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Abstract— State feedback technique through a gain matrix has 
been a well-known method for pole assignment of a linear system. 
The technique could encounter a difficulty in eliminating the 
steady-state errors remained in some states. Introducing an 
integral element to work with the gain can effectively eliminate 
the errors. State-PI feedback is proposed by this article for pole 
placement of a delay-free linear time invariant system. The 
proposed method yields simple gain formulae. The article presents 
the derivation of the design formulae, the design steps and some 
simple numerical examples. The method is applied to stabilize an 
inherently unstable pneumatically actuated inverted pendulum. 
Simulation results show the effectiveness of the proposed method 
for disturbance dampening and stabilizing the system. Comparison 
with the results obtained from applying Ackermann’s formula is 
also presented. 
 
Keywords— state-PI feedback, gain formulae, linear system, 
pole placement, inverted pendulum. 

I. INTRODUCTION 

n inverted pendulum system is widely used for 
demonstration of a control method applied to an 

unstable plant. The dynamic is quite similar to two-wheeled 
mobile robots [1, 2], flexible link robot [3], biped robot 
limbs   [4, 5], missiles [6], and so on. In [7], using a PD 
controller and state servo feedback was proposed to 
stabilize the pendulum in an inverted position. The 
approach employed linearized state feedback [7, 8], that 
could encounter a difficulty when the pendulum largely 
deviated from the equilibrium. To handle this situation, a 
robust control strategy was proposed [9] under an assumed 
ideal actuator. A pneumatic actuator was considered due to 
its low bandwidth characteristic, robustness, low 
maintenance and low cost. 
 Pole placement via state feedback has been known for 
many years [10, 11]. Recently, state-derivative feedback 
has been proposed [12, 13] due to considerably low gain 
and fast response. A linear quadratic regulator for state-
derivative feedback has been proposed [14]. Moreover, 
state-PID feedback has also been proposed [15]. Regarding 
the method [15], the design must be conducted in 3 separate 
steps resulting in 2 intermediate closed-loop systems with 
some fictitious poles. Adaptive state-P feedback has been  
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used with a fixed PI-controller to handle the variations in 
properties of the dynamic system [16]. Some recent 
researches have advanced the PID-control field in the s-
domain direction with dead-time and optimality in 
consideration as in [17-19], for instance. Not many have 
been found in the state-PI, PD and PID feedback areas. 

   This article presents a new approach to obtain the 
gain matrices for state-PI feedback which is rather 
different from the issues in [20] applied specifically to 
control a communication network. Our approach provides 
a very simple set of PI gain matrices for delay-free LTI 
systems. The proposed method is applied to stabilize and 
reject disturbances in an inverted pendulum system. The 
results are compared with those obtained via the 
Ackermann’s formula [10, 11].  
 This article contains 6 sections including the 
introduction. Section II reviews the concepts of pole 
placement by state-PI feedback, and transformation to the 
Frobenius canonical form. Section III presents the main 
theorem describing the derivation of the gain formulae with 
some numerical examples. Section IV explains the 
pneumatically actuated inverted pendulum system. 
Simulation results for stabilization of the pendulum system 
follow in Section V. Section VI provides the conclusion. 
 

II. POLE PLACEMENT BY STATE-PI FEEDBACK 
 
A.  State-PI feedback pole placement problem formulation 

Let’s consider a delay-free completely controllable LTI 
system described by  

 

u= +x Ax Bɺ  , 0( )t = 0x x ,  (1) 

 

where n∈x R  is the state vector, and u R∈  is the control 
input. ( )n n×A  and ( 1)n×B  are the system  matrix and the 

control gain vector, respectively. From A , the 
characteristic polynomial can be written as  
  
           

1
1 1 0det( ) 0n n

n ns a s a s a s a−
−− = + + + + =I A ⋯ , (2) 

 
where 0 1[ ]na a a=a ⋯ , 0 det( ) ( 1) det( )na = − = −A A  

and 1 ( )na trace− = − −A . The control u of the state-PI 

feedback is   
 

 ( )u dτ τ= + ∫P IK x K x ,             (3) 

 

A 
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where , n∈
P IK K R  are the designed gain matrices to 

achieve a desired closed-loop characteristic polynomial. 
The closed-loop system can be represented by Eqs. (4)-(5).  
 

 
0

[ ( ) ]
t

dτ τ= + + ∫p Ix Ax B K x K xɺ             (4) 

 
0

( ) ( )
t

dτ τ= + + ∫p Ix A BK x BK xɺ            (5) 

 
Eq. (6) represents the closed-loop characteristic equation, 
while Eq. (7) represents the prescribed characteristic 
polynomial. 
  

 det[ ( ) ] 0s
s

− + − =I
p

BK
I A BK                          (6)  

 

       1 1
0 1 1 1( ) ... n n n

d n n ns s s s sα α α α α− +
− +∆ = + + + + +  (7) 

 
It is noticed that the n-order of the open-loop system is 
increased by 1 due to the integral term.  
 
B. Transformation  into  the  Frobenius  canonical form 

The pole placement problem herein considers the 
Frobenius canonical form of a delay-free LTI system. Eq. 
(8) represents the state transformation  

 

 -1,= =ξ Tx x T ξ ,        (8) 

 
where ( 1)n×ξ(t)  is the transformed state variable vector, 

and ( )n n×T  is the transformation matrix. The matrices 

( )n n×cA  and ( 1)n×cB are the transformed system matrix 

and the control gain vector, respectively. Both matrices can 
be calculated as follows: 
  

 -1,c cA = TAT B = TB ,              (9) 

Where 

 

-1n

=

 
 
 
 
  

1

1

1

q

q A
T

q A

⋮
.             (10) 

 

The vector (1 )n×1q  in (10) is  

 

 -1T
n c1q = e w ,       (11) 

 

in which cw  is the controllability matrix of the system (1)  

 

 2 -1[ ]n=cw B AB A B A B⋯ ,       (12) 

 

and the unit vector [0 0 1]Tn =e ⋯ . The Frobenius 

canonical form can be expressed as  

  

 u= +c cξ A ξ Bɺ  

 

 

0 1 1

0 1 0 0 0

0 0 1 0 0

0

0 0 0 1

1n

u

a a a −

= +

− − −

   
   
   
   
   
     

ξ ξ

⋯

⋯

ɺ ⋮ ⋮ ⋱ ⋱ ⋮

⋯ ⋮

⋯ ⋯

    (13) 

 
 

III. POLE PLACEMENT FORMULAE  
FOR STATE-PI FEEDBACK 

 
State feedback through a PI controller can be achieved via 

the gain matrices F

~
K  and FK  , respectively. The control u 

for the state-P feedback is described by  
 

 
~

u = FK ξ ,       (14) 
 

in which 1 2

~ ~ ~
[ ]F nk k k=

~
K ⋯ . Let 0

~ ~
( )d s α∆ = +  

1
1 1

~ ~ ~
... n n

n ns s sα α α−−+ + +  be the desired characteristic 

polynomial, where as 
~

n naα = . Hence, the canonical 

form of the system is  
 

 
~

= +c K Fξ A ξ B ξɺ , 

 
having the closed-loop characteristic polynomial of 
 

 
~

( ) det( )s s∆ = − − Fc c

~
I A B K  

 
and for an n-order system  
 

1
210 1 1

~ ~ ~ ~
( ) ( ) ( ) ( ) n n

nns a k a k s a k s s−
−∆ = − + − + + − +⋯  (15) 

 
The control u for the state-I feedback is  
 

 
0

( )
t

u dτ τ= ∫FK ξ ,                    (16) 

 

where 1 2[ ]nk k k=FK ⋯ . The desired characteristic 

polynomial is  
 

1 1
0 1 1 1 1( ) ... , 1n n n

d n n n ns s s s sα α α α α α− +
− + +∆ = + + + + + = . 

 
Therefore, the system in canonical form is 
                    

 
0

( )
t

dτ τ= ∫Fcξ A ξ + BK ξɺ

 
0

( ) 0
t

dτ τ =∫Fc cξ - A ξ - B K ξɺ .        (17) 

 
The closed-loop characteristic polynomial is  
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 ( ) det[ ]s s
s

∆ = − −
Fc

c

B K
I A       

 
and for an n-order system 
 

 
1

1 20 2

1
1

( ) ( ) ( ) n
nn

n n
n

s k a k s a k s

a s s

−
−

+
−

∆ = − + − + + −

+ +

⋯ (18) 

 

The following is the main theorem. 
 
Theorem 1. A delay-free LTI system according to (1) or 

(13) having the control input 
0

( )
t

u dτ τ= + ∫p IK x K x  or 

0
( )

t

u dτ τ= + ∫F F

~
K ξ K ξ , where [ , ] [ ]= F Fp I

~
K K K , K T , and 

having the desired characteristic polynomial . 
 

           1 1
0 1 1 1( ) ... n n n

d n n ns s s s sα α α α α− +
− +∆ = + + + + +  

 
Placement of stable closed-loop poles can be achieved by 
using the gains  
 

[ ]0 1 2 1n na a a a α−= −PK T⋮ ⋮ ⋮ ⋯ ⋮  and   

[ ]0 1 2 1nα α α α −= − − − −IK T⋮ ⋮ ⋮ ⋯ ⋮ .         (19) 

 
Proof The closed-loop system in the canonical form can 
be expressed as  
 

 
0

[ ( ) ]
t

dτ τ= + + ∫
~

F Fc cξ A ξ B K ξ K ξɺ  

 
Its characteristic polynomial can be obtained from 
 

( ) det[ ]PI s s
s

∆ = − − −
~ Fc

Fc c

B K
I A B K  

 
, and hence for an n-order system 
 
 

1 0 1 2

1 1
2 1 1

( ) ( )

( ) ( )

PI

n n n
n n n n n

s k a k k s

a k k s a k s s− +
− − −

∆ = − + − − +

+ − − + − +

ɶ ⋯

ɶ ɶ
    (20) 

 
By equating (20) to the desired characteristic polynomial, 
the following relations can be obtained  
 

 

1 0

~

1 20 1

~

1 12

~

1

1

               

     

                        

          

                      1

n n nn

n nn

n

k

a k k

a k k

a k

α

α

α

α

α

− −−

−

+

− =

− − =

− − =

− =

=

⋮                 (21) 

 

Therefore, the gain matrices according to (19) can be 
concluded. This completes the proof.  
To design a controller for pole placement, one can follow 
the steps listed below. 
Step 1. Calculate the characteristic polynomial of the 
original system according to (2). 
Step 2. Obtain the Frobenius canonical form of the system 
using (9)-(12). 
Step 3. Specify n+1 numbers of desired poles. One of the 
poles must be a fast real pole. 
Step 4. Calculate the desired characteristic polynomial  

            1 1
0 1 1 1( ) ... n n n

d n n ns s s s sα α α α α− +
− +∆ = + + + + + . 

Step 5. Calculate the gain matrices using (19). 
 
Consider the following single-input controllable systems: 
Example 1. 
 

 
2 0 1

,
1 0 0

−
= =
   
      

A B  

 
The system in example 1 is originally unstable with its 
poles at 0 and -2. It is desirable to have the closed-loop 
poles at -4.1002±3.8486j. As a result of transformation, the 
canonical form of the system model is 
 

 
0 1 0

0 2 1
u= +

−
   
      

ξ ξɺ   

 
To achieve the prescribed pole locations for step 3, an 
additional pole at -20 is considered. The desired 
characteristic polynomial is 
 
 2 3( ) 632.46 195.63 28.20d s s s s∆ = + + +  

 
The obtained gain matrices are 
 

 [ ]26.2 0= −PK  

 [ ]195.63 632.41= − −IK . 

 
Example 2. 
 

 

0 1 0 0

980 0 2.8 , 0

0 0 100 100

= − =

−

   
   
   
   

A B  

 
The system is originally unstable with its poles at ±31.3050 
and -100. It is desirable to have the closed-loop poles at      
-10±10j and -20. As a result of transformation, the 
canonical form of the system model is 
 

 

0 1 0 0

0 0 1 0

98000 980 100 1

u= +

−

   
   
   
   

ξ ξɺ   

 
To achieve the prescribed pole locations for step 3, an 
additional pole at -100 is considered. The desired 
characteristic polynomial is 
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 2 3 4( ) 200000 34000 2600 90d s s s s s∆ = + + + +  

 
The obtained gain matrices are 
 

 [ ]317.71 7.79 0.30= − −PK  

 [ ]9820 122.4 26= −IK . 

 
The results shown in Figs. 1 and 2 have the initial states of 

[ ]0( ) 0.1 0
T

t =x  and [ ]0.005 0 0
T

. 

 

 
(a) Responses of states: 1 2, .x x  

 

 
(b) Control signal u  

 
Fig. 1 Time responses and control signal of the numerical example 1 with state-PI feedback from the proposed method 

 
 

 
(a) Responses of states: 1 2,x x  and 3x  
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(b) Control signal u  

 
Fig. 2 Time responses and control signal of the numerical example 2 with state-PI feedback from the proposed method 

 
IV. INVERTED PENDULUM SYSTEM 

 
 The inverted pendulum system considered by this 
article has a low bandwidth since it is driven by a 
pneumatic motor. The diagram representing the system is 
shown in Fig. 3. Fig. 4 is the diagram representing the rod-
less pneumatic actuator that is driven by a proportional 
control valve. 
 

( )frF x F
( )sm

2L

θ

pm g

( )pm

x
 

 
Fig. 3 Simplified diagram representing inverted pendulum. 
 
 

smfrF F

,x xɺ
PA

u

AP BP

SP

OP

 
 
Fig. 4 Diagram representing rod-less pneumatic actuator. 
 
The piston-slider component is subjected to nonlinear 

friction force ( )frF xɺ  causing a stick-slip motion. The 

friction force can thus be approximated by Stribeck model 
[21] consisting of static, Coulomb and viscous frictions, 

respectively. In [9], a control design model is proposed in 
state-variable form, whereas the states are 
 

 1 2 3 4 5 6[ ]Tx x x x x x=x  

    [ ]Tx x F Fθ θ= ɺ ɺɺ    (22) 

 
The system model in the form ( , )F u=x xɺ  is as follows: 

 

  

2

2
3 3 4 3

5 6 2

1 2 2
3 3

2

43

4 2
3

5 4 3 23
5

2 2
36

3
sin cos sin( ) 4

3 3
(1 cos ) (1 cos )

4 4

3
sin( ) sin ( )3cos4

3 34 ( )
1 cos 1 cos

4 4

p p
D fr

s p s p

fr

p ps p

s p s p

x

m g x x m Lx xx T x F x
x

m m x m m x
x

xx
gx x x x x F xxLx
m mL m m

x xx
m m m m

++ −
−

 
+ − + − 

 
 

= 
  + −
  − ×

+ 
− −   + +

ɺ

ɺ

ɺ

ɺ

ɺ

ɺ 3

6
2 2

0 5 0 6 0 02

x

x x K uς

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−Ω − Ω + Ω 

 (23) 

 
For the purpose of state feedback control design, the 

saturation effect of the proportional valve is less critical. 
The nonlinear model in (23) can be linearized around the 
unstable equilibrium, i.e. upright position or 0θ = . 

Considering the angle θ  with small variations, 3 3sin x x≈ , 

3cos 1x ≈  and 4 0x ≈ . Furthermore, the slider is assumed 

to be in continuous motion. The friction force is thus 

reduced to 2frF bx bx= =ɺ . Therefore, the linearized model 

ux = Ax + Bɺ  can be obtained, in which 
 

2
0 0

0 1 0 0 0 0

3 44 4
0 0

4 4 4 4

0 0 0 1 0 0

3 ( )3 3
0 0 0

(4 ) (4 ) (4 )

0 0 0 0 0 1

0 0 0 0 2

p D

s p s p s p s p

s p

s p s p s p

m g Tb

m m m m m m m m

g m mb

L m m L m m L m m

ς

 
 −− 
 + + + +
 
 =  + − 

+ + + 
 
 
 −Ω − Ω 

A

 

 
 2

0 00 0 0 0 0
T

K = Ω B                   (24) 
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[ ]1 3 5

T
x x x=y = Cx  

 
where 

 

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

 
 
 
 

=  
 
 
 
 

C
                   (25) 

 
Eq. (25) is the output equation taking the slider position 

1( )x , pendulum deflection angle  3( )x  and cylinder force  

5( )x  as output variables. 

 
V. SIMULATION RESULTS 

 
The proposed method is applied to the stabilization and 

disturbance rejection problems of the inverted pendulum 
system. The block diagram in Fig. 5 represents a LTI 
system with state-PI feedback. For comparison purposes, 
the method based on Ackermann’s formula [10,11] is also 
used. 

 

 
 

Fig. 5 Block diagram representation of 
a linear system with state-PI feedback. 
 

The inverted pendulum system is described by the 
following state-variable models: 

 
0 1 0 0 0 0 0

0 28.1081 0.4772 0 1.0811 0.0400 0

0 0 0 1 0 0 0

0 105.4054 38.5772 0 4.0541 0 0

0 0 0 0 0 1 0

0 0 0 0 784 38.8000 48686.4000

u

   
   − −   
   

= +   
−   

   
   

− −   

x xɺ

 

 
1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 
 =  
  

y x
 

 
The system is inherently unstable since it has open-loop 
poles at 0,  6.0249,  6.0915,  19.0400 20.5299j− − ±  and 

28.1747− . To stabilize this system, the system poles are to 
be placed at 3 2 , 1 1.5 , 5j j− ± − ± −  and 5− .  

As a result of transformation, the canonical form of the 
system model is  
 

3 3

3 3 3

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 810.6814 10 69.6205 10

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

19.5337 10 1.8158 10 0.0662 10 1

u






= 




× ×

  
  
  
  
+  
  
  
  

− × − × − ×   

ξɺ

 

 
To achieve the prescribed pole locations, an additional pole 
at 20−  and 50−  are considered for 2 cases. Using the 
proposed method, the following gain matrices are obtained: 
 
- (for adding poles at20− )  
 

[0 3.198 -0.125 -0.179 -0.107 0.001]=pK

[0.011 142.136 -15.765 -4.011 -5.466 -0.011]=IK  

 
- (for adding poles at50− )  
 

[0 14.461 0.067 -0.326 -0.541 -3.726]=pK

[0.027 290.897 -36.526 -8.814 -11.187 -0.021]=IK  

 
For a comparison, using the Ackermann’s formula one can 
obtain the gain matrix [-0.001 6.109 1.059 0.154 -0.251 =K  

 -0.001]. The results shown in Figs. 6 and 7 have the initial 

states of [ ]0( ) 0 0 0.01 0 0 0
T

t =x  meaning that an 

external disturbance of 1 unit occurs to the 3rd state variable 
at the time of 8 s. It can be clearly seen from Fig. 6 that 
with our proposed method the system responses faster and 
recovers completely from the external disturbance within a 
short duration. Some steady-state errors still remain in the 
system with the conventional design as shown in Fig. 7. 
Further results are illustrated in Fig. 8 to show the effects of 
the additional real pole due to the design step 3 on the 
dynamic responses. It is found that an additional fast real 
pole results in better transient responses in an exchange of 
high gains. Moreover, the system is more robusted to 
external disturbances.  
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(a) Responses of states: 1 2, .x x  

 
(b) Responses of states: 3 4, .x x  

 
(c) Responses of states: 5 6, .x x  

 
(d)   Control signal u  

Fig. 6 Time responses and control signal of the system with state-PI feedback from the proposed method (added pole at -20). 
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.  

(a)  Responses of states: 1 2, .x x  

 
(b) Responses of states: 3 4, .x x   

 
          (c)   Responses of states: 5 6, .x x  

 
(d)   Control signal u  

Fig.7 Time responses and control signal of the system with the Ackermann’s method. 
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(a) Responses of states: 1 2, .x x  

 
(b) Responses of states: 3 4, .x x  

 
(c) Responses of states: 5 6, .x x  

 
(d) Control signal u  

Fig. 8 Time responses and control signal of the system with state-PI feedback from the proposed method (added pole at -50). 
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VI. CONCLUSION 

       The gain formulae for state-PI feedback have been 
proposed by this article. One could follow the simple 5 
design steps listed in Section III. The proposed approach is 
applied to the stabilization problem and disturbance 
rejection of an inverted pendulum system with a pneumatic 
motor. The system is explained in Section IV. Simulation 
results are illustrated in Section V including a comparison 
between the approach of Ackermann’s formula and the 
proposed method. As a result, the states of the inverted 
pendulum system with the state-PI feedback controller 
obtained from the proposed method have considerably fast 
responses, and can recover from the disturbances quickly 
without any residue errors. This is not the case with using 
the Ackermann’s formula in which some residue errors 
remain after the disturbances. Also, the effects of the 
position of one additional pole required according to the 
integral term are investigated. It is recommended that a fast 
real pole be added to achieve fast transient response bearing 
in mind on the increase in the feedback gains.  

APPENDIX 

• Slider + piston mass: 0.91sm kg=  

• Pendulum mass: 0.06pm kg=  

• Pendulum total length: 2 0.4L m=  

• Piston cross-section: 4 21.8 10pA m−= ×  

• Total air volume: 5 3
0 9 10V m−= ×  

• Air supply pressure: 10sp bar=  

• Atmospheric pressure: 0 1p bar=  

• Proportional valve gain parameter: 
6 13.9 10 . . .pK N kg s V− −= ×  

• Applied force model gain parameter: 

0 62.1 /K N V=  

• Applied force model natural frequency: 

0 28 /rad sΩ =  

• Applied force model damping ratio: 0.68ς =  

• Applied force model lead time constant: 37DT ms=  

• Breakaway friction: 31.2sF N=  

• Coulomb friction: 14.5cF N=  

• Viscous friction coefficient: 26 /b Ns m=  
• Striebeck coefficient and Striebeck speed: 

1, 0.02 / .sv m sδ = =  
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