

Abstract—The paper deals with small real-time operating system
developed at our institute together with an application which uses
this system and thus provides verification of this system in a portable
data acquisition unit. The system, named RTMON is used mainly as a
teaching aid for lessons of microcontroller programming. It makes it
possible for students to write applications in C language with several
concurrently running processes in a simple way. However, it can be
used also in practical applications, which is demonstrated by the data
acquisition unit described in this paper. The system is implemented
for 8-bit microcontrollers with the HC(S)08 core made by Freescale
and for Atmel AVR Mega8 microcontrollers.

Keywords— microcontroller, HC08, real-time, operating system,

data acquisition.

I. INTRODUCTION

EAL-time operating system (RTOS) can help to solve the
common problems related to programming

microcontroller applications, such as need for executing
multiple tasks concurrently, quick response to high priority
events, managing hardware resources of the MCU, etc. In our
lessons we include also RTOS based programming.

 On 16-bit or 32-bit MCUs, RTOS are used often; on
smaller 8-bit systems it is not so common because these
systems have limited memory and CPU power and it is more
efficient to write the required program without RTOS.
However, if the RTOS is small enough to fit into such MCU, it
can bring the same advantages as on bigger MCUs. At our
department in lessons of Microcontroller programming we use
8-bit MCU from the HCS08 family made by Freescale. As we
wanted to include a RTOS programming techniques into our
lessons we needed a RTOS capable of running on this MCU.
Such system would also be useful for our other projects, where
we use Freescale HCS08 MCUs. There are quite many real-
time operating systems available, but most of them are focused
on bigger, 16 and 32-bit MCUs. There are some systems
which support also small, 8-bit MCUs, for example,
FreeRTOS [2] which is distributed under GPL license and
currently officially ported to 23 architectures. Another
example is MicroC/OS-II [1], [3], which is also free for
educational, non-commercial use. It is suitable for use in safety
critical embedded systems such as aviation or medical systems

This work was supported by the Ministry of Education, Youth and Sports

of the Czech Republic under the Research Plan No. MSM 7088352102 and
by the European Regional Development Fund under the project CEBIA-Tech
No. CZ.1.05/2.1.00/03.0089.

and is ported to many of architectures including Freescale
HC08 and Atmel AVR. Certain disadvantage of using such
system is that it is often quite complex due to the wide options
it offers; typical RTOS for 32 bit MCU will contain drivers for
USB, Ethernet etc. Despite the fact, that the systems are
configurable to work in simple applications, the user can still
have too many things to define and study. Moreover, we
already had a real-time operating system developed at our
institute for PC systems and ported also for Motorola
(Freescale) HC11, and the interface of this system is known to
the students. So, even if it would be possible to choose from
existing systems, we decided to implement a light-weight
version of our RTMON system for use on HCS08
microcontroller. Once the system was up and running for the
HCS08 derivative used in lessons (GB60) it became useful to
port it to other derivatives also. As a result, RTMON currently
supports not only several members of the HCS08 MCU family
but also Atmel AVR ATmega8. Adding new derivative is quite
simple, so the list of supported derivatives will possibly grow
in the future. Besides using the system in lessons, RTMON
was also successfully used in design of portable data
acquisition unit – DAQ, which allows simple and cheap
interface between personal computer and a technological
process. In the following text we describe the properties and
usage of the RTMON operating system and also the DAQ
device which uses this system.

II. RTMON OPERATING SYSTEM

RTMON is multitasking, pre-emptive operating system
which is greatly simplified for easy use by the students. It is
written in C language except for a small, platform-specific part
written in assembler. The system supports execution of two
different types of processes (tasks): normal processes which
execute only once (such processes typically contain infinite
loop) and periodical processes which are started automatically
by the OS at certain period. These periodical processes are
useful for many applications, typically in discrete controllers
which need to periodically sample the input signal and update
the outputs.

 In user’s application RTMON is utilized as a
precompiled library accompanied by a header file. This
simplifies the organization of the project and the build process.
User enables RTMON usage in his program by including the
header file (rtmon.h) in his source and adding the library to his
project. Currently the library and sample projects are available

Utilization of Simple Real-time Operating
system on 8-bit microcontroller

DOLINAY J., VAŠEK V., DOSTÁLEK P.

R

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 789

two development tools: Freescale CodeWarrior for
Microcontrollers and Atmel AVR Studio with WinAVR suite.

 If needed, user can also rebuild the RTMON library.
Typically this is useful to change the configuration, such as for
example, maximum number of tasks, length of the OS time
period (tick), etc. There is documentation which describes the
procedure and also projects for the two supported IDEs, which
can be simply opened and built.

 The effort to make both the implementation of the system
itself and its usage as simple as possible brings several
restrictions for the system features. First, the RAM memory for
processes and their stacks is statically allocated according to
the maximal number of processes defined in configuration file.
For the user program, it is not possible to use this memory
even if there are fewer processes defined. In case more RAM
is needed for the user program, the maximum number of tasks
and/or stack-pool size can be changed in configuration file and
the RTMON library must be rebuild.

 Priority of each task must be unique, so that in each
moment one task (the one with highest priority) can be
selected and executed on the CPU. Processes can be created
on the fly, but it is not possible to free and reuse memory of a
process. No more than the maximal number of processes can
be created, even if some processes were previously deleted.

 However, these restrictions do not present any problem
for most applications and allow for small kernel code size and
ease of use.

A. Kernel implementation

There are only two objects which RTMON contains: a
process and a queue. The queues are buffers for transferring
data between processes. Several queues can be created, each
containing a “message” (data buffer) of certain size. The size
can be specified when creating the queue and is limited by the
total size of RAM reserved for all buffers of all the queues
(queue pool size). Processes can read and write data to the
queue and wait for the queue to become empty or to become
full. This allows using a queue also for process
synchronization.

B. System internals

The OS uses timer interrupt which occurs at certain period
(e.g. 10 ms) to periodically execute the scheduler, which
decides which process will run in next time-slice. The timer
interrupt routine is implemented in assembler for HC08 MCUs
and in C for AVR MCUs. It first stores CPU registers onto the
stack and then calls RTMON kernel, which is a C function.
The kernel then finds the process with highest priority which is
in ready-to-run state and switches the context, so that the code
of this process is executed after return from the interrupt
service routine. If no process is ready to run, then a special
dummy process is executed. This dummy process is contained
within RTMON code and does nothing.

 Task descriptor in RTMON is a C-language structure

(IDPROC) which occupies 18 bytes of memory (given that
char is 8-bit and int is 16-bit). The size of RAM required, for
example, for 10 user-defined processes is then 12 x 18 = 216
bytes - there are two extra structures reserved for the init and
dummy processes. The memory consumption may be reduced
if we limit some of the values (e.g. stack size and time
intervals) to 8 bits. This is enabled by RTMON_SMALL
directive and it reduces the size of RAM required for one
process to 14 bytes.

Fig. 1 RTMON data structures for a process and a queue

There is an array of these structures with the number of

items defined by RTMON_MAXPROCESSES constant in
RTMON configuration file.

 The structure for a queue (IDQUEUE) requires 10 bytes
of RAM and similarly as for processes, RTMON allocates
array of IDQUEUE structures with the number of items
defined by RTMON_MAXQUEUES constant.

C. System services

The OS provides set of services to user applications to
manipulate processes and queues. Each service corresponds to
a function in the RTMON library which user program can call.
There are services for processes which allow to:

• Create a process
• Start a process
• Stop a process
• Delay (sleep) a process
• Continue (wake up) a process
• Abort (delete) a process

For the queues there are the following services:
• Create a queue (specify size)
• Write to a queue with or without waiting
• Read from a queue with or without waiting

The services will now be described in more details.

char rtm_init(IDPROC** init_id);

This function will initialize rtmon data structures and create

Process ID

Priority

Status

Address of the code

Address of the stack

Current SP

Stack size

Time period

Time to start

Time to continue

Queue ID

Size
omessage

State

Address of the buffer

Process waiting to read

Process waiting to write

IDPROC IDQUEUE

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 790

2 built-in processes: init and dummy. The dummy is the idle
process which runs when no other process is ready to run. It
has priority 255, which is the lowest. The init process in rtmon
is a special process with highest priority (0) and it is the
process which controls creation and end of all other processes.
By calling rtm_init the user program obtains ID of this init
process and the C function which calls rtm_init (typically it is
the main() function) becomes the body of the init process.

So from the call to rtm_init on from the rtmon’s point of
view the code of function main is now the code of the init
process and it is executed until it delays itself by call to
rtm_delay_p. Note that the init process will create other
processes and then start them, but no other process will
actually execute until init process puts itself into sleep because
the init process has the highest priority.

char rtm_end(IDPROC* init_id);

It stops the init and dummy processes and stops the
periodical timer interrupt which provides ticks for the OS. This
service can be called at the end of user program (end of main
function). However, since typical embedded application runs
infinitely and never ends, it is often not needed to call this
service at all.

char rtm_create_p(const char* pname, unsigned char prio,

void(*pfunc)(), int stack_size, IDPROC** proc_id);

This service creates a new process in rtmon and returns the
caller (via the proc_id parameter) the identificator of this
process which is then used for all further operations with this
process.

Pname – this is descriptive name of the process. It is
currently not supported by rtmon to save memory, so it is
ignored and need not be set.

Prio – the priority of the process. This is integer between 1
and 254, the values 0 and 255 are reserved for rtmon. The
higher is the number the lower is the priority.

Pfunc – pointer to the function which represents the process.
This is the code of the process.

Stack_size – size of the stack for this process. Each process
has its own stack which must be big enough to hold all cpu
registers (saved on interrupt), all local variables (defined
within the function which represents the process) and all return
addresses for function calls made from the process including
system calls. Rtmon keeps an array in RAM (stack pool) from
which it allocates stacks as specified in call to rtm_create_p.
The maximal size of stack of all processes cannot exceed the
size of this stack pool. The pool size is defined in header file
and can be changed but the rtmon library must be then rebuilt.

Size of stack depends on architecture and also on the
number of variables and function calls in the process, typical
minimum value is about 32 bytes for HCS08 and 48 for AVR,
if the process uses virtually no stack. Recommended minimum
is 64 bytes.

char rtm_start_p(IDPROC* proc_id, int time_to_start, int

time_period);

Starts a process.
proc_id - ID of the process to start. It is obtained by

previous call to rtm_create_p.
Time_to_start allows specifying delay for the start so that

the process is not startet immediately but only after specified
number of ticks. Typically this argument has value 0 which
means the process is started immediately.

Time_period – this argument allows specifying the period
with which the process is automatically restarted. If it is 0 the
process is started only once (typical for processes which then
run in infinite loop). If it is nonzero then is the period in ticks
with which the process is started repeatedly. It is important to
ensure that the process ends in shorter time than is the period
of start in this case!

char rtm_delay_p(IDPROC* proc_id, int time_to_delay);

Allows pausing execution of given process for specified
period of time (given in ticks). Value of 0 means infinite delay,
which puts the process into sleep until it is waken up by other
process.

char rtm_continue_p(IDPROC * proc_id);

This service continues execution of a process previously
delayed by rtm_delay_p call.

char rtm_ch_period_p(IDPROC * proc_id, int

time_period);

This service changes the period of a process. The argument
time_period specifies the new period of start of the process.
Typical use of this function is to cancel the periodical start of a
process by calling this function with time_period equal to 0.
This is necessary when periodical process is to be stopped
because without changing the period to 0 (canceling periodical
start) the process would automatically start in the next period.

char rtm_stop_p(IDPROC * proc_id);

Stop execution of a process. Most common use is to call this
function at the end of the process in periodical processes. Such
process must end by this call to return control to rtmon.
Another use is to stop all processes when rtmon is ended if
such situation is needed.

char rtm_abort_p(IDPROC * proc_id);

Remove process from the list of existing processes in rtmon.
This function has currently no use because rtmon does not
allow reclaiming memory occupied by a process when the
process is aborted, so even if process is aborted, it does not
allow creating a new process instead of it, if the maximum
number of processes has been reached.

The queues are optional component which can be excluded

from the system is not needed to save memory. In such case
the services are not available.

There are three basic operations supported on a queue:

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 791

create, write and read. Deleting a queue is not supported.

char rtm_create_q(const char* pname, char l_msg, char

n_buff, IDQUEUE** pid_queue);

pname is the name of the queue, it is not used similarly as in

process name in rtm_create_p.
l_msg is the size of the buffer (message) which this queue

can hold.
n_buff – the number of messages (buffers) this queue can

hold. This argument must be 1, this version of RTMON does
not support more than one message per queue.

Pid_queue - receives the id of the newly created queue. User
program then uses this ID for all further operations with the
queue.

For write and reading messages to queues there are two

variants of functions – one with suffix _w which stands for
“wait”. Such function waits for the queue to become full/empty
if it is not in the proper state. These wait functions can be used
to synchronize process execution.

Queue read and write functions have the following

prototypes:
char rtm_write_q(IDQUEUE* pid_queue, void* pdata);

char rtm_write_q_w(IDQUEUE* pid_queue, void* pdata);

char rtm_read_q(IDQUEUE* pid_queue, void* pdata);

char rtm_read_q_w(IDQUEUE* pid_queue, void* pdata);

pid_queue is the ID of the queues obtained by previous call

to rtm_create_q and
pdata is pointer to memory buffer which receives or

contains the data to be read from/written to the queue. Note
that rtmon reads/writes the number of bytes defined by queue
size into this buffer and the user must ensure it has the proper
size (is is pointer to proper data type).

For example, when defining queue for passing integers with
size sizeof(int) then the queue is read by command:

rtm_read_q(q, &data); where data is defined as: int data;

D. Using the system in user application

To create an application which takes advantage of RTMON
the user needs to perform just several simple steps:
1) Define variables for process identificators, e.g.:

IDPROC* init, *p1;
2) Initialize RTMON (typically in the main function):

rtm_init(&init);
3) Create user processes:

rtm_create_p("proc1", 10, proc1, 64, &p1);
This call creates process with priority 10 and stack size of

64 bytes. The body of the process is in function proc1 which
should have the following prototype: void proc1(void). The
variable p1 receives the ID of the newly created process and is
used in all further calls to RTMON services to manipulate this
process.

4) Start one or more processes:
rtm_start_p(p1,0,5);
This call starts process p1. The number 0 means that the

process is started immediately (with delay of 0 ticks) and the
number 5 means the process is started with period 5 ticks (it
will be automatically started by RTMON each 5 ticks).
5) Delay the init function (the main process):

rtm_delay_p(init,0);
By this call the init process (main function) puts itself into

infinite sleep and thus allows other processes to run. At this
line the execution of main stops and it moves to the process
with highest priority.

Code of each user process is contained in a C function.
Example of a simple process could be:

void proc1(void)
{
 rtm_stop_p(p1);
}
This process does nothing, it just calls rtm_stop_p(p1)

informing the system that it stopped execution.

III. DATA ACQUISITION DEVICE WITH RTMON

As already mentioned, RTMON is used in our lessons of
microcontroller programming. But besides this usage the
operation of the system was also verified by using it in one of
our devices – a multi-channel portable data acquisition device
DAQ. This device was developed in our department mainly for
controlling and monitoring of educational laboratory models.
It offers cheap alternative to professional I/O cards and
modules when a technological process needs to be controlled
or monitored from a computer [8].

A. Hardware of the DAQ

Hardware design of the DAQ device offers 16 analog inputs
with 12-bit resolution, 8 digital inputs and outputs and one
analog output with 12-bit resolution. The design focuses on
low power consumption which allows long operation when
battery supply is used. The block diagram of the DAQ device
electronic circuits is depicted in the Fig. 1.

Fig. 1 Electronic circuits block diagram

A
na

lo
g

m
ul

ti
pl

ex
er

 +
 A

/D

MCU
circuits

I/O line
driver

D/A +
amplifier

Serial
communications

interface

Power supply circuits

.

.

.

.

.

.

16x AI

8x DO

8x DI

1x AO

RX

TX

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 792

The core of the data acquisition device is 8-bit general
purpose Motorola microcontroller 68HC908GP32 with Von-
Neumann architecture which is fully up-ward compatible with
the 68HC05 family. On the chip are integrated many useful
peripherals including: timer interface with input capture and
output compare functions, 8-channel analog-to-digital
converter with 8-bit resolution, up to 33 general-purpose I/O
pins, clock generator module with PLL, serial communication
interface and serial peripheral interface. The MCU has
implemented several protective and security functions such as
low-voltage inhibit which monitors power supply voltage,
computer operates properly (COP) counter and FLASH
memory protection mechanism preventing unauthorized
reading of the user’s program. Internal RAM memory has
capacity of 512B and FLASH memory 32 KB. Internal clock
frequency can be 8 MHz at 5 V operating voltage or 4 MHz at
3 V operating voltage. The MCU also supports wait and stop
low-power modes [4], [5]. It is the part of the MCU circuits
block incorporating all necessary electronic circuits for its
operation (Pierce crystal oscillator, PLL filter circuits).

Analog-to-digital conversion is performed by Linear
Technology A/D converter LTC1298. It is micro power, 2-
channel, 12-bit switched-capacitor successive approximation
sampling A/D converter which can operate on 5 V to 9 V
power supplies. Communication with microcontrollers is
handled by 3-wire synchronous serial interface. It typically
draws only 250 µA of supply current during conversion and
only 1 nA in power down mode in which enters after each
conversion [6]. It is supplied from high-precision 5 V voltage
reference LM336-Z5.0 which is powered from adjustable
current source LM334 to achieve very stable voltage over the
specified input voltage range. Analog inputs are multiplexed
by two 8-channel high-speed CMOS analog multiplexers
74HC4051 with turn-on and turn-off delay of 20 ns.

Digital-to-analog circuit uses 12-bit D/A converter Burr-
Brown DAC7611 with internal reference and high speed rail-
to-rail amplifier. It requires a single 5 V supply. Power
consumption is only 2.5 mW at 5 V. Build-in synchronous
serial interface is compatible with variety of digital signal
processors and microcontrollers [7]. Its output is amplified by
general purpose MC1458 operational amplifier to standard
voltage range of 0 to 10 V.

Technical parameters of the data acquisition device are
summarized in the Table I.

Table I Basic parameters of the DAQ device

Digital inputs 8 channels, TTL compatible

Digital outputs 8 channels, TTL compatible

Analog inputs 16 channels, 12 bits resolution, 0–10 V

Analog outputs 1 channel, 12 bits resolution, 0–10 V

Supply voltage 6.5 to 9V DC

Communication RS232 interface, 57600 Bd

B. Software of the DAQ

The software in the DAQ device is based on the RTMON
operating system described above. The software is formed of
RTMON core and individual processes which perform all
necessary tasks. Each process activity is controlled by
operating system core on the basis of process priority and
other information stored in the task descriptor. Structure of the
DAQ device firmware is depicted in the Fig. 2. As can be seen
in the figure, there are 4 main processes and 1 interrupt
handling routine.

Fig. 2 Internal software structure of the DAQ

Process 1 is highest priority process which performs DAQ

device initialization after power up or reset. It sets all digital
outputs to low state (logic 0), setups serial communications
interface to communication speed of 57600 Bd, 8-bit data
frame, 1 start bit and 1 stop bit, sets analog output to 0 V and
finally initializes all necessary data structures. Because of its
highest priority no other processes can be switched by OS core
into the “run” state. After all initializations are done process
suspends itself.

Process 2 performs all tasks related to command
interpretation and execution. It waits for complete command
string in the receiver buffer which is handled by serial
communication interface (SCI) interrupt routine. This interrupt
routine is automatically called when SCI receive one character
from the higher-level control system. When command is
completely received in the buffer, process will decode it and
executes required action.

Process 3 is periodically activated process performing
pulse-width modulation (PWM) on all 8 digital output
channels when it is demanded. Its priority is set to higher level
than process 2 and process 4 because the PWM is time critical
function sensitive to accurate timing. Its 8-bit resolution allows
setting of 256 different duty cycles at output. Period of the
PWM signal is after initialization automatically set to 1000 ms
which is optimal value for many controlled systems with
higher time constants. This value can be changed during
device operation by user command.

RTMON core

Process 2
Command processing

Process 1
System initialization

Process 3
PWM modulation

Process 4
Communication

SCI interrupt

Read received character
from SCI and write it to
buffer.

Return

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 793

Process 4 provides communication via RS232 serial
interface with supervisory system. It generates responses to all
commands regarding to defined communication protocol
include error processing. It has the lowest priority from all the
processes.

C. Communication protocol

Data acquisition device communicates with supervision
system using standard serial interface RS232 which is fully
platform independent. In order to achieve compatibility with
many software platforms universal ASCII-based
communication protocol was choose. Very advantageous is
possibility to send all implemented commands using generic
terminal program that is contained in most operating systems.
Each command can be divided up to five parts depending on
actual function implementation.

Communication with DAQ device starts with character “~”
followed by command name with fixed length of two
characters (for example “AO” means set analog output). After
it is first command parameter with length of one character
(channel index), next character is space followed by second
parameter (value) which can be in integer or floating point
format. Because of device supports 16 analog input channels
and for channel index is reserved only one character, channel
indexes are send as hexadecimal number. Whole command
must be terminated by CRLF sequence.

Communication protocol example is in Fig. 3, list of
supported commands is provided in the Table II.

Fig. 3 Communication protocol example

Table II List of supported commands

Command string Description

~AI<channel_index>
<CRLF>

Start analog to digital conversion on specified
channel. Returned value is in Volts.
Device response:
AI<channel_index>=<value>CRLF

~AO<channel_index>
<value><CRLF>

Set analog output on specified channel to
specified value in Volts.
Device response:
AC<CRLF>

~DI<channel_index>
<CRLF>

Read logical state of specified digital input.
Device response:
DI<channel_index>=<value>CRLF

~DIA<CRLF>
Read all 8 digital inputs state (byte access).
Device response:
~DIA=<value><CRLF>

~DO<channel_index>
<value><CRLF>

Set digital output to specified logical state.
Device response:
AC<CRLF>

~DOA<value>
<CRLF>

Set all 8 digital outputs to specified value (byte
access).
Device response:
AC<CRLF>

~TM1<value>
<CRLF>

Set PWM period to specified value in seconds.
Device response:
AC<CRLF>

Data acquisition device sends after internal command

processing response string which format depends on actual
command type. Commands writing data to device are
acknowledged by response string “AC<CRLF>” in case of
success. Commands reading data from device (for example
analog input value in Volts) are acknowledged by response
string containing data source and corresponding value:
“AI0=1.25V<CRLF>”. In case of error device returns string
“ER<error_number><CRLF>” where error number provides
information about error reason:

• 1 – unknown command
• 2 – command parameter 1 is out of range
• 3 – command parameter 2 is out of range
• 4 – PWM is active – period cannot be changed

IV. DATA ACQUSITION DEVICE SOFTWARE SUPPORT

Although communication protocol is very simple and easy
to understand it is more comfortable in a control application to
call functions which can automatically generate commands for
the data acquisition device and consequently process its
response. This simplification results in faster program
development and reduction of debugging time. For the
portable data acquisition device was created support program
library for Matlab 6.5 and higher versions software
environment which is installed on computers in the laboratory
of automatic control.

Created library incorporates all functions implemented in
the device firmware including error processing. Each function
is available in separate m-file, so it is very simple to modify
them by the user. In the Table III are listed all implemented
library functions for Matlab 6.5 environment.

 For device testing and diagnosis, a DAQ test utility in MS
Visual C++ 6.0 was created. This program can test all
functions of the DAQ device and may be very helpful for
testing wire connections to the monitored or controlled system.
Main window of diagnostic utility is depicted in the Fig. 4.
Left part of the window “Analog inputs readings” contains 16
edit boxes indicating actual voltage levels applied in the
analog inputs. “Digital inputs readings” fields show same
information but for digital inputs. The window part “Digital
output setting” contains 8 buttons for changing the logical state
of the each digital output. And finally last control “Analog
output setting” providing slider for setting the output voltage
level on analog output channel.

~ A O 0 _ 4 . 2 5 CR LF Command:

Response: ~ A C CR LF

- set analog output on channel 0 to 4.25V

- command acknowledge (operation succeeds)

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 794

Fig. 4 Data acquisition device test utility

Table III Implemented library functions for Matlab environment

Function Description

spobj = open_device
(comm)

Opens device connected to specified serial
port comm (for example “COM1”, “COM2”,
…) and returns serial port object spobj.

close_device (spobj)
Closes device specified by spobj and
removes serial port object from memory.

set_digital_out (spobj,
channel, value)

Sets specified digital channel (0 to 7) to
desired value (0 or 1). When floating point
value in the range (0; 1) is specified, PWM
modulation is activated.

set_analog_out (spobj,
channel, value)

Sets analog output on specified channel to
desired value in volts <0; 10V>. Function
accepts values in floating-point format.

value = get_digital_in
(spobj, channel)

Function returns state of the selected digital
channel.

value = get_analog_in
(spobj, channel)

Function returns voltage in the range <0;
10V> measured on specified analog input (0
to 15).

set_pwm_period (spobj,
pwm_period)

Sets PWM period to specified value in
seconds <0; 10s>

Implementation of the library functions in user program is

very simple. It can be divided into the several basic steps:
1) Open data acquisition device connected to specified serial

port of the computer, e.g.: s1 = open_device (‘COM1’) if
DAQ device is connected to COM1 port. Function returns
serial port object which is stored to s1. This serial port
object is required as argument of other library functions.

2) Use library function required by your application, e.g.:
voltage = get_analog_in (s1, 0) where first argument is
serial port object returned in previous step by
open_device function and second argument is analog
input channel number in range <0; 15>. Function returns
voltage measured on channel 0.

3) Before the program will exits it is important to correctly
cleanup serial port data structures from memory. This task
performs function close_device, e.g.: close_device (s1).

4) Program can finish now.

V. VERIFICATION AND RESULTS

DAQ device with RTMON was tested on educational
laboratory model of heating plant system with one temperature
measurement output channel with unified analog output 0 – 10
V and one digital input channel for heating element control.
Data acquisition unit was connected with standard personal
computer via RS232 serial communications interface.

For educational and demonstration purposes was created
simple application with graphical user interface using GUI
design environment GUIDE running in Matlab 7.3
environment. The software supports step response
measurement of the system and control of the controlled
variable using digital PID controller. All measured data are
automatically saved to the workspace in the matrix form and to
the user definable text file with format suitable for import to
spreadsheet processor.

After the program is executed by command “start_main” in
the command window of the Matlab environment the main
window depicted in the Fig. 5 will appear. The window is
divided into the two parts – left part is dedicated to displaying
measured system variables in the form of auto-scale graph and
right part contains all necessary control components for
program configuration and control.

Step measurement panel contains three text boxes for
entering following parameters: actuating signal vector
(u_vect), actuating signal change time vector (t_vect) and
sampling period (TS). After entering desired values
measurement can be started by pressing “Start” button. PSD
controller panel enables to parameterize vector of set point
values (w_vect), set point change time vector (t_vect),
controller sampling period (TS) and regulator parameters q0,
q1 and q2.

The implemented digital PID controller is described by
discrete transfer function (1); actuating signal value u(k) is
computed by equation (2).

()
()
() 1

2
2

1
10

1 −

−−

−

++
==

z

zqzqq

zE

zU
zGR (1)

() () () () ()211 210 −+−++−= keqkeqkeqkuku (2)

Fig. 5 Demonstration program for Matlab environment

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 795

Step response measurement of the heating plant model is
depicted in the Fig. 6. It was measured with actuating signal
change from 20 % to 50 % of its maximum value. Figures 7
and 8 shows example control processes achieved with PS and
PSD controllers.

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350 400 450 500

t [s]

y
 [
d
e
g
.C
]

Fig. 6 Measured step response of the controlled system

0

10

20

30

40

50

60

70

0 250 500 750 1000 1250 1500 1750 2000
t[s]

y
[d
e
g
.C
],
 w
[d
e
g
.C
],
 u
[%
]

u

y

w

Fig. 7 PS controller control process

0

10

20

30

40

50

60

70

80

0 250 500 750 1000 1250 1500 1750 2000

t [s]

y
[d
e
g
.C
],
 w
[d
e
g
.C
],
 u
[%
]

u

y

w

Fig. 8 PSD controller control process

VI. CONCLUSION

This paper presented our simple real-time operating system
for Freescale HCS08 microcontrollers and an application of
this system in portable data acquisition unit. The system is
used as a teaching aid for lessons of MCU programming. Its
interface is based on older version of operating system for PC
and HC11 microcontroller. However, the internals of the
system were written completely from the scratch to allow it to
work with limited data and code memory of small 8-bit
microcontrollers. RTMON is pre-emptive multitasking system
which allows defining processes up to certain number (default
is 10) and running these processes either in infinite loops or
periodically with a given period. System services are very
simple due to the limited memory of the target
microcontrollers and intended use of the system, but still the
system provides the advantage of easy implementation of
embedded system as a set of independent, concurrently
running tasks.

RTMON proved to be functional during the lessons at our
department, where it is used to demonstrate to students the
basics of programming applications with operating systems,
and it was also used in design of portable data acquisition unit
DAQ. This device was also developed at our department and is
used for control and monitoring related tasks. It is designed
with respect to possible battery operation enabling
measurement in areas where power source is not available. It
provides sixteen analog inputs with 12-bit resolution, eight
TTL compatible digital inputs and outputs protected against
electrostatic discharge and overloading and one analog output
channel equipped with 12-bit D/A converter. Communication
with supervision system is realized with RS232 serial
interface. It uses universal ASCII-based communication
protocol which can be easily implemented in many software
environments.

REFERENCES

[1] Morton, T. D., Embedded Microcontrollers, Prentice Hall, 2001.
[2] FreeRTOS, The FreeRTOS Project, [Online]. Available:

http://www.freertos.org
[3] Micrium, Micrium RTOS and Tools, [Online]. Available:

http://micrium.com/page/products/rtos/os-ii
[4] Freescale Semiconductor, M68HC08 Microcontrollers: MC68HC908

GP32 Data Sheet. [Online]. Available: http://www.freescale.com
[5] Freescale Semiconductor, CPU08 Central Processor Unit Reference

Manual, rev.4. [Online]. Available: http://www.freescale.com
[6] Burr-Brown, DAC7611: 12-Bit Serial Input Digital-to-Analog

Converter. [Online]. Available: http:// www.burr-brown.com/.
[7] Linear Technology, LTC1286/LTC1298 Micropower Sampling 12-Bit

A/D Converters, 1994. [Online]. Available: www.linear.com
[8] Dostálek, P.; Vašek, V.; Dolinay, J. “Design and implementation of

portable data acquisition unit in process control and supervision
applications”, In proceedings of the 13th WSEAS International
Conference on CIRCUITS, Rhodes 2009, pp. 799-808, ISSN 978-960-
474-096-3.

[9] Dolinay, J.; Vašek, V.; Dostálek, P. “Implementation and Application
of a Simple Real-time OS for 8-bit Microcontrollers”, In proceedings of
the 10th WSEAS International Conference on ELECTRONICS,
HARDWARE, WIRELESS and OPTICAL COMMUNICATIONS
(EHAC '11), Cambridge 2011, pp. 023-026, ISSN 1792-8133.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 796

