
 

 

 

Abstract—Parallel processing is gaining popularity due to the 

low cost of multi-core processors. In this paper we propose three 

different approaches in parallelization of standard artificial bee 

colony (ABC) algorithm. ABC algorithm was successfully used on 

many optimization problems, unconstrained and constrained. Our 

three approaches are independent parallel runs and two variations of 

multiple swarms parallelization. By using independent parallel runs 

method we succeeded in achieving faster execution of algorithm 

since multicore processors can be better utilized. By using multiple 

swarms technics with some modifications we also obtained better 

results than the original ABC algorithm. Different types of 

communications among swarms are proposed and examined. These 

methods of communication between swarms improved results and 

allowed adjustments of different ratios between exploration and 

exploitation. Set of eleven standard benchmark functions was used to 

test execution speed and quality of results improvements. 

 

Keywords—Artificial bee colony, Metaheuristic optimization, 

Parallelization, Swarm intelligence, Nature inspired metaheuristic 

algorithms.  

I. INTRODUCTION 

PTIMIZATION problems have been solved by many 

different techniques. As an alternative to the traditional 

methods in operations research, heuristic methods have been 

developed. A branch of nature inspired algorithms which are 

called swarm intelligence is focused on insect behavior in 

order to develop some metaheuristics which can mimic 

insect's problem solution abilities. It also has been shown that 

these algorithms can provide better solutions in comparison to 

classical algorithms. Artificial bee colony (ABC) algorithm is 

a relatively new member of swarm intelligence. ABC tries to 

model natural behavior of real honey bees in food foraging. In 

ABC system, artificial bees fly around in a multidimensional 

search space and some (employed and onlooker bees) choose 

food sources depending on their own experience and also 

experience of their nest mates, and adjust their positions [1]. 

In the ABC algorithm, the colony of artificial bees contains 

three groups of bees: employed bees, onlookers and scouts. 
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The number of employed bees is equal to the number of food 

sources and an employed bee is assigned to one of the sources. 

Short pseudo-code of the ABC algorithm is given below [2]: 

 

1. Initialize the population of solutions 

2. Evaluate the population 

3. Produce new solutions for the employed bees  

4. Apply the greedy selection process 

5. Calculate the probability values  

6. Produce the new solutions for the onlookers 

7. Apply the greedy selection process 

8. Determine the abandoned solution for the scout, and 

replace it with a new randomly produced solution  

9. Memorize the best solution achieved so far 

 

For every food source, there is only one employed bee. 

The ABC algorithm was selected because it is a simple 

algorithm with few parameters and it has achieved promising 

results in numerical benchmark optimizations. 

Engelbrecht defined the basic components in any 

optimization problem: 

 An objective function which represents the quantity to 

be optimized, i.e., the quantity to be minimized or 

maximized. 

 A set of unknown variables which affect the value of 

the objective function, the number of variables defines 

the dimension of the problem. 

 A set of constraints that limit the values that can be 

assigned to variables. Most of the problems have at 

least one set of boundary constraints, which define the 

range of values that each variable can take [3].  

A. ABC Algorithm 

Although there are several models based on honeybees [4] our 

work is based on the model initially proposed by Karaboga 

and Basturk [5] and lately developed by Karaboga and Bastruk 

[6] that solves numerical optimization problems. An important 

difference between ABC and other swarm intelligence 

algorithms is that in the ABC algorithm the possible solutions 

represent food sources (flowers), not individuals (honeybees). 

The number of onlooker and employee bees is the same. 

Onlookers are allocated to a food source based on the 

profitability. Like the employed bees, onlookers calculate a 

new solution from its food source. When a food source is 

depleted, the bee or bees employed on it become unemployed 

and they have to decide between either becoming a scout bee 

and finding another food source to exploit randomly or 
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returning to the hive as onlooker bees and waiting for 

information about other food sources currently exploited. 

After certain number of cycles, if food source cannot be 

further improved, it is abandoned and replaced by randomly 

generated food source. This is called exploration process and 

it is performed by the third group of bees in colony – scout 

bees. Hence, employed and onlooker bees carry out 

exploitation process, while scout bees perform exploration.  

II. BENCHMARK FUNCTIONS 

In this paper we used set of eleven well known benchmark 

functions. Function f1(x) is Sphere function that is continuous, 

convex and unimodal. x is in the interval of [-100, 100]. 

Global minimum value for this function is 0 and optimum 

solution is  xopt =(x1, x2, . . . , xn) = (0, 0, . . .  , 0). Surface plot 

of f1(x) is shown in Figure 1. 
 

 

 
Fig. 1, Sphere function: surface plot 

 

Function f2(x) is Griewank function. x is in the interval of  

[-600, 600]. The global minimum value for this function is 0 

and the corresponding global optimum solution is  xopt =(x1, 

x2, . . . , xn) = (100, 100, . . .  , 100). Since the number of local 

optima increases with the dimensionality, this function is 

strongly multimodal. The multimodality disappears for 

sufficiently high dimensionalities (n > 30) and the problem 

seems unimodal. Surface plot of f2(x) is shown in Figure 2. 
 

 

 
Fig. 2, Griewank function: surface plot 

 

Function f3(x) is Rastrigin function. This function is based on 

Sphere function with the addition of cosine modulation to 

produce many local minima. Thus the function is multimodal. 

The locations of the minima are regularly distributed. The 

difficult part about finding optimal solutions to this function is 

that an optimization algorithm easily can be trapped in a local 

optimum on its way towards the global optimum. x is in the 

interval of [-5.12, 5.12]. The global minimum value for this 

function is 0 and the corresponding global optimum solution is 

xopt =(x1, x2, . . . , xn) = (0, 0, . . .  , 0). Surface plot of f3(x) is 

shown in Figure 3. 

 

 
Fig. 3, Rastrigin function: surface plot 

 

Function f4(x) is well-known classic optimization problem: 

Rosenbrock valley. The global optimum is inside a long, 

narrow, parabolic-shaped flat valley. Since it is difficult to 

converge to the global optimum of this function, the variables 

are strongly dependent, and the gradients generally do not 

point towards the optimum, this problem is repeatedly used to 

test the performance of the optimization algorithms. x is in the 

interval of [-50, 50]. Global minimum value for this function 

is 0 and optimum solution is xopt =(x1, x2, . . . , xn) = (1, 1, . . .  

, 1). Global optimum is the only optimum, function is 

unimodal. Surface plot of f4(x) is shown in Figure 4. 
 

 
Fig. 4, Rosenbrock function: surface plot 

 

The fifth function f5(x) is Schwefel function whose value is 

f5(x) = - 418.9829 * n at its global minimum (420.9867, 

420.9867,…, 420.9867). Schwefel’s function is deceptive in 

that the global minimum is geometrically distant, over the 

parameter space, from the next best local minima. Therefore, 
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the search algorithms are potentially prone to convergence in 

the wrong direction. Test area is usually restricted to 

hypercube – 500 ≤ xi ≤ 500,  i = 1, . . . , n. Its main difficulty 

is that its gradient is not oriented along their axis due to the 

epitasis among their variables; in this way, the algorithms that 

use the gradient converge very slowly. This is a widely used 

multimodal test function. The surface of Schwefel function is 

composed of a great number of peaks and valleys. The 

function has a second best minimum far from the global 

minimum where many search algorithms are trapped. 

Moreover, the global minimum is near the bounds of the 

domain. Surface plot of f5(x) is shown in Figure 5. Normalized 

version of this function is used in tests. f5(x)=418.9829 * n 

+∑         √     
 
  where x is in the interval of [-500, 500]. 

 

 
Fig. 5, Schwefel function: surface plot 

 

The sixth test function is Beale function. Usually this function 

is used with only two parameters. Search domain for Beale 

function is −4.5 ≤ xi ≤ 4.5, for i = 1, 2. Global minimum is 

f6(3, 0.5) = 0. Surface plot of f6(x) is shown in Figure 6. 
 

 
Fig. 6, Surface plot of Beale function 

 

The seventh test function is Booth function. This function has 

several local minimums. Search domain for Booth function is 

−10 ≤ xi ≤ 10, i = 1, 2. Global Minimum is f7 (1, 3) = 0. 

Surface plot of f7(x) is shown in Figure 7. 

 

 
Fig. 7, Surface plot of Booth function 

 

Dixon and Price function is used as eighth test function. The 

number of parameters is not determinate for this function. 

Search domain for Dixon and Price function is −10 ≤ xi ≤ 10, i 

= 1, 2. . . n. Global Minimum is  f8 (x) = 0. Surface plot of 

f8(x) is shown in Figure 8. 
 

 
Fig. 8, Surface plot of Dixon and Price function 

 

The ninth test function is Matyas function. This function has 

only one minimum, the global one, and has no other local 

minimums. This function has two parameters. Search space 

for this function is −10 ≤ xi ≤ 10, i = 1, 2. The global 

minimum for this function is f9(0, 0) = 0. Surface plot of f9(x) 

is shown in Figure 9.  

 
Fig. 9, Surface plot of Matyas function 

 

Function f10(x) is step function. It is a discontinuous function 

and has one minimum. This function represents the problem of 

flat surfaces. It is very hard for algorithms without variable 

step sizes to conquer flat surfaces problems because there is 
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no information about which direction can provide optimal 

solution. Surface plot is shown in Fig. 10. 

 
Fig. 10, Surface plot of step function 

 

Our eleventh function f11 (x) used in our benchmark set is 

Ackley function. The Ackley Function is a continuous, 

multimodal function obtained by modulating an exponential 

function with a cosine wave of moderate amplitude. 

Originally, it was formulated by Ackley only for the two – 

dimensional case; it is presented here in a generalized, 

scalable version. Its topology is characterized by an almost flat 

(due to the dominating exponential) outer region and a central 

hole or peak where the modulations by the cosine wave 

become more and more influential. The global minimum value 

for this function is 0 and the corresponding global optimum 

solution is xopt =(x1, x2, . . . ,xn) = (0, 0, . . .  , 0).Surface plot of 

f11(x) is shown in Fig. 11. X is in the interval of [-32, 32].  
 

 
Fig. 11, Surface plot of Ackley function 

 

In  experiments,  f1(x),  Sphere  function  has  5 parameters,    

f2(x)  Griewank,    f3(x)  Rastrigin, f4(x)  Rosenbrock, f5(x) 

Schwefel, f8(x) Dixon and Price, f10(x) Step and f11(x) Ackley 

functions  have  50  parameters. Functions f6(x) Beale, f7 (x) 

Booth and f9(x) Matyas have 2 parameters. Number of 

parameters, parameter  ranges,  formulations  and  global 

optimum  values  of  these  functions  are  given  in Table 1. 

 

 

 

TABLE I 
NUMERICAL BENCHMARK FUNCTIONS 

 

 

Name Function No. of 
param. 

Ranges Min 

Sphere f1(x)=∑   
  

    5 -100 ≤ xi ≤ 100 0 

Griewank f2(x) = ∑
  

 

    
  ∏       

 
   

 
    √       50 -600 ≤ xi ≤ 600 0 

Rastrigin f3(x) = 10n + ∑    
  

                   50 -5.12 ≤ xi ≤ 5.12 0 

Rosenbrock f4(x) = ∑ [      
          

           ]   
    50 -50 ≤ xi ≤ 50 0 

Schwefel 
      ∑   

 

   

     √      
50 – 500 ≤ xi ≤ 500 418.9829*n 

Beale                                                      2 −4.5 ≤ xi ≤ 4.5 0 

Booth f7(x)=(x1+2x2-7)
2
 + (2x1+x2-5)

2
 2 −10 ≤ xi ≤ 10 0 

Dixon  
and Price 

f8(x)= 2

1

2

1

2

1
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 50 −10 ≤ xi ≤ 10 0 

Matyas f9(x)= 0.26 (x1
2
 x2

2
) - 0.48x1x2 2 −10 ≤ xi ≤ 10 0 

step 
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50 −100 ≤ xi ≤ 100 0 

Ackley 
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50 −32 ≤ xi ≤ 32 0 
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III. DIFFERENT PARALLELIZATION APPROACHES 

We are witnessing a dramatic change in computer 

architecture due to the multicore paradigm shift, as every 

electronic device from cell phones to supercomputers 

confronts parallelism of unprecedented scale [7]. Majority of 

processors today have multiple cores and even for a single 

core multiple treads can be implemented. In general, a system 

of n parallel processors, each of speed k, is less efficient than 

one processor of speed n * k. However, the parallel system is 

usually much cheaper to build and its power consumption is 

significantly smaller. Another issue is the memory wall. 

Processor clock rates have been increasing much faster for 

some time than memory clock rates, and that trend is 

continuing. Increasing the Gigahertz rates on microprocessors 

did not improve performance significantly as it did in the past, 

and larger and larger caches and other things that help 

alleviate some of the issues — but not all of them — on 

memory were increasingly added. So, multicore processors 

actually address this issue by slowing the increase in clock 

rate on the processor so that the problem doesn't get worse. To 

that end research in parallelization is of great importance. 

Parallelization of algorithms has proven to be very powerful 

method in the case of population based algorithms like ant 

colony optimization (ACO) and genetic algorithms [8]. Thus 

the aim of this work was to examine implementation of 

parallelization on ABC algorithm using three different 

approaches.  

The main question in implementing parallelization is the 

level of parallelization. The most common solution is creating 

every cycle in ABC algorithm as an independent thread. This 

is too fine grained implementation, and it has one major 

disadvantage. There is a rather small portion of work in each 

cycle, so extensive use of CPU time for creating threads and 

their synchronizations exceeds the benefits of parallel 

execution of each cycle. ABC algorithm contains thousands of 

cycles. Creating and synchronizing such large number of 

threads can be slower by far than using a serial execution of 

cycles. For that reason, we didn’t use this kind of 

implementation, but implemented three other approaches.  
 

Our approaches are: 
 

1. Parallel independent runs 

2. Multiple swarms – one best solution 

3. Multiple swarms – best solutions from all swarms 
 

Increasing performance is the main focus of parallel 

independent runs approach. Multiple swarm approaches aim at 

getting better results. 

A. Independent parallel runs approach 

It is desirable to run population based heuristics many 

times, because they do not provide exact result but rather give 

approximation as final result. It is quite useful to run all 

iterations simultaneously in order to save time. In this 

approach threads have no communication between themselves 

at all. Every thread runs the same sequential ABC algorithm 

with different random seeds. The final solution is the best one 

of all the independent runs. The speed increases almost as 

many folds as there are execution cores in system. 

Independent parallel runs approach is too coursed grained and 

there are no speed gains for one single runtime. On single 

execution core system this implementation can be slower than 

serial execution of all runs. This can be explained by high cost 

of switching CPU between threads. But for today’s modern 

CPU’s that is not an issue, hence almost every PC has a at list 

processor with two cores.  

B. Multiple swarms approaches 

The other two approaches we used are based on multiple 

swarm tactics. The idea was to use more than one swarm on 

the same search space. These swarms are able to communicate 

with each other in order to exchange the results. After every 

communication the new solution matrix is formed in all 

swarms, based on best-so-far solutions from each swarm. 

Multiple swarms can find more useful solutions and narrow 

the search space. Trapping in local optimum can be avoided 

by using numerous swarms. One of the questions referring this 

method is how many swarms should be used? It is suggested 

that the number of swarms should be equal to the number of 

rows in solution matrix. That is a half of the colony size. Our 

experiments imply that the best results can be achieved in this 

way. The other question is how often the swarms should 

communicate. The period between two communications can 

be determined by the number of cycles or by the time unit.  In 

our experience, it is better to use number of cycles then time 

unit. Since on different systems, various amounts of 

computational work can be done in the same time, only a few 

communications can occur on the faster system, while during 

the same algorithm execution on the slower system, number of 

communications can be significantly greater. In our 

experiments the number of cycles between two 

communications was determined by dividing total number of 

cycles by the number of swarms. After certain number of 

cycles, every swarm sends its best-so-far solution to all other 

swarms. The key difference between ―multiple swarms – one 

best solution‖ and ―multiple swarms – best solutions from all 

swarms‖ approaches is in the role of solutions obtained from 

each swarm in formation of new solution matrix after every 

communication. 

In the ―multiple swarms – one best solution‖ approach, the 

best solution from every single swarm is collected after certain 

number of cycles. Then, the best of all collected solutions is 

sent back to each swarm to replace one of the solutions in the 

existing solution matrix. ―Multiple swarms – best solutions 

from all swarms‖ uses another (different) strategy. Namely, 

every swarm replaces its solution matrix with the new one 

which is formed after certain number of cycles. Every row of 

the new solution matrix represents the best solution from one 

of the swarms. 

IV. TEST RESULTS 

All of the parallelization approaches have been 

implemented using Java programming language.  The Java 

platform is designed from the ground up to support concurrent 
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programming, with basic concurrency support in the Java 

programming language and the Java class libraries. In the Java 

programming language, concurrent programming is mostly 

concerned with threads. Threads are sometimes called 

lightweight processes. Both processes and threads provide an 

execution environment, but creating a new thread requires 

fewer resources than creating a new process. Each thread is 

associated with an instance of the class Thread. A thread is a 

unit of processing in a program. The Java Virtual Machine 

allows an application to have multiple threads of execution 

running concurrently. For test purposes, we created test 

application in Java programming language based on 

Karaboga`s and Bastuk`s software in C programming 

language [2], [6], [9]. All of our tests have been performed on 

an Intel(R) Q6600 @ 3.0 GHz with 4 GB of RAM with 

Microsoft Windows XP Professional Edition Version 2003 

Service Pack 3. We used Sun Microsystems Java Virtual 

Machine, and NetBeans as IDE. 

In the ABC algorithm there are only three parameters to be 

modified: number of solutions, total number of iterations 

(cycles) and abandonment limit. Number of solutions (SN) 

represents the total number of solutions as well as the number 

of employer bees and number of onlooker bees. The colony 

size is 2 * SN. Total number of iterations (MCN) represents 

max number of cycles. Test parameters for all benchmark 

function are given in table 2. Limits are calculated by formula: 

limit = 0.25 x NP x D [10]. 

 

TABLE II 
PARAMETERS USED IN ABC ALGORITHM 

Function Max cycle NP Runs 

Sphere (f1) 2000 20 30 

Griewank (f2) 2000 20 30 

Rastrigin (f3) 2000 20 30 

Rosenbrock (f4) 2000 20 30 

Schwefel (f5) 2000 20 30 

Beale (f6) 2000 20 30 

Booth (f7) 2000 20 30 

Dixon & Price (f8) 2000 20 30 

Matyas (f9) 2000 20 30 

step (f10) 2000 20 30 

Ackley (f11) 2000 20 30 
 

First test is a speed test. It demonstrates a speed gains when 

all runs are executing in the parallel manner. It is clear that if 

function is complicated, improvements are more obvious. In 

ideal case, parallel independent runs approach should be four 

time faster that serial runs, hence our test PC has CPU with 

four physical cores. Speed test results are shown in Table 3. 

Times are given in seconds. As we can see from result table, 

for some function, the ratio between parallel independent runs 

approach and serial run approach is almost four. That is the 

case with Griewank, Rastrigin, Rosenbrock, Schwefel, step 

and Ackley functions. Dixon and Price function shows less 

gains from running parallel. Sphere, Beale, Booth and Matyas 

functions are slower when they are running in the parallel 

manner.  

 

TABLE III 
SPEED TESTS FOR BENCHMARK FUNCTIONS 

Function Serial runs Parallel indep. runs 

Sphere (f1) 2.4 14.7 

Griewank (f2) 39.2 11.2 

Rastrigin (f3) 32.2 9.1 

Rosenbrock (f4) 34.3 12.3 

Schwefel (f5) 32.9 9.8 

Beale (f6) 3.1 12.9 

Booth (f7) 3.0 12.8 

Dixon & Price (f8) 17.4 7.2 

Matyas (f9) 2.5 13.0 

step (f10) 23.3 8.7 

Ackley (f11) 41.4 13.3 
 

Since these objective functions can be calculated quickly, 

they require small amount of CPU time when serial runs are 

used. More  CPU  time  is  used  for creating  and  

synchronizing  threads  then  for calculating objective  

function. A sphere function is very simple function, so 

calculating objective functions is not CPU challenging. It is 

similar for Beale, Booth and Matyas functions. These 

functions have only two parameters, thus they have low 

demanding for CPU time, and parallel independent runs 

approach is slower than serial runs approach. Computational 

time can be prolonged by increasing the number of 

parameters. Independent parallel runs approach can achieve 

better results than serial runs with greater number of 

parameters.  Speed tests for Sphere function with various 

numbers of parameters are shown in Table 4. Time is 

expressed in seconds. 

 

TABLE IV 
DIFFERENT NUMBER OF PARAMETERS FOR SPHERE FUNCTION 

Number of 
parameters (D) 

Serial runs Parallel independent 
runs 

5 2.4 14.7 

50 4.1 15.8 

250 12.3 12.3 

500 21.5 8.6 

1000 41.1 11.6 
 

Independent parallel runs approach has no influence on 

quality of results. Approximately the same results are obtained 

by using both approaches, serial runs and parallel independent 

runs. Hence we didn’t compare results obtained from these 

two approaches. Independent parallel runs approach is 

presented as a technic that can be used for speed 

improvements, not as a technic for better results. 

Results from multiple swarm approaches are shown in 

Table 5.  
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TABLE V 
RESULTS OF TESTED FUNCTIONS 

f Value Serial 
Runs 

MS-one 
best sol. 

MS-best 
sol. from 

all 
swarms 

f1 

Mean 8.003E-05 9.187E-13 5.876E-14 

Best 7.640E-06 6.107-14 3.781E-15 

Worst 3.356E-04 6.394E-12 2.497E-13 

St. dev. 8.203E-05 5.839E-13 1.361E-13 

f2 

Mean 2.314E-06 2.781E-14 0 

Best 2.065E-07 5.794-15 0 

Worst 1.215E-05 5.239E-13 0 

St. dev. 2.623E-06 4.178E-14 0 

f3 

Mean 2.170E+01 1.639E-04 5.866E-05 

Best 1.218E+01 0 0 

Worst 3.146E+01 4.716E-03 3.964E-04 

St. dev. 4.652E+00 8.602E-04 7.369E-04 

f4 

Mean 3.342E+08 1.772E+00 8.750E-01 

Best 1.846E+07 6.730E-02 3.833E-02 

Worst 8.828E+08 8.088E+00 1.050E+00 

St. dev. 2.515E+08 1.794E+00 1.290E+00 

f5 

Mean 7.774E+02 2.143E+01 1.560E+01 

Best 2.993E+02 5.093E-11 4.355E-09 

Worst 1.303E+03 2.369E+02 6.742E+01 

St. dev. 2.355E+02 5.850E+01 2.651E+01 

f6 

Mean 2.553E-05 4.540E-09 9.811E-15 

Best 2.467E-15 0 0 

Worst 7.625E-04 9.796E-07 7.876E-13 

St. dev. 1.392E-04 1.811E-09 5.789E-14 

f7 

Mean 0 0 0 

Best 0 0 0 

Worst 0 0 0 

St. dev. 0 0 0 

f8 

Mean 3.193E-03 1.437E-05 3.734E-07 

Best 1.385E-04 1.172E-07 5.914E-10 

Worst 3.339E-02 2.188E-04 4.790E-5 

St. dev. 6.003E-03 4.031E-05 7.609E-06 

f9 

Mean 0 0 0 

Best 0 0 0 

Worst 0 0 0 

St. dev. 0 0 0 

f10 

Mean 3.928E-07 6.008E-10 6.937E-13 

Best 5.754E-08 1.975E-12 6.297E-14 

Worst 4.901E-06 6.904E-9 1.297E-12 

St. dev. 9.378E-07 1.789E-10 6.987E-13 

f11 

Mean 2.927E-09 7.987E-11 2.097E-12 

Best 4.908E-10 3.165E-13 5.536E-14 

Worst 9.876E-09 1.290E-10 7.981E-11 

St. dev. 1.223E-10 6.084E-11 7.093E-12 
 

The quality of results obtained by serial runs, ―multiple 

swarm – one best solution‖ approach (MS – one best sol.) and 

―multiple swarm – best solutions from all swarms‖ (MS – best 

sol. from all swarms) are compared. Mean solution, best 

solution, worst solution and standard deviation obtained from 

30 runs are observed in Table 5. In order to make the 

comparison clearer, values below E-15 were assumed to be 0. 

As we can see, both multiple swarm approaches (one best 

solution and best solutions from all swarms) achieves better 

results than serial runs. ―Multiple swarms – best solution from 

all swarms‖ approach gives slightly better results than 

―multiple swarms – one best solution‖ approach. For most test 

functions, improvements in results quality are significant. All 

tested approaches obtain zeros for mean, best, worst solution 

and standard deviation for functions f7 (x) (Booth) and f9 (x) 

(Matyas). It is due to small number of parameters and fairly 

small CPU time demands of these functions.  

 

V. CONCLUSIONS 

In this paper three different approaches in parallelization of 

artificial bee colony algorithm ware implemented. The aim 

was to achieve speed gains by using independent parallel runs 

approach and to obtain better results by using multiple swarms 

approaches. Independent parallel runs implementation is 

significantly faster than serial runs method, especially if 

objective functions is complicated and demands a lot of CPU 

time or /and has a great number of parameters. In the future, as 

the number of execution cores increases, the time difference 

between parallel and serial runs will be even greater. More 

precise results can be accomplished using multiple swarms 

approaches. As shown in Table 5, the results obtained by 

serial runs method cannot match in terms of quality and 

consistency the results achieved by multiple swarms methods. 

Future work will include further investigation of the parallel 

implementations of ABC algorithm and application to 

constrained benchmark functions [11] and other real life 

problems [12]. Constrained problems are more CPU 

demanding due to the necessity of calculating constrains, so 

we expect greater speed gains. There are several issues that 

remain for future work, such as to examine a convergence 

speed of multiple swarms approaches, and testing all three 

parallel implementations of artificial bee colony algorithm on 

more test function with greater number of parameters.  
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