information exchange among individual insects is the most 

important part of the collective knowledge. Communication 

among bees about the quality of food sources is being 

achieved in the dancing area by performing waggle dance.  

Several metaheuristics have been proposed to model the 

specific intelligent behavior of honey bee swarms [10], [11], 

[12], [13]. The bee swarm intelligence was used in the 

development of artificial systems aimed at solving complex 

problems [14], [15]. An algorithm called bee colony 

optimization metaheuristic (BCO) is used for problems in 

traffic and transportation [16] and for solving deterministic 

combinatorial problems, as well as combinatorial problems 

characterized by uncertainty.  

Drias introduced a novel intelligent approach called bees 

swarm optimization (BSO), which is also inspired by the 

behavior of real bees. BSO is adapted for solving maximum 

weighted satisfiability (max-sat) problem. 

Karaboga introduced the artificial bee colony (ABC) 

algorithm. In the ABC algorithm the first half of the colony 

consists of the employed bees and the second half includes the 

onlookers. For every food source, there is only one employed 

bee. Another issue that is considered in the algorithm is that 

the employed bee whose food source has been exhausted by 

the bees becomes a scout. In other words, if a solution 

representing a food source is not improved by a predetermined 

number of trials, then the food source is abandoned by its 

employed bee and the employed bee is converted to a scout. 

In this paper, we present enhancements of the artificial bee 

colony algorithm for constrained problems proposed by 

Karaboga and Bastuk [11]. We also measure performance of 

this enhanced algorithm against Karaboga`s original work. 

II. ABC ALGORITHM 

Several approaches have been proposed to model the 

specific intelligent behaviors of honey bee swarms. Real-world 

problems usually have many design parameters that should be 

considered in the design process. Algorithms that are not 

robust to large-scale problems cannot preserve their 

effectiveness against high dimensionality. Artificial bee colony 

is a relatively new member of swarm intelligence algorithms.   

In the ABC algorithm, the colony of artificial bees contains 

three groups of bees: employed bees, onlookers and scouts. 

Short pseudo-code of the ABC algorithm is given below [10]: 

 

 Initialize the population of solutions 

 Evaluate the population 

 Produce new solutions for the employed bees  

 Apply the greedy selection process 

 Calculate the probability values  

 Produce the new solutions for the onlookers 

 Apply the greedy selection process 

 Determine the abandoned solution for the scout, and 

replace it with a new randomly produced solution  

 Memorize the best solution achieved so far 

 

For every food source, there is only one employed bee. 

Every bee colony has scouts that are the colony’s explorers. 

The scouts are characterized by low search costs and a low 

average in food source quality. Occasionally, the scouts can 

accidentally discover rich, entirely unknown food sources. In 

ABC algorithm, the position of a food source represents a 

possible solution to the optimization problem and the nectar 

amount of a food source corresponds to the quality (fitness) of 

the associated solution. The number of the employed bees or 

the onlooker bees is equal to the number of solutions in the 

population. Each solution xi (i = 1, 2, ..., SN) is a D-

dimensional vector, where SN denotes the size of population.  

An employed bee produces a modification on the position 

(solution) in her memory depending on the local information 

(visual information) and tests the nectar amount (fitness value) 

of the new source (new solution). Provided that the nectar 

amount of the new one is higher than that of the previous one, 

the bee memorizes the new position and forgets the old one 

[11]. Otherwise she keeps the position of the previous one in 

her memory. The food source of which the nectar is abandoned 

by the bees is replaced with a new food source by the scouts. 

The employed bee of an abandoned food source becomes a 

scout. 

An artificial onlooker bee chooses a food source depending 

on the probability value associated with that food source, pi, 

calculated by the following expression 
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where fiti is the fitness value of the solution i which is 

proportional to the nectar amount of the food source in the 

position i. 

In order to produce a candidate food position from the old 

one in memory, the ABC uses the following expression 
 

       )( ,,,,, jkjijijiji xxx             (2) 

 

where k  {1, 2,.., SN} and j  {1, 2,...,D} are randomly 

chosen indexes. A greedy selection mechanism is employed as 

the selection operation between the old and the candidate one. 

Providing that a position cannot be improved further through a 

predetermined number of cycles, the food source is assumed to 

be abandoned. The value of predetermined number of cycles is 

an important control parameter of the ABC algorithm, which is 

called “limit for abandonment” [11]. In the ABC, the 

parameter limit is calculated using the formula SN*D, where 

SN is the number of solutions and D is the number of variables 

of the problem. 

There are three main control parameters that are used in the 

ABC: the number of food sources which is equal to the 

number of employed or onlooker bees (SN), the value of limit, 

the maximum cycle number. In the ABC algorithm, while 

onlookers and employed bees carry out the exploitation 

process in the search space, the scouts control the exploration 

process. An important difference between ABC and other 

swarm intelligence algorithms is that in the ABC algorithm the 

possible solutions represent food sources (flowers), not 

individuals (honeybees) [12]. In other algorithms, like PSO, 

each possible solution represents an individual of the swarm. 

In the ABC algorithm the fitness of a food source is given by 

the value of the objective function of the problem. 

III. CONSTRAINED OPTIMIZATION 

Evolutionary algorithms have been widely used to solve 

several types of unconstrained optimization problems. Many 

real-world search and optimization problems involve 

inequality and equality constraints and are thus posed as 

constrained optimization problems. Real world problems often 

have unique characteristics that make them difficult (and 

sometimes impossible) to solve by applying traditional 

methods. Moreover, there are problems where these methods 

can be applied, however the results or the time required to 

obtain a solution are not what is expected by the problem 

solver. Michalewicz and Fogel [17] describe the following 

characteristics that make it difficult to solve an optimization 

problem in the real world: 
 

1. The number of possible solutions (search space) is too 

large. 

2. The problem is so complicated that, with the aim of 

obtaining a solution, simplified models of the same 

problem must be used. Thus, the solution is not useful. 

3. The evaluation function that describes the quality of each 

solution in the search space varies over time or it has 

noise. 

4. Possible solutions are highly restricted, making it difficult 

even generating at least one feasible solution (i.e., 

satisfy the constraints of the problem). 
 

Constrained optimization (CO) problems are encountered in 

numerous applications such as: structural optimization, 

engineering design, VLSI design, economics and more. The 

considered problem is reformulated so as to take the form of 

optimizing two functions, the objective function and the 

constraint violation function. This has motivated the 

development of a considerable number of approaches to 

incorporate constraints into the fitness function of an 

evolutionary algorithm. The CO problem can be represented as 

the following nonlinear programming problem [18]: 
 

minimize f(x), x=(x1, …, xn)  R
n
        (3) 

 

where xFS. The objective function f is defined on the 

search space SR
n
 and the set FS defines the feasible region. 

Usually, the search space S is defined as an n-dimensional 

rectangle in R
n
 (domains of variables defined by their lower 

and upper bounds): 
 

     lbi ≤ xi ≤ ubi,     1 ≤ i ≤ n                (4) 
 

the feasible region FS is defined by a set of m additional 

constraints: 
 

       gj(x) ≤ 0, for j = 1, . . . , q 
 

    hj(x) = 0, for j = q + 1, . . .,m.           (5) 
 

At any point xF, the constraints gk that satisfy gk(x) = 0 

are called the active constraints at x. 

Constraint handling methods used in classical optimization 

algorithms can be classified into two groups: generic methods 

that do not exploit the mathematical structure (whether linear 

or nonlinear) of the constraint, and specific methods that are 

only applicable to a special type of constraints. The 

constrained optimization problems can be addressed using 

either deterministic or stochastic methods. Deterministic 

approaches such as feasible direction and generalized gradient 

descent make strong assumptions on the continuity and 

differentiability of the objective function [18]. On the other 

hand, stochastic optimization algorithms such as genetic 

algorithms, evolution strategies, volutionary programming and 

particle swarm optimization do not make such assumptions 

and they have been successfully applied for tackling 

constrained optimization problems during the past few years. 

The goal of an optimization method is to assign values, 

within the allowed domain, to the variables, so the objective 

function is optimized and the restrictions are satisfied. 

Therefore, the optimization algorithm seeks a solution in the 

search space S of candidate solutions. 

In case of problems with constraints, a desired solution must 

be located in the feasible space F, FS, where feasibility 

means that the solution satisfies all the constraints. Most of the 

methods to solve constrained problems start with solutions that 
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are outside of the feasible area and it is expected that, after 

some computational time, these solutions reach the feasible 

area. A basic graphical example in an artificial two-

dimensional problem can be seen in Fig. 1. 
 

 
Fig. 1: Example of Search (S) and Feasible (F) areas in a two-

dimensional problem 

 

A. Equality constraints 

Equality constraints are difficult to satisfy because they 

define a very small search space. Therefore it is common 

practice to rewrite the equality constraints as inequality 

constraints as seen in Equation (5): 
 

      |h(x)| −  ≤ 0                  (6) 
 

where  is the tolerance given to the equality constraint, 

slightly extending the search space of the problem. The 

disadvantage of this method is that the solutions found can be 

slightly infeasible due to this tolerance. All equality constraints 

are converted into inequality constraints =0.001. We can see 

a graphical representation of this method in Fig. 2.  
 

 
Fig. 2: Graphical example of an equality constraint 

converted to an inequality constraint 

IV. ABC ALGORITHM MODIFICATIONS FOR CONSTRAINED 

OPTIMIZATION PROBLEMS 

The ABC algorithm has been firstly proposed for 

unconstrained optimization problems and showed that it has 

superior performance on these kinds of problems [10]. The 

search space in constrained optimization problems consists of 

two kinds of points: feasible and unfeasible. Feasible points 

satisfy all the constraints, while unfeasible points violate at 

least one of them. For solving constrained optimization 

problems the ABC algorithm has been modified. The most 

common approach adopted to deal with constrained search 

spaces is the use of penalty functions. When using a penalty 

function, the amount of constraint violation is used to punish 

or ―penalize‖ an infeasible solution so that feasible solutions 

are favored by the selection process. However, since the 

penalty function approach is generic and applicable to any type 

of constraint (linear or nonlinear), their performance is not 

always satisfactory. Thus, researchers have developed 

sophisticated penalty functions specific to the problem at hand 

and the search algorithm used for optimization. However, the 

most difficult aspect of the penalty function approach is to find 

appropriate penalty parameters needed to guide the search 

towards the constrained optimum. Penalty functions require a 

careful fine tuning of the penalty factors that accurately 

estimates the degree of penalization to be applied so that we 

can approach efficiently the feasible region. 

The first proposal, to extend the ABC algorithm [19] to 

constrained spaces, used a constraint handling technique 

originally proposed for a genetic algorithm by Deb [20], [21]. 

Deb has developed a constraint handling method based on the 

penalty function approach which does not require any penalty 

parameter. In order to adapt the ABC algorithm Karaboga has 

adopted Deb’s constrained handling method instead of the 

selection process (greedy selection) of the ABC algorithm. 

Deb’s method uses a tournament selection operator, where 

two solutions are compared at a time, and the following 

criteria are always enforced: 
 

1. Any feasible solution is preferred to any infeasible 

solution,  

2. Among two feasible solutions, the one having better 

objective function value is preferred,  

3. Among two infeasible solutions, the one having smaller 

constraint violation is preferred.  
 

Because initialization with feasible solutions is very time 

consuming process and in some cases it is impossible to 

produce a feasible solution randomly, the ABC algorithm does 

not consider the initial population to be feasible [19]. Structure 

of the algorithm already directs the solutions to feasible region 

in running process due to the Deb’s rules employed instead of 

greedy selection. Scout production process of the algorithm 

provides a diversity mechanism that allows new and probably 

infeasible individuals to be in the population. 

In the ABC for constrained optimization, in order to 

produce a candidate food position (by an employed or an 

onlooker bee) the following is used: 

  

        MRRxxx

otherwisexji
jjkjiji

ji




),(*

,
,,,

,


         (7) 

 

where k{1, 2,..., SN} is randomly chosen index., xi,j is the 

variable j of the current food source, xk is a randomly selected 
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solution (different from xi,j), Rj is a randomly chosen real 

number in the range [0,1],    j ∈ {1, 2, . . . ,D}, D is the number 

of variables of the problem. MR, modification rate, is a new 

parameter that Karaboga and Basturk added to the ABC 

algorithm. It is a control parameter that controls whether the 

parameter xij will be modified or not.  

In the ABC algorithm, if a solution constructed by an 

employed bee or an onlooker bee exceeds the boundaries of 

the variable, the variable takes the value of the trespassed 

bound. In our algorithm we have used a different mechanism 

from original ABC algorithm, based on the Kukkonen and 

Lampinen work [22]: 
 

                 











jijijj

jijijj

ji

ubifub

lbiflb

otherwiseji





,*2

,*2

, ,         (8) 

 

where υij is the variable j of the candidate solution i, lbj is 

the lower bound of the variable j and ubj is the upper bound of 

variable j. 

Since the ABC algorithm does not consider the initial 

population to be feasible we have decided to add a smart bee. 

This type of bee uses its historical memories for the location 

and quality of food sources. Smart bee can memorize the 

position of the best food source and its quality which was 

found at previous times [23]. The position of the best food 

source replaces the position of the random new food source in 

two cases: if the new food source is unfeasible solution, or if 

the new food source is feasible solution but it doesn’t have 

better fitness. 
 

1. Initialize the population of solutions 

2. Evaluate the population 

3. cycle=1 

4. repeat 

5. Produce new solutions for the employed bees by using (7) 

and evaluate them  

6. If cycle1 use smart bee 

7. Apply selection process based on Deb’s method 

8. Calculate the probability values Pi,j for the solutions xi,j 

using fitness of the solutions and the constraint 

violations (CV) by  
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where CV is defined by 





m

q

j

q

j xhxgCV
11

)()(  

 

9. For each onlooker bee, produce a new solution υi by 

Equation (7) in the neighborhood of the solution 

selected depending on pi and evaluate it 

10. Apply selection process between υi and xi based on 

Deb’s method 

11. If Scout Production Period (SPP) is completed, 

determine the abandoned solutions by using ―limit‖ 

parameter for the scout, if it exists, replace it with a 

new randomly produced solution by  
 

)(*)1,0( minmaxmin

jjjj

i xxrandxx   
 

12. Memorize the best solution achieved so far 

13. cycle = cycle+1 

14. until cycle = MCN 
 

As we can see from the Fig.3, user can adjust multiple 

parameters for ABC algorithm.  

 
Fig. 3: Additional information about selected function 

 

The proposed SB-ABC algorithm is coded in C# and run on 

a Pentium Core2Duo, 3-GHz computer with 4 GB RAM 

memory. 
 

Control parameters are: 
 

1. Bee Num NP is number of bees in the colony (employed 

bees plus onlooker bees). 

2. Limit controls the number of trials to improve certain 

food source. If a food source could not be improved 

within defined number of trial, it is abandoned by its 

employed bee. 

3. Max Cycle defines the number of cycles for foraging. 

This is a stopping criterion 
 

Problem specific parameters are: 
 

1. Param Num D is the number of parameters of the 

problem to be optimized 

2. Runtime defines the number of times to run the algorithm. 

3. Lower bound is lower bound of problem parameters. 

4. Upper bound is upper bound of problem parameters. 

5. Constrained number is the number of constraints 
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V. SETTINGS OF THE ALGORITHMS 

To evaluate the performance of the proposed Karaboga 

ABC algorithm and ABC algorithm with smart bee (SB) we 

used the set of benchmark constrained optimization functions 

proposed in [24], [25]. The performance of the SB-ABC 

algorithm is compared with ABC algorithm, particle swarm 

optimization (PSO) algorithms, self-adaptive penalty function 

genetic algorithm (SAPF-GA) proposed by Tessema and Yen, 

and hybrid constrained optimization evolutionary algorithm 

(HCOEA) proposed by Wang. 

The test cases include objective functions of various types 

with different types of constraints. Basic function information 

are listed in Table 1. This set includes various forms of 

objective function such as linear, nonlinear cubic and 

quadratic. 

 

TABLE I 

SET OF CONSTRAINED OPTIMIZATION TEST FUNCTION 

 

Fun. Dim. Type Optimal 

G1 13 Quadratic -15 

G4 5 Quadratic -30665.5386 

G6 2 Cubic -6961.814 

G8 2 Nonlinear -0.0958 

G13 5 Nonlinear 0.0539 

 

Benchmark constrained optimization functions are defined: 
 

G1: Minimize: 
  

  
  


4

1

4

1

13

5

255)(
i i i

iii xxxxf  

 

Subject to: 
 

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0 

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0 

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0 

g4(x) = −8x1 + x10 ≤ 0 

g5(x) = −8x2 + x11 ≤ 0 

g6(x) = −8x3 + x12 ≤ 0 

g7(x) = −2x4 − x5 + x10 ≤ 0 

g8(x) = −2x6 − x7 + x11 ≤ 0 

g9(x) = −2x8 − x9 + x12 ≤ 0  
 

Where the bounds are 0 ≤ xi ≤ 1 (i = 1, . .  , 9),         0 ≤ xi ≤ 

100 (i = 10, 11, 12) and 0 ≤ x13 ≤ 1. 

The global minimum is at 

x = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) and f(x) = -15. 

 

G4: Minimize: 
 

5.3578547x3
2
+ 0.8356891x1x5 + 37.293239x1 − 40792.141 

 

Subject to: 
 

g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 

0.0022053x3x5 − 92≤ 0 

g2(x) = 85.334407 - 0.0056858x2x5 - 0.0006262x1x4 

+0.0022053x3x5 ≤ 0 

g4(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 

0.0021813x3
2
− 110 ≤ 0 

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 

0.0019085x3x4 − 25≤ 0 

g6(x) = -9.300961 - 0.0047026x3x5 - 0.0012547x1x3 - 

0.0019085x3x4 + 20≤ 0 
 

Where 78≤  x1 ≤  102, 33 ≤  x2 ≤  45, 27 ≤  xi ≤  45 (i = 3, 4, 

5). 

The optimum solution is f(x) = -30665.538672. 
 

G6: Minimize: 

 3

2

3

1 )20()10()(  xxxf  
 

Subject to: 
 

g1(x) = -(x1 -5)
2
 – (x2 -5) 

2
 + 100 ≤ 0 

g2(x) = (x1 -6)
2
 + (x2 -5) 

2
 -82.81 ≤ 0 

 

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution is 

located at x = (14.09500000000000064, 

0.8429607892154795668),  f(x) = -6961.813875580.  

 

G8: Minimize: 

)(

)2sin()2(sin
)(

21

3

1

21

3

xxx

xx
xf




  

      Subject to: 
 

      g1(x) = x1
2
 - x2 + 1 ≤ 0 

      g2(x) = 1-x1 +( x2 -4)
2
 ≤ 0 

Where 0 ≤  x1 ≤  10 and 0 ≤  x2 ≤  10. The optimum solution is 

located at x = (1.22797135260752599, 

4.24537336612274885) where  

f(x) = -0.0958250414180359. 

 

G13: Minimize: 

54321)(
xxxxx

exf   
 

Subject to: 
 

g1(x) = x1
2
 + x2

2
 + x3

2
 + x4

2
 + x5

2
 − 10 = 0 

g2(x) = x2x3 -5x4x5 = 0 

g3(x) = x1
3
 + x2

3
 + 1 = 0 

 

Where −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2   (i = 3, 4, 

5). The optimum solution is x = (-1.717142240, 

1.595721240494, 1.827250240, -0.76365988191, -

0.7636598673) where  f(x) = 0.0539415140418. 
 

In ABC, the value of modification rate (MR) is 0.8, colony 

size (2 ∗SN) is 40 and the maximum cycle number (MCN) is 

6000. So, the total objective function evaluation number is 

240,000. The value of limit is equal to SN x D where D is the 

dimension of the problem and SPP is also SNxD. Experiments 

were repeated 30 times each starting from a random population 

with different seeds [19]. 

Control parameters of the ABC algorithm are: colony size, 

solution number, limit, maximum number of cycles and 

modification rate. Our algorithm was implemented using the 

parameters’ values described in the Table 2. 
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TABLE II 

PARAMETERS FOR THE MODIFIED ALGORITHM 
 

Parameter Symbol Value 

Colony size NP 40 

Solutions 

Number 

SN 20 

Maximum 

Cycle Number 

maxCycle 6000 

Limit limit SN*D 

Modification 

Rate 

MR 0.8 

 

Each of the experiments was repeated 30 times with 

different random seeds and the best, worst and average 

function values were recorded. The results are in the Table 3.  

 

TABLE III 

STATISTICAL RESULTS OBTAINED BY SB-ABC, ABC, PSO, SAPF-

GA AND HCOEA ALGORITHMS ON TEST FUNCTIONS 
 

Function Algor. Worst Best Average 

G1: SB-ABC -15.00000 -15.00000 -15.00000 

 -15.000 ABC -15.00000 -15.00000 -15.00000 

 PSO -13.00000 -15.00000 -14.71000 

 SAPF-GA -13.097 -15.00000 -14.55200 

 HCOEA -14.999 -15.00000 -15.00000 

G4:  SB-ABC -30665.539 -30665.539 -30665.539 

-30665.539 ABC -30665.539 -30665.539 -30665.539 

 PSO -30665.539 -30665.539 -30665.539 

 SAPF-GA -30656.471 -30665.401 -30659.221 

 HCOEA -30665.539 -30665.539 -30665.539 

G6:  SB-ABC -6961.813 -6961.814 -6961.814 

-6961.814 ABC -6961.808 -6961.814 -6961,813 

 PSO -6961.814 -6961.814 -6961.814 

 SAPF-GA -6953.061 -6961.046 -6943.304 

 HCOEA -6961.813 -6961.813 -6961.813 

G8:  SB-ABC -0.095825 -0.095825 -0.095825 

-0.095825 ABC -0.095825 -0.095825 -0.095825 

 PSO -0.095825 -0.095825 -0.095825 

 SAPF-GA -0.092697 -0.095825 -0.095635 

 HCOEA -0.095825 -0.095825 -0.095825 

G13:  SB-ABC 0.183 0.054 0.105 

0.053950 ABC 1.000 0.760 0.968 

 PSO 1.793 0.085 0.569 

 SAPF-GA 0.885276 0.053941 0.28627 

 HCOEA 0.0539499 0.0539498 0.0539498 

 

An indirect comparison was performed between the 

published results of the ABC algorithm [19], PSO algorithm 

[25], SAPF-GA algorithm [26], HCOEA [27] and our 

proposed algorithm. In all test problems, the two variants of 

ABC algorithms exhibited similar results. Table 3, gives the 

summary of the comparative results of the best, mean and 

worst solutions of the investigated algorithms. 

Our proposed algorithm had equal or better results on G1, 

G4, G6 and G8 than ABC, PSO, SAPF-GA and HCOEA 

algorithms. In comparison with SAPF-GA and HCOEA our 

algorithm had better or equal results in 5 of 6 problems while 

HCOEA presented a greater quality of the results than our 

proposed algorithm for G13 .  

From the best, worst and mean results presented in Table 3, 

it can be concluded that the SB-ABC algorithm performs 

better than ABC and PSO algorithms. Our proposed algorithm, 

SB-ABC presented a greater quality of the results and more 

consistency in the results than the ABC algorithm. Based on 

the data we have acquired we can conclude that the better 

results have been made thanks to the implemented 

modifications, especially by introducing the smart bee. 

VI. CONCLUSION 

The capability of the ABC algorithm for constrained 

optimization problems was investigated through the 

performance of several experiments on well-known test 

problems. In this paper, we present an improved ABC 

algorithm for constrained problems. The SB-ABC was tested 

on five constrained optimization problems: quadratic, cubic, 

linear and nonlinear. The results obtained by the modified 

ABC algorithms for constrained optimization problems are 

quite satisfactory.  

Future work will include investigation of the SB-ABC 

performance in other benchmark and real life problems. The 

main steps in further modifications of ABC algorithm for 

constrained problems are directed towards finding better 

feasible solutions that will guide the swarm towards the 

optimum solution. Also, the fine tuning of the parameters may 

result in better solutions. It has been concluded that the ABC 

algorithm can be efficiently used for solving constrained 

optimization problems. The performance of the SB-ABC 

algorithm can be also tested for real engineering problems 

existing in the literature and compared with other algorithms. 
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