



Abstract—Original Karaboga’s artificial bee colony (ABC)

algorithm was applicable to unconstrained problems only and

modifications for constrained problems were introduced later. In this

article we propose an improved artificial bee colony algorithm for

constrained problems. Since the ABC algorithm for constrained

problems does not consider the initial population to be feasible we

introduced a modification, besides penalty function and Deb’s rule,

in a form of ―smart bee‖ (SB) which uses its historical memories for

the location and quality of food sources. This modified SB-ABC

algorithm was tested on standard benchmark functions for

constrained optimization problems and proved to be better.

Keywords—Artificial bee colony, Constrained optimization,

Nature inspired metaheuristic algorithms, Swarm intelligence.

I. INTRODUCTION

LGORITHM that is working with a set of solutions and

trying to improve them is called population based.

Population based algorithms can be classified by the nature of

phenomenon simulated by the algorithm into two groups:

evolutionary algorithms (EA) and swarm intelligence based

algorithms [1], [2]. The most popular among EA is genetic

algorithm (GA). GA attempts to simulate the phenomenon of

natural evolution. A branch of nature inspired algorithms

which are called swarm intelligence is focused on collective

behavior of some self-organized systems in order to develop

some metaheuristics which can mimic such system’s problem

solution abilities [3], [4]. Interaction between individuals

locally with one another and with their environment

contributes to the collective intelligence of the social colonies

[5]. Even though there is no centralized component that

controls the behavior of individuals, local interactions between

all individuals often lead to the emergence of global behavior.

These characteristics of swarms inspired huge number of

researchers to implement such behavior in computer software

for optimization problems [6]. Flocking of birds and schooling

of fish are examples of swarm systems. The classical example

Manuscript received February 10, 2011.

The research was supported by the Ministry of Science, Republic of

Serbia, Project No. III 44006

M. Tuba is with the Faculty of Computer Science, Megatrend University,

Belgrade, Serbia, e-mail: tuba@ieee.org

N. Stanarevic is with the Faculty of Faculty of Computer Science,

Megatrend University, Belgrade, Serbia, e-mail: srna@stanarevic.com

N. Bacanin is with the Faculty of Computer Science, Megatrend

University, Belgrade, Serbia, e-mail: nbacanin@megatrend.edu.rs

of a swarm is bees swarming around their hive but the

metaphor can easily be extended to other systems with a

similar architecture such as ants [7].

Nature inspired algorithms based on the social behavior of

certain animals and insects can solve many complex problems

such as the traveling salesman problem (TSP), vehicle routing,

scheduling, networks design and many more [2]. Generally,

such algorithms are applied to problems classified as NP-hard

or NP-complete. Many practical problems in industry and

business are in the class of intractable combinatorial (discrete)

or numerical (continuous or mixed) optimization problems.

Many traditional methods were developed for solving

continuous optimization problems, while on the other hand,

discrete problems are being solved using heuristics [8].

Complete search algorithms search all possible assignments of

values to variables in the search space, but they have the

disadvantage of being time consuming. In the past few years,

the usage of metaheuristic algorithms has increased in

popularity. A meta-heuristic is a general algorithmic

framework which can be used in different optimization

problems with few modifications to adapt it to a specific

problem. Several modern metaheuristic algorithms (typically

high-level strategies which guide an underlying subordinate

heuristic to efficiently produce high quality solutions and

increase their performance) that apply to both domains have

been developed for solving such problems [1]. They include

population based, iterative based, stochastic, deterministic and

other approaches.

 For example, ant colony optimization (ACO) is a quite

successful technique proposed by Dorigo in 1992 for solving

hard combinatorial optimization problems. The inspiring

source of ACO was the foraging behavior of real ants which

enables them to find shortest paths between food sources and

their nests. In nature, researchers have found that during the

foraging behavior of ants, they have no direct communication

between each other, but they use an indirect method of

communication through the segregation of a chemical called

pheromone. Paths that contain more pheromone concentrations

are chosen with higher probability by ants than those that

contain lower pheromone concentrations. This method of

communication has been defined as stigmergy. Stigmergy

means any form of indirect communication among a set of

possibly concurrent and distributed agents which happens

through acts of local modification of the environment and local

sensing of the outcomes of these modifications.

Modified artificial bee colony algorithm for

constrained problems optimization

Nadezda Stanarevic, Milan Tuba, and Nebojsa Bacanin

A

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 5, 2011 644

Particle swarm optimization (PSO) was proposed by

Kennedy and Eberhart in 1995 to emulate the behavior of a

flock of birds or a school of fish. It is considered a swarm

intelligence algorithm because it tries to emulate the behavior

of social organisms. In the case of birds, they choose a leader

to guide the search for food so that other individuals will

follow the leader during this search, however, each individual

will maintain a personal search of food and try to inform the

group if they find it. In nature, when there is an individual with

better attributes than the current leader, the leader is replaced.

Each individual must be able to get a general idea of their

surroundings to avoid collisions with other individuals and to

avoid losing sight of the leader’s direction. PSO is stochastic

optimization technique which is well adapted to the

optimization of nonlinear functions in multidimensional space

and it has been applied to several real-world problems [9].

One of the recently used examples of interactive behavior

and swarm intelligence is the waggle dance of bees during the

food procuring. By performing this dance, successful foragers

share the information about the direction and distance to

patches of flower and the amount of nectar within this flower

with their hive mates. So this is a successful mechanism by

which foragers can recruit other bees in their colony to

productive locations to collect various resources. Bee colony

can quickly and precisely adjust its searching pattern in time

and space according to changing nectar sources. The

information exchange among individual insects is the most

important part of the collective knowledge. Communication

among bees about the quality of food sources is being

achieved in the dancing area by performing waggle dance.

Several metaheuristics have been proposed to model the

specific intelligent behavior of honey bee swarms [10], [11],

[12], [13]. The bee swarm intelligence was used in the

development of artificial systems aimed at solving complex

problems [14], [15]. An algorithm called bee colony

optimization metaheuristic (BCO) is used for problems in

traffic and transportation [16] and for solving deterministic

combinatorial problems, as well as combinatorial problems

characterized by uncertainty.

Drias introduced a novel intelligent approach called bees

swarm optimization (BSO), which is also inspired by the

behavior of real bees. BSO is adapted for solving maximum

weighted satisfiability (max-sat) problem.

Karaboga introduced the artificial bee colony (ABC)

algorithm. In the ABC algorithm the first half of the colony

consists of the employed bees and the second half includes the

onlookers. For every food source, there is only one employed

bee. Another issue that is considered in the algorithm is that

the employed bee whose food source has been exhausted by

the bees becomes a scout. In other words, if a solution

representing a food source is not improved by a predetermined

number of trials, then the food source is abandoned by its

employed bee and the employed bee is converted to a scout.

In this paper, we present enhancements of the artificial bee

colony algorithm for constrained problems proposed by

Karaboga and Bastuk [11]. We also measure performance of

this enhanced algorithm against Karaboga`s original work.

II. ABC ALGORITHM

Several approaches have been proposed to model the

specific intelligent behaviors of honey bee swarms. Real-world

problems usually have many design parameters that should be

considered in the design process. Algorithms that are not

robust to large-scale problems cannot preserve their

effectiveness against high dimensionality. Artificial bee colony

is a relatively new member of swarm intelligence algorithms.

In the ABC algorithm, the colony of artificial bees contains

three groups of bees: employed bees, onlookers and scouts.

Short pseudo-code of the ABC algorithm is given below [10]:

 Initialize the population of solutions

 Evaluate the population

 Produce new solutions for the employed bees

 Apply the greedy selection process

 Calculate the probability values

 Produce the new solutions for the onlookers

 Apply the greedy selection process

 Determine the abandoned solution for the scout, and

replace it with a new randomly produced solution

 Memorize the best solution achieved so far

For every food source, there is only one employed bee.

Every bee colony has scouts that are the colony’s explorers.

The scouts are characterized by low search costs and a low

average in food source quality. Occasionally, the scouts can

accidentally discover rich, entirely unknown food sources. In

ABC algorithm, the position of a food source represents a

possible solution to the optimization problem and the nectar

amount of a food source corresponds to the quality (fitness) of

the associated solution. The number of the employed bees or

the onlooker bees is equal to the number of solutions in the

population. Each solution xi (i = 1, 2, ..., SN) is a D-

dimensional vector, where SN denotes the size of population.

An employed bee produces a modification on the position

(solution) in her memory depending on the local information

(visual information) and tests the nectar amount (fitness value)

of the new source (new solution). Provided that the nectar

amount of the new one is higher than that of the previous one,

the bee memorizes the new position and forgets the old one

[11]. Otherwise she keeps the position of the previous one in

her memory. The food source of which the nectar is abandoned

by the bees is replaced with a new food source by the scouts.

The employed bee of an abandoned food source becomes a

scout.

An artificial onlooker bee chooses a food source depending

on the probability value associated with that food source, pi,

calculated by the following expression





SN

n

n

i
i

fit

fit
p

1

 (1)

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 5, 2011 645

where fiti is the fitness value of the solution i which is

proportional to the nectar amount of the food source in the

position i.

In order to produce a candidate food position from the old

one in memory, the ABC uses the following expression

)(,,,,, jkjijijiji xxx   (2)

where k  {1, 2,.., SN} and j  {1, 2,...,D} are randomly

chosen indexes. A greedy selection mechanism is employed as

the selection operation between the old and the candidate one.

Providing that a position cannot be improved further through a

predetermined number of cycles, the food source is assumed to

be abandoned. The value of predetermined number of cycles is

an important control parameter of the ABC algorithm, which is

called “limit for abandonment” [11]. In the ABC, the

parameter limit is calculated using the formula SN*D, where

SN is the number of solutions and D is the number of variables

of the problem.

There are three main control parameters that are used in the

ABC: the number of food sources which is equal to the

number of employed or onlooker bees (SN), the value of limit,

the maximum cycle number. In the ABC algorithm, while

onlookers and employed bees carry out the exploitation

process in the search space, the scouts control the exploration

process. An important difference between ABC and other

swarm intelligence algorithms is that in the ABC algorithm the

possible solutions represent food sources (flowers), not

individuals (honeybees) [12]. In other algorithms, like PSO,

each possible solution represents an individual of the swarm.

In the ABC algorithm the fitness of a food source is given by

the value of the objective function of the problem.

III. CONSTRAINED OPTIMIZATION

Evolutionary algorithms have been widely used to solve

several types of unconstrained optimization problems. Many

real-world search and optimization problems involve

inequality and equality constraints and are thus posed as

constrained optimization problems. Real world problems often

have unique characteristics that make them difficult (and

sometimes impossible) to solve by applying traditional

methods. Moreover, there are problems where these methods

can be applied, however the results or the time required to

obtain a solution are not what is expected by the problem

solver. Michalewicz and Fogel [17] describe the following

characteristics that make it difficult to solve an optimization

problem in the real world:

1. The number of possible solutions (search space) is too

large.

2. The problem is so complicated that, with the aim of

obtaining a solution, simplified models of the same

problem must be used. Thus, the solution is not useful.

3. The evaluation function that describes the quality of each

solution in the search space varies over time or it has

noise.

4. Possible solutions are highly restricted, making it difficult

even generating at least one feasible solution (i.e.,

satisfy the constraints of the problem).

Constrained optimization (CO) problems are encountered in

numerous applications such as: structural optimization,

engineering design, VLSI design, economics and more. The

considered problem is reformulated so as to take the form of

optimizing two functions, the objective function and the

constraint violation function. This has motivated the

development of a considerable number of approaches to

incorporate constraints into the fitness function of an

evolutionary algorithm. The CO problem can be represented as

the following nonlinear programming problem [18]:

minimize f(x), x=(x1, …, xn)  R
n
 (3)

where xFS. The objective function f is defined on the

search space SR
n
 and the set FS defines the feasible region.

Usually, the search space S is defined as an n-dimensional

rectangle in R
n
 (domains of variables defined by their lower

and upper bounds):

 lbi ≤ xi ≤ ubi, 1 ≤ i ≤ n (4)

the feasible region FS is defined by a set of m additional

constraints:

 gj(x) ≤ 0, for j = 1, . . . , q

 hj(x) = 0, for j = q + 1, . . .,m. (5)

At any point xF, the constraints gk that satisfy gk(x) = 0

are called the active constraints at x.

Constraint handling methods used in classical optimization

algorithms can be classified into two groups: generic methods

that do not exploit the mathematical structure (whether linear

or nonlinear) of the constraint, and specific methods that are

only applicable to a special type of constraints. The

constrained optimization problems can be addressed using

either deterministic or stochastic methods. Deterministic

approaches such as feasible direction and generalized gradient

descent make strong assumptions on the continuity and

differentiability of the objective function [18]. On the other

hand, stochastic optimization algorithms such as genetic

algorithms, evolution strategies, volutionary programming and

particle swarm optimization do not make such assumptions

and they have been successfully applied for tackling

constrained optimization problems during the past few years.

The goal of an optimization method is to assign values,

within the allowed domain, to the variables, so the objective

function is optimized and the restrictions are satisfied.

Therefore, the optimization algorithm seeks a solution in the

search space S of candidate solutions.

In case of problems with constraints, a desired solution must

be located in the feasible space F, FS, where feasibility

means that the solution satisfies all the constraints. Most of the

methods to solve constrained problems start with solutions that

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 5, 2011 646

are outside of the feasible area and it is expected that, after

some computational time, these solutions reach the feasible

area. A basic graphical example in an artificial two-

dimensional problem can be seen in Fig. 1.

Fig. 1: Example of Search (S) and Feasible (F) areas in a two-

dimensional problem

A. Equality constraints

Equality constraints are difficult to satisfy because they

define a very small search space. Therefore it is common

practice to rewrite the equality constraints as inequality

constraints as seen in Equation (5):

 |h(x)| −  ≤ 0 (6)

where  is the tolerance given to the equality constraint,

slightly extending the search space of the problem. The

disadvantage of this method is that the solutions found can be

slightly infeasible due to this tolerance. All equality constraints

are converted into inequality constraints =0.001. We can see

a graphical representation of this method in Fig. 2.

Fig. 2: Graphical example of an equality constraint

converted to an inequality constraint

IV. ABC ALGORITHM MODIFICATIONS FOR CONSTRAINED

OPTIMIZATION PROBLEMS

The ABC algorithm has been firstly proposed for

unconstrained optimization problems and showed that it has

superior performance on these kinds of problems [10]. The

search space in constrained optimization problems consists of

two kinds of points: feasible and unfeasible. Feasible points

satisfy all the constraints, while unfeasible points violate at

least one of them. For solving constrained optimization

problems the ABC algorithm has been modified. The most

common approach adopted to deal with constrained search

spaces is the use of penalty functions. When using a penalty

function, the amount of constraint violation is used to punish

or ―penalize‖ an infeasible solution so that feasible solutions

are favored by the selection process. However, since the

penalty function approach is generic and applicable to any type

of constraint (linear or nonlinear), their performance is not

always satisfactory. Thus, researchers have developed

sophisticated penalty functions specific to the problem at hand

and the search algorithm used for optimization. However, the

most difficult aspect of the penalty function approach is to find

appropriate penalty parameters needed to guide the search

towards the constrained optimum. Penalty functions require a

careful fine tuning of the penalty factors that accurately

estimates the degree of penalization to be applied so that we

can approach efficiently the feasible region.

The first proposal, to extend the ABC algorithm [19] to

constrained spaces, used a constraint handling technique

originally proposed for a genetic algorithm by Deb [20], [21].

Deb has developed a constraint handling method based on the

penalty function approach which does not require any penalty

parameter. In order to adapt the ABC algorithm Karaboga has

adopted Deb’s constrained handling method instead of the

selection process (greedy selection) of the ABC algorithm.

Deb’s method uses a tournament selection operator, where

two solutions are compared at a time, and the following

criteria are always enforced:

1. Any feasible solution is preferred to any infeasible

solution,

2. Among two feasible solutions, the one having better

objective function value is preferred,

3. Among two infeasible solutions, the one having smaller

constraint violation is preferred.

Because initialization with feasible solutions is very time

consuming process and in some cases it is impossible to

produce a feasible solution randomly, the ABC algorithm does

not consider the initial population to be feasible [19]. Structure

of the algorithm already directs the solutions to feasible region

in running process due to the Deb’s rules employed instead of

greedy selection. Scout production process of the algorithm

provides a diversity mechanism that allows new and probably

infeasible individuals to be in the population.

In the ABC for constrained optimization, in order to

produce a candidate food position (by an employed or an

onlooker bee) the following is used:

  MRRxxx

otherwisexji
jjkjiji

ji




),(*

,
,,,

,


 (7)

where k{1, 2,..., SN} is randomly chosen index., xi,j is the

variable j of the current food source, xk is a randomly selected

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 5, 2011 647

solution (different from xi,j), Rj is a randomly chosen real

number in the range [0,1], j ∈ {1, 2, . . . ,D}, D is the number

of variables of the problem. MR, modification rate, is a new

parameter that Karaboga and Basturk added to the ABC

algorithm. It is a control parameter that controls whether the

parameter xij will be modified or not.

In the ABC algorithm, if a solution constructed by an

employed bee or an onlooker bee exceeds the boundaries of

the variable, the variable takes the value of the trespassed

bound. In our algorithm we have used a different mechanism

from original ABC algorithm, based on the Kukkonen and

Lampinen work [22]:












jijijj

jijijj

ji

ubifub

lbiflb

otherwiseji





,*2

,*2

, , (8)

where υij is the variable j of the candidate solution i, lbj is

the lower bound of the variable j and ubj is the upper bound of

variable j.

Since the ABC algorithm does not consider the initial

population to be feasible we have decided to add a smart bee.

This type of bee uses its historical memories for the location

and quality of food sources. Smart bee can memorize the

position of the best food source and its quality which was

found at previous times [23]. The position of the best food

source replaces the position of the random new food source in

two cases: if the new food source is unfeasible solution, or if

the new food source is feasible solution but it doesn’t have

better fitness.

1. Initialize the population of solutions

2. Evaluate the population

3. cycle=1

4. repeat

5. Produce new solutions for the employed bees by using (7)

and evaluate them

6. If cycle1 use smart bee

7. Apply selection process based on Deb’s method

8. Calculate the probability values Pi,j for the solutions xi,j

using fitness of the solutions and the constraint

violations (CV) by


































































feasibleissolutionif

fitness

fitness

easibleissolutionif

CV

CV

SN

i
i

i

SN

i

pi

5.0*5.0

inf5.0*1

1

1

where CV is defined by





m

q

j

q

j xhxgCV
11

)()(

9. For each onlooker bee, produce a new solution υi by

Equation (7) in the neighborhood of the solution

selected depending on pi and evaluate it

10. Apply selection process between υi and xi based on

Deb’s method

11. If Scout Production Period (SPP) is completed,

determine the abandoned solutions by using ―limit‖

parameter for the scout, if it exists, replace it with a

new randomly produced solution by

)(*)1,0(minmaxmin

jjjj

i xxrandxx 

12. Memorize the best solution achieved so far

13. cycle = cycle+1

14. until cycle = MCN

As we can see from the Fig.3, user can adjust multiple

parameters for ABC algorithm.

Fig. 3: Additional information about selected function

The proposed SB-ABC algorithm is coded in C# and run on

a Pentium Core2Duo, 3-GHz computer with 4 GB RAM

memory.

Control parameters are:

1. Bee Num NP is number of bees in the colony (employed

bees plus onlooker bees).

2. Limit controls the number of trials to improve certain

food source. If a food source could not be improved

within defined number of trial, it is abandoned by its

employed bee.

3. Max Cycle defines the number of cycles for foraging.

This is a stopping criterion

Problem specific parameters are:

1. Param Num D is the number of parameters of the

problem to be optimized

2. Runtime defines the number of times to run the algorithm.

3. Lower bound is lower bound of problem parameters.

4. Upper bound is upper bound of problem parameters.

5. Constrained number is the number of constraints

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 5, 2011 648

V. SETTINGS OF THE ALGORITHMS

To evaluate the performance of the proposed Karaboga

ABC algorithm and ABC algorithm with smart bee (SB) we

used the set of benchmark constrained optimization functions

proposed in [24], [25]. The performance of the SB-ABC

algorithm is compared with ABC algorithm, particle swarm

optimization (PSO) algorithms, self-adaptive penalty function

genetic algorithm (SAPF-GA) proposed by Tessema and Yen,

and hybrid constrained optimization evolutionary algorithm

(HCOEA) proposed by Wang.

The test cases include objective functions of various types

with different types of constraints. Basic function information

are listed in Table 1. This set includes various forms of

objective function such as linear, nonlinear cubic and

quadratic.

TABLE I

SET OF CONSTRAINED OPTIMIZATION TEST FUNCTION

Fun. Dim. Type Optimal

G1 13 Quadratic -15

G4 5 Quadratic -30665.5386

G6 2 Cubic -6961.814

G8 2 Nonlinear -0.0958

G13 5 Nonlinear 0.0539

Benchmark constrained optimization functions are defined:

G1: Minimize:

  
  


4

1

4

1

13

5

255)(
i i i

iii xxxxf

Subject to:

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

Where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . , 9), 0 ≤ xi ≤

100 (i = 10, 11, 12) and 0 ≤ x13 ≤ 1.

The global minimum is at

x = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) and f(x) = -15.

G4: Minimize:

5.3578547x3
2
+ 0.8356891x1x5 + 37.293239x1 − 40792.141

Subject to:

g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 −

0.0022053x3x5 − 92≤ 0

g2(x) = 85.334407 - 0.0056858x2x5 - 0.0006262x1x4

+0.0022053x3x5 ≤ 0

g4(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 +

0.0021813x3
2
− 110 ≤ 0

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 +

0.0019085x3x4 − 25≤ 0

g6(x) = -9.300961 - 0.0047026x3x5 - 0.0012547x1x3 -

0.0019085x3x4 + 20≤ 0

Where 78≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4,

5).

The optimum solution is f(x) = -30665.538672.

G6: Minimize:

 3

2

3

1)20()10()( xxxf

Subject to:

g1(x) = -(x1 -5)
2
 – (x2 -5)

2
 + 100 ≤ 0

g2(x) = (x1 -6)
2
 + (x2 -5)

2
 -82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution is

located at x = (14.09500000000000064,

0.8429607892154795668), f(x) = -6961.813875580.

G8: Minimize:

)(

)2sin()2(sin
)(

21

3

1

21

3

xxx

xx
xf






 Subject to:

 g1(x) = x1
2
 - x2 + 1 ≤ 0

 g2(x) = 1-x1 +(x2 -4)
2
 ≤ 0

Where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum solution is

located at x = (1.22797135260752599,

4.24537336612274885) where

f(x) = -0.0958250414180359.

G13: Minimize:

54321)(
xxxxx

exf 

Subject to:

g1(x) = x1
2
 + x2

2
 + x3

2
 + x4

2
 + x5

2
 − 10 = 0

g2(x) = x2x3 -5x4x5 = 0

g3(x) = x1
3
 + x2

3
 + 1 = 0

Where −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2 (i = 3, 4,

5). The optimum solution is x = (-1.717142240,

1.595721240494, 1.827250240, -0.76365988191, -

0.7636598673) where f(x) = 0.0539415140418.

In ABC, the value of modification rate (MR) is 0.8, colony

size (2 ∗SN) is 40 and the maximum cycle number (MCN) is

6000. So, the total objective function evaluation number is

240,000. The value of limit is equal to SN x D where D is the

dimension of the problem and SPP is also SNxD. Experiments

were repeated 30 times each starting from a random population

with different seeds [19].

Control parameters of the ABC algorithm are: colony size,

solution number, limit, maximum number of cycles and

modification rate. Our algorithm was implemented using the

parameters’ values described in the Table 2.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 5, 2011 649

TABLE II

PARAMETERS FOR THE MODIFIED ALGORITHM

Parameter Symbol Value

Colony size NP 40

Solutions

Number

SN 20

Maximum

Cycle Number

maxCycle 6000

Limit limit SN*D

Modification

Rate

MR 0.8

Each of the experiments was repeated 30 times with

different random seeds and the best, worst and average

function values were recorded. The results are in the Table 3.

TABLE III

STATISTICAL RESULTS OBTAINED BY SB-ABC, ABC, PSO, SAPF-

GA AND HCOEA ALGORITHMS ON TEST FUNCTIONS

Function Algor. Worst Best Average

G1: SB-ABC -15.00000 -15.00000 -15.00000

 -15.000 ABC -15.00000 -15.00000 -15.00000

 PSO -13.00000 -15.00000 -14.71000

 SAPF-GA -13.097 -15.00000 -14.55200

 HCOEA -14.999 -15.00000 -15.00000

G4: SB-ABC -30665.539 -30665.539 -30665.539

-30665.539 ABC -30665.539 -30665.539 -30665.539

 PSO -30665.539 -30665.539 -30665.539

 SAPF-GA -30656.471 -30665.401 -30659.221

 HCOEA -30665.539 -30665.539 -30665.539

G6: SB-ABC -6961.813 -6961.814 -6961.814

-6961.814 ABC -6961.808 -6961.814 -6961,813

 PSO -6961.814 -6961.814 -6961.814

 SAPF-GA -6953.061 -6961.046 -6943.304

 HCOEA -6961.813 -6961.813 -6961.813

G8: SB-ABC -0.095825 -0.095825 -0.095825

-0.095825 ABC -0.095825 -0.095825 -0.095825

 PSO -0.095825 -0.095825 -0.095825

 SAPF-GA -0.092697 -0.095825 -0.095635

 HCOEA -0.095825 -0.095825 -0.095825

G13: SB-ABC 0.183 0.054 0.105

0.053950 ABC 1.000 0.760 0.968

 PSO 1.793 0.085 0.569

 SAPF-GA 0.885276 0.053941 0.28627

 HCOEA 0.0539499 0.0539498 0.0539498

An indirect comparison was performed between the

published results of the ABC algorithm [19], PSO algorithm

[25], SAPF-GA algorithm [26], HCOEA [27] and our

proposed algorithm. In all test problems, the two variants of

ABC algorithms exhibited similar results. Table 3, gives the

summary of the comparative results of the best, mean and

worst solutions of the investigated algorithms.

Our proposed algorithm had equal or better results on G1,

G4, G6 and G8 than ABC, PSO, SAPF-GA and HCOEA

algorithms. In comparison with SAPF-GA and HCOEA our

algorithm had better or equal results in 5 of 6 problems while

HCOEA presented a greater quality of the results than our

proposed algorithm for G13 .

From the best, worst and mean results presented in Table 3,

it can be concluded that the SB-ABC algorithm performs

better than ABC and PSO algorithms. Our proposed algorithm,

SB-ABC presented a greater quality of the results and more

consistency in the results than the ABC algorithm. Based on

the data we have acquired we can conclude that the better

results have been made thanks to the implemented

modifications, especially by introducing the smart bee.

VI. CONCLUSION

The capability of the ABC algorithm for constrained

optimization problems was investigated through the

performance of several experiments on well-known test

problems. In this paper, we present an improved ABC

algorithm for constrained problems. The SB-ABC was tested

on five constrained optimization problems: quadratic, cubic,

linear and nonlinear. The results obtained by the modified

ABC algorithms for constrained optimization problems are

quite satisfactory.

Future work will include investigation of the SB-ABC

performance in other benchmark and real life problems. The

main steps in further modifications of ABC algorithm for

constrained problems are directed towards finding better

feasible solutions that will guide the swarm towards the

optimum solution. Also, the fine tuning of the parameters may

result in better solutions. It has been concluded that the ABC

algorithm can be efficiently used for solving constrained

optimization problems. The performance of the SB-ABC

algorithm can be also tested for real engineering problems

existing in the literature and compared with other algorithms.

REFERENCES

[1] Xin-She Yang, Nature-Inspired Metaheuristic Algorithms, Luniver

Press, 2008

[2] Johann Dréo, Patrick Siarry, Alain Pétrowski and Eric Taillard,

Metaheuristics for Hard Optimization, Springer Berlin Heidelberg, pp.

1-19, 2006.

[3] Muddassar Farooq, Bee-Inspired Protocol Engineering: From Nature to

Networks, Springer, 2008

[4] Xin-She Yang, Engineering Optimizations via Nature-Inspired Virtual

Bee Algorithms, Artificial Intelligence and Knowledge Engineering

Applications: A Bioinspired Approach, Volume 3562/2005, No.

10.1007/b137296, 2005, pp. 317-323.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 5, 2011 650

[5] Saif Mahmood Saab , Nidhal Kamel Taha El-Omari, Hussein H.

Owaied, Developing optimization algorithm using artificial bee colony

system, UbiCC Journal - Volume 4, No 5, 2009, pp. 391-396.

[6] Tricia Rambharose and Alexander Nikov, Computational intelligence-

based personalization of interactive web systems, WSEAS Transactions

on Information Science and Applications, Vol. 7, Issue 4, Apr 2010, pp.

484-497.

[7] N. Buniyamin, N. Sariff, W. A. J. Wan Ngah, Z. Mohamad, Robot

Global Path Planning Overview and a Variation of Ant Colony System

Algorithm, International Journal of Mathematics and Computers in

Simulation, Vol. 5, Issue 1, 2011, pp. 9-16.

[8] T. Y. Chen,Y. L. Cheng: Global optimization using hybrid approach,

WSEAS Transactions on Mathematics, Vol.7 ,2008 , pp. 254-262.

[9] Milan Rapaic, Zeljko Kanovic, Zoran Jelicic, A theoretical and

empirical analysis of convergence related particle swarm optimization,

WSEAS Transactions on Systems and Control, Vol. 4, Issue 11, Nov

2009, pp. 541-550.

[10] Karaboga D, Basturk B, A powerful and efficient algorithm for

numerical function optimization: artificial bee colony (ABC) algorithm.

J. of Global Optimization, Volume 39, No. 0925-5001, 2007, pp. 459-

471.

[11] Karaboga D, Basturk B, On the performance of artificial bee colony

(ABC) algorithm, Applied Soft Computing, Volume 8, No. 1568-4946,

2007, pp. 687-697.

[12] Karaboga D, Akay B, Ozturk C, Artificial Bee Colony (ABC)

Optimization Algorithm for Training Feed-Forward Neural Networks,

Modeling Decisions for Artificial Intelligence, Volume 4617/2007, No.

0302-9743, 2007, pp. 318-329.

[13] Baykasoglu A, Ozbakir L, Tapkan P. Artificial bee colony algorithm

and its application to generalized assignment problem, Swarm

Intelligence, Focus on Ant and Particle Swarm Optimization, No. 978-3-

902613-09-7, 2007, pp. 113–144.

[14] L. Jiann-Horng, H. Li-Ren: Chaotic bee swarm optimization algorithm

for path planning of mobile robots, Proceedings of the 10th WSEAS

international conference on evolutionary computing, Prague, Czech

Republic, 2009, pp. 84-89.

[15] R. Mohamad Idris, A. Khairuddin and M.W. Mustafa, Optimal

Allocation of FACTS Devices in Deregulated Electricity Market Using

Bees Algorithm, WSEAS Transactions on Power Systems, Vol. 5, Issue

2, Apr 2010, pp. 108-119.

[16] Teodorovic, D., Dell’Orco M., Bee colony optimization—a cooperative

learning approach to complex transportation problems, Proceedings of

the 10th EWGT Meeting, Poznan, 13-16, September 2005.

[17] Michalewicz Z, Fogel D B, How to Solve It: Modern Heuristics.

Springer, 2004.

[18] Parsopoulos K, Vrahatis M, Particle Swarm Optimization Method for

Constrained Optimization Problems, Intelligent technologies: theory and

applications, Volume 76, No. 978-1-58603-256-2, 2002, pp. 214-220

[19] Karaboga D, Basturk B, Artificial bee colony (ABC) optimization

algorithm for solving constrained optimization problems, Advances in

Soft Computing: Foundations of Fuzzy Logic and Soft Computing,

Volume 4529/2007, No. 0302-9743, 2007, pp.789–798.

[20] Deb K, An Efficient Constraint-handling Method for Genetic

Algorithms, Computer Methods in Applied Mechanics and Engineering,

Volume 186, No. 0045-7825, 2000, pp. 311-338.

[21] Deb K. Optimization for Engineering Design, Algorithms and Examples

4th. Edition, chapter 1 Introduction, pages 1–30, Prentice-Hall India,

2000.

[22] Kukkonen S, Lampinen J, Constrained real-parameter optimization with

generalized differential evolution, In Proceedings of IEEE Congress on

Evolutionary Computation, No. 9723462, pp. 207-214, 2006

[23] Baykasoglu A, Ozbakır L, Tapkan P, Artificial Bee Colony Algorithm

and Its Application to Generalized Assignment Problem, Swarm

Intelligence: Focus on Ant and Particle Swarm Optimization, I-Tech

Education and Publishing, 2007

[24] Michalewicz Z, Schoenauer M, Evolutionary algorithms for constrained

parameter optimization problems, Evolutionary Computation, 1996.

[25] Zavala A, Aguirre A, Diharce E, Constrained optimization via particle

evolutionary swarm optimization algorithm (PESO), In Proceedings of

the 2005 conference on Genetic and evolutionary computation

(GECCO’05), No. 1-59593-010-8, 2005, pp. 209–216.

[26] Tessema B, Yen G. G. A self adaptive penalty function based algorithm

for constrained optimization, In Proceedings of IEEE Congress on

Evolutionary Computation, No. 10.1109/CEC.2006.1688315, 2006, pp.

246 – 253

[27] Wang Y, Zixing C, Guanqi G, Zhou Y, Multiobjective optimization and

hybrid evolutionary algorithm to solve constrained optimization

problems, IEEE Transactions on Systems, Man, and Cybernetics, Part

B, Volume 37, 2007, No. 10.1109/TSMCB.2006.886164 , pp. 560 –

575

Milan Tuba received B.S. in mathematics, M.S. in

mathematics, M.S. in computer Science, M.Ph. in

computer science, Ph.D. in computer science from

University of Belgrade and New York University.

 From 1983 to 1994 he was in the U.S.A. first as a

graduate student and teaching and research assistant

at Vanderbilt University in Nashville and Courant

Institute of Mathematical Sciences, New York

University and later as an assistant professor of

electrical engineering at Cooper Union Graduate

School of Engineering, New York. During that time

he was the founder and director of Microprocessor Lab and VLSI Lab, leader

of scientific projects and supervisor of many theses. From 1994 he was

associate professor of computer science and Director of Computer Center at

University of Belgrade, Faculty of Mathematics, and from 2004 also a

Professor of Computer Science and Dean of the College of Computer Science,

Megatrend University Belgrade. He was teaching more than 20 graduate and

undergraduate courses, from VLSI design and Computer architecture to

Computer networks, Operating systems, Image processing, Calculus and

Queuing theory. His research interest includes mathematical, queuing theory

and heuristic optimizations applied to computer networks, image processing

and combinatorial problems. He is the author of more than 100 scientific

papers and a monograph. He is coeditor or member of the editorial board or

scientific committee of number of scientific journals and conferences.

 Prof. Tuba is member of the ACM since 1983, IEEE 1984, New York

Academy of Sciences 1987, AMS 1995, SIAM 2009. He participated in many

WSEAS Conferences with plenary lectures and articles in Proceedings and

Transactions.

Nadezda Stanarevic received B.S. in mathematics in

2006 and M.S. in mathematics in 2008 from

University of Belgrade, Faculty of Mathematics.

 She is currently Ph.D. student at Faculty of

Mathematics, Computer science department,

University of Belgrade and works as teaching

assistant at College of Business, Economy and

Entrepreneurship in Belgrade. She is the coauthor of

two papers. Her current research interest includes

nature inspired metaheuristics.

 Ms. Stanarevic participated in WSEAS conferences.

Nebojsa Bacanin received B.S. and M.S. in

economics and computer science in 2006 and 2008

from Megatrend University of Belgrade and also

M.S. in computer science in 2008 from University of

Belgrade

 He is currently Ph.D. student at Faculty of

Mathematics, Computer science department,

University of Belgrade and works as teaching

assistant at Faculty of Computer Science, Megatrend

University of Belgrade. He is the coauthor of two

papers. His current research interest includes nature inspired metaheuristics.

 Mr. Bacanin participated in WSEAS conferences.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 5, 2011 651

