

Abstract—Parallel processing is gaining popularity due to the

low cost of multi-core processors. In this paper we propose three

different approaches in parallelization of standard artificial bee

colony (ABC) algorithm. ABC algorithm was successfully used on

many optimization problems, unconstrained and constrained. Our

three approaches are independent parallel runs and two variations of

multiple swarms parallelization. By using independent parallel runs

method we succeeded in achieving faster execution of algorithm

since multicore processors can be better utilized. By using multiple

swarms technics with some modifications we also obtained better

results than the original ABC algorithm. Different types of

communications among swarms are proposed and examined. These

methods of communication between swarms improved results and

allowed adjustments of different ratios between exploration and

exploitation. Set of eleven standard benchmark functions was used to

test execution speed and quality of results improvements.

Keywords—Artificial bee colony, Metaheuristic optimization,

Parallelization, Swarm intelligence, Nature inspired metaheuristic

algorithms.

I. INTRODUCTION

PTIMIZATION problems have been solved by many

different techniques. As an alternative to the traditional

methods in operations research, heuristic methods have been

developed. A branch of nature inspired algorithms which are

called swarm intelligence is focused on insect behavior in

order to develop some metaheuristics which can mimic

insect's problem solution abilities. It also has been shown that

these algorithms can provide better solutions in comparison to

classical algorithms. Artificial bee colony (ABC) algorithm is

a relatively new member of swarm intelligence. ABC tries to

model natural behavior of real honey bees in food foraging. In

ABC system, artificial bees fly around in a multidimensional

search space and some (employed and onlooker bees) choose

food sources depending on their own experience and also

experience of their nest mates, and adjust their positions [1].

In the ABC algorithm, the colony of artificial bees contains

three groups of bees: employed bees, onlookers and scouts.

Manuscript received March 03, 2011.

The research was supported by the Ministry of Science, Republic of

Serbia, Project No. III 44006
M. Tuba is with the Faculty of Computer Science, Megatrend University,

Belgrade, Serbia, e-mail: tuba@ieee.org

M. Subotic is with the Faculty of Computer Science, Megatrend
University, Belgrade, Serbia, e-mail: milos.subotic@gmail.com

N. Stanarevic is with the Faculty of Faculty of Computer Science,

Megatrend University, Belgrade, Serbia, e-mail: srna@stanarevic.com

The number of employed bees is equal to the number of food

sources and an employed bee is assigned to one of the sources.

Short pseudo-code of the ABC algorithm is given below [2]:

1. Initialize the population of solutions

2. Evaluate the population

3. Produce new solutions for the employed bees

4. Apply the greedy selection process

5. Calculate the probability values

6. Produce the new solutions for the onlookers

7. Apply the greedy selection process

8. Determine the abandoned solution for the scout, and

replace it with a new randomly produced solution

9. Memorize the best solution achieved so far

For every food source, there is only one employed bee.

The ABC algorithm was selected because it is a simple

algorithm with few parameters and it has achieved promising

results in numerical benchmark optimizations.

Engelbrecht defined the basic components in any

optimization problem:

 An objective function which represents the quantity to

be optimized, i.e., the quantity to be minimized or

maximized.

 A set of unknown variables which affect the value of

the objective function, the number of variables defines

the dimension of the problem.

 A set of constraints that limit the values that can be

assigned to variables. Most of the problems have at

least one set of boundary constraints, which define the

range of values that each variable can take [3].

A. ABC Algorithm

Although there are several models based on honeybees [4] our

work is based on the model initially proposed by Karaboga

and Basturk [5] and lately developed by Karaboga and Bastruk

[6] that solves numerical optimization problems. An important

difference between ABC and other swarm intelligence

algorithms is that in the ABC algorithm the possible solutions

represent food sources (flowers), not individuals (honeybees).

The number of onlooker and employee bees is the same.

Onlookers are allocated to a food source based on the

profitability. Like the employed bees, onlookers calculate a

new solution from its food source. When a food source is

depleted, the bee or bees employed on it become unemployed

and they have to decide between either becoming a scout bee

and finding another food source to exploit randomly or

Different approaches in parallelization of the

artificial bee colony algorithm

Milos Subotic, Milan Tuba and Nadezda Stanarevic

O

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 755

returning to the hive as onlooker bees and waiting for

information about other food sources currently exploited.

After certain number of cycles, if food source cannot be

further improved, it is abandoned and replaced by randomly

generated food source. This is called exploration process and

it is performed by the third group of bees in colony – scout

bees. Hence, employed and onlooker bees carry out

exploitation process, while scout bees perform exploration.

II. BENCHMARK FUNCTIONS

In this paper we used set of eleven well known benchmark

functions. Function f1(x) is Sphere function that is continuous,

convex and unimodal. x is in the interval of [-100, 100].

Global minimum value for this function is 0 and optimum

solution is xopt =(x1, x2, . . . , xn) = (0, 0, . . . , 0). Surface plot

of f1(x) is shown in Figure 1.

Fig. 1, Sphere function: surface plot

Function f2(x) is Griewank function. x is in the interval of

[-600, 600]. The global minimum value for this function is 0

and the corresponding global optimum solution is xopt =(x1,

x2, . . . , xn) = (100, 100, . . . , 100). Since the number of local

optima increases with the dimensionality, this function is

strongly multimodal. The multimodality disappears for

sufficiently high dimensionalities (n > 30) and the problem

seems unimodal. Surface plot of f2(x) is shown in Figure 2.

Fig. 2, Griewank function: surface plot

Function f3(x) is Rastrigin function. This function is based on

Sphere function with the addition of cosine modulation to

produce many local minima. Thus the function is multimodal.

The locations of the minima are regularly distributed. The

difficult part about finding optimal solutions to this function is

that an optimization algorithm easily can be trapped in a local

optimum on its way towards the global optimum. x is in the

interval of [-5.12, 5.12]. The global minimum value for this

function is 0 and the corresponding global optimum solution is

xopt =(x1, x2, . . . , xn) = (0, 0, . . . , 0). Surface plot of f3(x) is

shown in Figure 3.

Fig. 3, Rastrigin function: surface plot

Function f4(x) is well-known classic optimization problem:

Rosenbrock valley. The global optimum is inside a long,

narrow, parabolic-shaped flat valley. Since it is difficult to

converge to the global optimum of this function, the variables

are strongly dependent, and the gradients generally do not

point towards the optimum, this problem is repeatedly used to

test the performance of the optimization algorithms. x is in the

interval of [-50, 50]. Global minimum value for this function

is 0 and optimum solution is xopt =(x1, x2, . . . , xn) = (1, 1, . . .

, 1). Global optimum is the only optimum, function is

unimodal. Surface plot of f4(x) is shown in Figure 4.

Fig. 4, Rosenbrock function: surface plot

The fifth function f5(x) is Schwefel function whose value is

f5(x) = - 418.9829 * n at its global minimum (420.9867,

420.9867,…, 420.9867). Schwefel’s function is deceptive in

that the global minimum is geometrically distant, over the

parameter space, from the next best local minima. Therefore,

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 756

the search algorithms are potentially prone to convergence in

the wrong direction. Test area is usually restricted to

hypercube – 500 ≤ xi ≤ 500, i = 1, . . . , n. Its main difficulty

is that its gradient is not oriented along their axis due to the

epitasis among their variables; in this way, the algorithms that

use the gradient converge very slowly. This is a widely used

multimodal test function. The surface of Schwefel function is

composed of a great number of peaks and valleys. The

function has a second best minimum far from the global

minimum where many search algorithms are trapped.

Moreover, the global minimum is near the bounds of the

domain. Surface plot of f5(x) is shown in Figure 5. Normalized

version of this function is used in tests. f5(x)=418.9829 * n

+∑ √

 where x is in the interval of [-500, 500].

Fig. 5, Schwefel function: surface plot

The sixth test function is Beale function. Usually this function

is used with only two parameters. Search domain for Beale

function is −4.5 ≤ xi ≤ 4.5, for i = 1, 2. Global minimum is

f6(3, 0.5) = 0. Surface plot of f6(x) is shown in Figure 6.

Fig. 6, Surface plot of Beale function

The seventh test function is Booth function. This function has

several local minimums. Search domain for Booth function is

−10 ≤ xi ≤ 10, i = 1, 2. Global Minimum is f7 (1, 3) = 0.

Surface plot of f7(x) is shown in Figure 7.

Fig. 7, Surface plot of Booth function

Dixon and Price function is used as eighth test function. The

number of parameters is not determinate for this function.

Search domain for Dixon and Price function is −10 ≤ xi ≤ 10, i

= 1, 2. . . n. Global Minimum is f8 (x) = 0. Surface plot of

f8(x) is shown in Figure 8.

Fig. 8, Surface plot of Dixon and Price function

The ninth test function is Matyas function. This function has

only one minimum, the global one, and has no other local

minimums. This function has two parameters. Search space

for this function is −10 ≤ xi ≤ 10, i = 1, 2. The global

minimum for this function is f9(0, 0) = 0. Surface plot of f9(x)

is shown in Figure 9.

Fig. 9, Surface plot of Matyas function

Function f10(x) is step function. It is a discontinuous function

and has one minimum. This function represents the problem of

flat surfaces. It is very hard for algorithms without variable

step sizes to conquer flat surfaces problems because there is

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 757

no information about which direction can provide optimal

solution. Surface plot is shown in Fig. 10.

Fig. 10, Surface plot of step function

Our eleventh function f11 (x) used in our benchmark set is

Ackley function. The Ackley Function is a continuous,

multimodal function obtained by modulating an exponential

function with a cosine wave of moderate amplitude.

Originally, it was formulated by Ackley only for the two –

dimensional case; it is presented here in a generalized,

scalable version. Its topology is characterized by an almost flat

(due to the dominating exponential) outer region and a central

hole or peak where the modulations by the cosine wave

become more and more influential. The global minimum value

for this function is 0 and the corresponding global optimum

solution is xopt =(x1, x2, . . . ,xn) = (0, 0, . . . , 0).Surface plot of

f11(x) is shown in Fig. 11. X is in the interval of [-32, 32].

Fig. 11, Surface plot of Ackley function

In experiments, f1(x), Sphere function has 5 parameters,

f2(x) Griewank, f3(x) Rastrigin, f4(x) Rosenbrock, f5(x)

Schwefel, f8(x) Dixon and Price, f10(x) Step and f11(x) Ackley

functions have 50 parameters. Functions f6(x) Beale, f7 (x)

Booth and f9(x) Matyas have 2 parameters. Number of

parameters, parameter ranges, formulations and global

optimum values of these functions are given in Table 1.

TABLE I
NUMERICAL BENCHMARK FUNCTIONS

Name Function No. of
param.

Ranges Min

Sphere f1(x)=∑

 5 -100 ≤ xi ≤ 100 0

Griewank f2(x) = ∑

 ∏

 √ 50 -600 ≤ xi ≤ 600 0

Rastrigin f3(x) = 10n + ∑

 50 -5.12 ≤ xi ≤ 5.12 0

Rosenbrock f4(x) = ∑ [

]
 50 -50 ≤ xi ≤ 50 0

Schwefel
 ∑

 √
50 – 500 ≤ xi ≤ 500 418.9829*n

Beale 2 −4.5 ≤ xi ≤ 4.5 0

Booth f7(x)=(x1+2x2-7)
2
 + (2x1+x2-5)

2
 2 −10 ≤ xi ≤ 10 0

Dixon
and Price

f8(x)= 2

1

2

1

2

1

)1()2(

 xxxi ii

n

i

 50 −10 ≤ xi ≤ 10 0

Matyas f9(x)= 0.26 (x1
2
 x2

2
) - 0.48x1x2 2 −10 ≤ xi ≤ 10 0

step
 ∑

50 −100 ≤ xi ≤ 100 0

Ackley

 (√

∑

) (

∑

)

50 −32 ≤ xi ≤ 32 0

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 758

III. DIFFERENT PARALLELIZATION APPROACHES

We are witnessing a dramatic change in computer

architecture due to the multicore paradigm shift, as every

electronic device from cell phones to supercomputers

confronts parallelism of unprecedented scale [7]. Majority of

processors today have multiple cores and even for a single

core multiple treads can be implemented. In general, a system

of n parallel processors, each of speed k, is less efficient than

one processor of speed n * k. However, the parallel system is

usually much cheaper to build and its power consumption is

significantly smaller. Another issue is the memory wall.

Processor clock rates have been increasing much faster for

some time than memory clock rates, and that trend is

continuing. Increasing the Gigahertz rates on microprocessors

did not improve performance significantly as it did in the past,

and larger and larger caches and other things that help

alleviate some of the issues — but not all of them — on

memory were increasingly added. So, multicore processors

actually address this issue by slowing the increase in clock

rate on the processor so that the problem doesn't get worse. To

that end research in parallelization is of great importance.

Parallelization of algorithms has proven to be very powerful

method in the case of population based algorithms like ant

colony optimization (ACO) and genetic algorithms [8]. Thus

the aim of this work was to examine implementation of

parallelization on ABC algorithm using three different

approaches.

The main question in implementing parallelization is the

level of parallelization. The most common solution is creating

every cycle in ABC algorithm as an independent thread. This

is too fine grained implementation, and it has one major

disadvantage. There is a rather small portion of work in each

cycle, so extensive use of CPU time for creating threads and

their synchronizations exceeds the benefits of parallel

execution of each cycle. ABC algorithm contains thousands of

cycles. Creating and synchronizing such large number of

threads can be slower by far than using a serial execution of

cycles. For that reason, we didn’t use this kind of

implementation, but implemented three other approaches.

Our approaches are:

1. Parallel independent runs

2. Multiple swarms – one best solution

3. Multiple swarms – best solutions from all swarms

Increasing performance is the main focus of parallel

independent runs approach. Multiple swarm approaches aim at

getting better results.

A. Independent parallel runs approach

It is desirable to run population based heuristics many

times, because they do not provide exact result but rather give

approximation as final result. It is quite useful to run all

iterations simultaneously in order to save time. In this

approach threads have no communication between themselves

at all. Every thread runs the same sequential ABC algorithm

with different random seeds. The final solution is the best one

of all the independent runs. The speed increases almost as

many folds as there are execution cores in system.

Independent parallel runs approach is too coursed grained and

there are no speed gains for one single runtime. On single

execution core system this implementation can be slower than

serial execution of all runs. This can be explained by high cost

of switching CPU between threads. But for today’s modern

CPU’s that is not an issue, hence almost every PC has a at list

processor with two cores.

B. Multiple swarms approaches

The other two approaches we used are based on multiple

swarm tactics. The idea was to use more than one swarm on

the same search space. These swarms are able to communicate

with each other in order to exchange the results. After every

communication the new solution matrix is formed in all

swarms, based on best-so-far solutions from each swarm.

Multiple swarms can find more useful solutions and narrow

the search space. Trapping in local optimum can be avoided

by using numerous swarms. One of the questions referring this

method is how many swarms should be used? It is suggested

that the number of swarms should be equal to the number of

rows in solution matrix. That is a half of the colony size. Our

experiments imply that the best results can be achieved in this

way. The other question is how often the swarms should

communicate. The period between two communications can

be determined by the number of cycles or by the time unit. In

our experience, it is better to use number of cycles then time

unit. Since on different systems, various amounts of

computational work can be done in the same time, only a few

communications can occur on the faster system, while during

the same algorithm execution on the slower system, number of

communications can be significantly greater. In our

experiments the number of cycles between two

communications was determined by dividing total number of

cycles by the number of swarms. After certain number of

cycles, every swarm sends its best-so-far solution to all other

swarms. The key difference between ―multiple swarms – one

best solution‖ and ―multiple swarms – best solutions from all

swarms‖ approaches is in the role of solutions obtained from

each swarm in formation of new solution matrix after every

communication.

In the ―multiple swarms – one best solution‖ approach, the

best solution from every single swarm is collected after certain

number of cycles. Then, the best of all collected solutions is

sent back to each swarm to replace one of the solutions in the

existing solution matrix. ―Multiple swarms – best solutions

from all swarms‖ uses another (different) strategy. Namely,

every swarm replaces its solution matrix with the new one

which is formed after certain number of cycles. Every row of

the new solution matrix represents the best solution from one

of the swarms.

IV. TEST RESULTS

All of the parallelization approaches have been

implemented using Java programming language. The Java

platform is designed from the ground up to support concurrent

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 759

programming, with basic concurrency support in the Java

programming language and the Java class libraries. In the Java

programming language, concurrent programming is mostly

concerned with threads. Threads are sometimes called

lightweight processes. Both processes and threads provide an

execution environment, but creating a new thread requires

fewer resources than creating a new process. Each thread is

associated with an instance of the class Thread. A thread is a

unit of processing in a program. The Java Virtual Machine

allows an application to have multiple threads of execution

running concurrently. For test purposes, we created test

application in Java programming language based on

Karaboga`s and Bastuk`s software in C programming

language [2], [6], [9]. All of our tests have been performed on

an Intel(R) Q6600 @ 3.0 GHz with 4 GB of RAM with

Microsoft Windows XP Professional Edition Version 2003

Service Pack 3. We used Sun Microsystems Java Virtual

Machine, and NetBeans as IDE.

In the ABC algorithm there are only three parameters to be

modified: number of solutions, total number of iterations

(cycles) and abandonment limit. Number of solutions (SN)

represents the total number of solutions as well as the number

of employer bees and number of onlooker bees. The colony

size is 2 * SN. Total number of iterations (MCN) represents

max number of cycles. Test parameters for all benchmark

function are given in table 2. Limits are calculated by formula:

limit = 0.25 x NP x D [10].

TABLE II
PARAMETERS USED IN ABC ALGORITHM

Function Max cycle NP Runs

Sphere (f1) 2000 20 30

Griewank (f2) 2000 20 30

Rastrigin (f3) 2000 20 30

Rosenbrock (f4) 2000 20 30

Schwefel (f5) 2000 20 30

Beale (f6) 2000 20 30

Booth (f7) 2000 20 30

Dixon & Price (f8) 2000 20 30

Matyas (f9) 2000 20 30

step (f10) 2000 20 30

Ackley (f11) 2000 20 30

First test is a speed test. It demonstrates a speed gains when

all runs are executing in the parallel manner. It is clear that if

function is complicated, improvements are more obvious. In

ideal case, parallel independent runs approach should be four

time faster that serial runs, hence our test PC has CPU with

four physical cores. Speed test results are shown in Table 3.

Times are given in seconds. As we can see from result table,

for some function, the ratio between parallel independent runs

approach and serial run approach is almost four. That is the

case with Griewank, Rastrigin, Rosenbrock, Schwefel, step

and Ackley functions. Dixon and Price function shows less

gains from running parallel. Sphere, Beale, Booth and Matyas

functions are slower when they are running in the parallel

manner.

TABLE III
SPEED TESTS FOR BENCHMARK FUNCTIONS

Function Serial runs Parallel indep. runs

Sphere (f1) 2.4 14.7

Griewank (f2) 39.2 11.2

Rastrigin (f3) 32.2 9.1

Rosenbrock (f4) 34.3 12.3

Schwefel (f5) 32.9 9.8

Beale (f6) 3.1 12.9

Booth (f7) 3.0 12.8

Dixon & Price (f8) 17.4 7.2

Matyas (f9) 2.5 13.0

step (f10) 23.3 8.7

Ackley (f11) 41.4 13.3

Since these objective functions can be calculated quickly,

they require small amount of CPU time when serial runs are

used. More CPU time is used for creating and

synchronizing threads then for calculating objective

function. A sphere function is very simple function, so

calculating objective functions is not CPU challenging. It is

similar for Beale, Booth and Matyas functions. These

functions have only two parameters, thus they have low

demanding for CPU time, and parallel independent runs

approach is slower than serial runs approach. Computational

time can be prolonged by increasing the number of

parameters. Independent parallel runs approach can achieve

better results than serial runs with greater number of

parameters. Speed tests for Sphere function with various

numbers of parameters are shown in Table 4. Time is

expressed in seconds.

TABLE IV
DIFFERENT NUMBER OF PARAMETERS FOR SPHERE FUNCTION

Number of
parameters (D)

Serial runs Parallel independent
runs

5 2.4 14.7

50 4.1 15.8

250 12.3 12.3

500 21.5 8.6

1000 41.1 11.6

Independent parallel runs approach has no influence on

quality of results. Approximately the same results are obtained

by using both approaches, serial runs and parallel independent

runs. Hence we didn’t compare results obtained from these

two approaches. Independent parallel runs approach is

presented as a technic that can be used for speed

improvements, not as a technic for better results.

Results from multiple swarm approaches are shown in

Table 5.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 760

TABLE V
RESULTS OF TESTED FUNCTIONS

f Value Serial
Runs

MS-one
best sol.

MS-best
sol. from

all
swarms

f1

Mean 8.003E-05 9.187E-13 5.876E-14

Best 7.640E-06 6.107-14 3.781E-15

Worst 3.356E-04 6.394E-12 2.497E-13

St. dev. 8.203E-05 5.839E-13 1.361E-13

f2

Mean 2.314E-06 2.781E-14 0

Best 2.065E-07 5.794-15 0

Worst 1.215E-05 5.239E-13 0

St. dev. 2.623E-06 4.178E-14 0

f3

Mean 2.170E+01 1.639E-04 5.866E-05

Best 1.218E+01 0 0

Worst 3.146E+01 4.716E-03 3.964E-04

St. dev. 4.652E+00 8.602E-04 7.369E-04

f4

Mean 3.342E+08 1.772E+00 8.750E-01

Best 1.846E+07 6.730E-02 3.833E-02

Worst 8.828E+08 8.088E+00 1.050E+00

St. dev. 2.515E+08 1.794E+00 1.290E+00

f5

Mean 7.774E+02 2.143E+01 1.560E+01

Best 2.993E+02 5.093E-11 4.355E-09

Worst 1.303E+03 2.369E+02 6.742E+01

St. dev. 2.355E+02 5.850E+01 2.651E+01

f6

Mean 2.553E-05 4.540E-09 9.811E-15

Best 2.467E-15 0 0

Worst 7.625E-04 9.796E-07 7.876E-13

St. dev. 1.392E-04 1.811E-09 5.789E-14

f7

Mean 0 0 0

Best 0 0 0

Worst 0 0 0

St. dev. 0 0 0

f8

Mean 3.193E-03 1.437E-05 3.734E-07

Best 1.385E-04 1.172E-07 5.914E-10

Worst 3.339E-02 2.188E-04 4.790E-5

St. dev. 6.003E-03 4.031E-05 7.609E-06

f9

Mean 0 0 0

Best 0 0 0

Worst 0 0 0

St. dev. 0 0 0

f10

Mean 3.928E-07 6.008E-10 6.937E-13

Best 5.754E-08 1.975E-12 6.297E-14

Worst 4.901E-06 6.904E-9 1.297E-12

St. dev. 9.378E-07 1.789E-10 6.987E-13

f11

Mean 2.927E-09 7.987E-11 2.097E-12

Best 4.908E-10 3.165E-13 5.536E-14

Worst 9.876E-09 1.290E-10 7.981E-11

St. dev. 1.223E-10 6.084E-11 7.093E-12

The quality of results obtained by serial runs, ―multiple

swarm – one best solution‖ approach (MS – one best sol.) and

―multiple swarm – best solutions from all swarms‖ (MS – best

sol. from all swarms) are compared. Mean solution, best

solution, worst solution and standard deviation obtained from

30 runs are observed in Table 5. In order to make the

comparison clearer, values below E-15 were assumed to be 0.

As we can see, both multiple swarm approaches (one best

solution and best solutions from all swarms) achieves better

results than serial runs. ―Multiple swarms – best solution from

all swarms‖ approach gives slightly better results than

―multiple swarms – one best solution‖ approach. For most test

functions, improvements in results quality are significant. All

tested approaches obtain zeros for mean, best, worst solution

and standard deviation for functions f7 (x) (Booth) and f9 (x)

(Matyas). It is due to small number of parameters and fairly

small CPU time demands of these functions.

V. CONCLUSIONS

In this paper three different approaches in parallelization of

artificial bee colony algorithm ware implemented. The aim

was to achieve speed gains by using independent parallel runs

approach and to obtain better results by using multiple swarms

approaches. Independent parallel runs implementation is

significantly faster than serial runs method, especially if

objective functions is complicated and demands a lot of CPU

time or /and has a great number of parameters. In the future, as

the number of execution cores increases, the time difference

between parallel and serial runs will be even greater. More

precise results can be accomplished using multiple swarms

approaches. As shown in Table 5, the results obtained by

serial runs method cannot match in terms of quality and

consistency the results achieved by multiple swarms methods.

Future work will include further investigation of the parallel

implementations of ABC algorithm and application to

constrained benchmark functions [11] and other real life

problems [12]. Constrained problems are more CPU

demanding due to the necessity of calculating constrains, so

we expect greater speed gains. There are several issues that

remain for future work, such as to examine a convergence

speed of multiple swarms approaches, and testing all three

parallel implementations of artificial bee colony algorithm on

more test function with greater number of parameters.

REFERENCES

[1] Jiann-Horng L., Meei-Ru L., Li-Ren H.: A novel bee swarm

optimization algorithm with chaotic sequence and psychology model of
emotion, Proceedings of the 9th WSEAS International Conference on

Systems Theory and Scientific Computation 2009, pp. 87-92.

[2] Karaboga D, Basturk B, A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC) algorithm.

J. of Global Optimization, Volume 39, No. 0925-5001, 2007, pp. 459-

471.
[3] Engelbrecht A P, Fundamentals of Computational Swarm Intelligence,

chapter 1 Introduction, pages 1–4. Wiley and Sons, 2005

[4] Baykasoglu A, Ozbakır L, Tapkan P, Artificial Bee Colony Algorithm
and Its Application to Generalized Assignment Problem, Swarm

Intelligence: Focus on Ant and Particle Swarm Optimization, I-Tech

Education and Publishing, ISBN: 978-3-902613-09-7, 2007, pages 532,

pp. 113-144

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 761

[5] Karaboga D., An idea based on honey bee swarm for numerical

optimization, Technical Report TR06, Erciyes University, Engineering

Faculty, Computer Engineering Department, Kayseri, Turkey, 2005,

http://mf.erciyes.edu.tr/abc/publ.htm

[6] Basturk B., Karaboga D., An artificial bee colony (ABC) algorithm for
numeric function optimization, Applied Soft Computing, 2008, Vol. 8,

Issue 1, pp. 687-697

[7] Williams S, Oliker L, Vuduc R, Shalf J, Yelick K, Demmel J,
Optimization of sparse matrix–vector multiplication on emerging

multicore platforms, Parallel Computing, 2009, Volume 35, Issue 3,

Pages 178-194
[8] Tanese R., Parallel genetic algorithms for a hypercube, Proceedings of

the second international conference on Genetic Algorithms and their

Applications, Hillsdale, NJ, Lawrence Erlbaum Associates, Inc. 1987,
pp. 177–183

[9] Karaboga D, Basturk B, On the performance of artificial bee colony

(ABC) algorithm, Applied Soft Computing, 2007, Volume 8, No. 1568-
4946, pp. 687-697

[10] Karaboga D, Akay B, Ozturk C, Artificial Bee Colony (ABC)

Optimization Algorithm for Training Feed-Forward Neural Networks,

Modeling Decisions for Artificial Intelligence, 2007, Volume

4617/2007, No. 0302-9743, pp. 318-329

[11] D. Karaboga, B. Basturk, Artificial bee colony (ABC) optimization
algorithm for solving constrained optimization problems, LNCS:

Advances in Soft Computing: Foundations of Fuzzy Logic and Soft

Computing, 2007, pp. 789–798
[12] Akay B., Karaboga D., Artificial bee colony algorithm for large-scale

problems and engineering design optimization, Journal of Intelligent
Manufacturing, DOI: 10.1007/s10845-010-0393-4, 2010, pp. 1-14

Milan Tuba received B.S. in mathematics, M.S. in

mathematics, M.S. in computer Science, M.Ph. in
computer science, Ph.D. in computer science from

University of Belgrade and New York University.

 From 1983 to 1994 he was in the U.S.A. first as a
graduate student and teaching and research assistant

at Vanderbilt University in Nashville and Courant

Institute of Mathematical Sciences, New York
University and later as an assistant professor of

electrical engineering at Cooper Union Graduate

School of Engineering, New York. During that time
he was the founder and director of Microprocessor Lab and VLSI Lab, leader

of scientific projects and supervisor of many theses. From 1994 he was

associate professor of computer science and Director of Computer Center at
University of Belgrade, Faculty of Mathematics, and from 2004 also a

Professor of Computer Science and Dean of the College of Computer Science,

Megatrend University Belgrade. He was teaching more than 20 graduate and
undergraduate courses, from VLSI design and Computer architecture to

Computer networks, Operating systems, Image processing, Calculus and

Queuing theory. His research interest includes mathematical, queuing theory
and heuristic optimizations applied to computer networks, image processing

and combinatorial problems. He is the author of more than 100 scientific

papers and a monograph. He is coeditor or member of the editorial board or

scientific committee of number of scientific journals and conferences.

 Prof. Tuba is member of the ACM since 1983, IEEE 1984, New York

Academy of Sciences 1987, AMS 1995, SIAM 2009. He participated in many
WSEAS Conferences with plenary lectures and articles in Proceedings and

Transactions.

Milos Subotic received B.S. in computer science in

2010 from Advanced School of Electrical and

Computer Engineering, Belgrade, Serbia and also

B.S. in economics in 2006 from Megatrend

University of Belgrade.
 He is currently Ph.D. student at Faculty of

Mathematics, Computer science department,

University of Belgrade and works as teaching
assistant at Faculty of Computer Science, Megatrend

University of Belgrade. He is the coauthor of two

papers. His current research interest includes nature
inspired metaheuristics.

 Mr. Subotic participated in WSEAS conferences.

Nadezda Stanarevic received B.S. in mathematics in
2006 and M.S. in mathematics in 2008 from

University of Belgrade, Faculty of Mathematics.

 She is currently Ph.D. student at Faculty of

Mathematics, Computer science department,

University of Belgrade and works as teaching assistant

at College of Business, Economy and
Entrepreneurship in Belgrade. She is the coauthor of

two papers. Her current research interest includes

nature inspired metaheuristics.
 Ms. Stanarevic participated in WSEAS conferences.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 762

