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Abstract—Drug resistance arises when a drug such as an 

antimicrobial or an antineoplastic loses its effectiveness in curing a 
disease or health condition. The increasing threat of drug resistance 
is compromising medical care worldwide. To provide deeper 
understanding of possible measures to avoid the endemicity of drug 
resistant strains, many models have been proposed and analyzed on 
the dynamics of co-circulating wild-type and drug resistant viruses. 
We aim to add to these works by considering a model which 
incorporates the effects of delay in the evolution of resistant strain, as 
well as the role of the immune response and the target cells 
availability on the suppression of the peak load of resistant virus. The 
model is analyzed to discover possible impacts of delays on the 
system’s dynamic behaviour, persistence of the two strains, and the 
global stability. Oscillatory behaviour and the role of delays as 
possible control parameters are also investigated. 
 

Keywords—Drug resistance, Cost of resistance, maturation 
delays effects, global stability, uniform persistence. 

I. INTRODUCTION 
NE of the most outstanding advances in the history of 
human health is the discovery of antimicrobial agents 

which are medicines used to treat infections caused by 
bacteria, fungi, parasites, and viruses. Capable of decreasing 
suffering from illnesses and even save lives, antimicrobial 
agents have been hailed as "miracle drugs" that are our 
leading weapons in the treatment of infectious diseases. When 
penicillin was discovered and applied, survival rate of patients 
increased. But antibiotic resistance rapidly arose at a faster 
rate than that of human’s ability to develop new drugs. 

 
Manuscript received March 25, 2011: Revised version received March 25, 

2011. This work was supported by the National Center for Genetic 
Engineering and Biotechnology, the Centre of Excellence in Mathematics, 
CHE, Thailand, and Mahidol University. 

K. Sirinukunwattana is with the Department of Mathematics, Faculty of 
Science, Mahidol University, Rama 6 Rd., Bangkok and the Centre of 
Excellence in Mathematics, CHE, 328 Si Ayutthaya Road, Bangkok, Thailand 
(e-mail: the_korsuk@hotmail.com). 

Y. Lenbury is with the Department of Mathematics, Faculty of Science, 
Mahidol University, Rama 6 Rd., Bangkok and the Centre of Excellence in 
Mathematics, CHE, 328 Si Ayutthaya Road, Bangkok, Thailand 
(corresponding author, phone: 662-201-5448; fax: 662-201-5343; e-mail: 
scylb@mahidol.ac.th). 

N. Tumrasvin is with the Department of Mathematics, Faculty of Science, 
Mahidol University, Rama 6 Rd., Bangkok and the Centre of Excellence in 
Mathematics, CHE, 328 Si Ayutthaya Road, Bangkok, Thailand (e-mail: 
scntr@mahidol.ac.th). 

Antimicrobial resistance refers to the ability of certain 
microorganisms to withstand attack by drugs. Rapid and 
relentless rise in resistant pathogens creates serious concerns 
by threatening lives and wasting limited healthcare resources. 

Many drugs and antibiotics that were formally effective in 
fighting infections are no longer effective because of the 
development of resistant strains which poses a serious threat 
to public health. Many intervention measures have been 
devised in order to limit the emergence and spread of 
antimicrobial-resistant bacteria such as methicillin-resistant 
Staphylococcus aurous, vancomysin-resistant Enterococci, 
and multidrug-resistant Gram-negative bacilli [1]. However, 
these pathogens still recover and continue to spread at 
dangerous pace. Viral infections like HIV-1 are able to rapidly 
produce resistant strains, causing life-long infection, and 
resistance to Influenza-A drugs is rising. Understanding drug 
resistant infections is therefore at the forefront of concentrated 
research [1]. 

Many mass-action models [1-6] have been used to study 
the activity of a virus or bacterial species within a host, 
describing the interaction between strains, the cells they infect 
and the attempts of the body’s immune response to remove the 
infection. Of particular interest is the impact of drug 
administration on the dynamics of co-circulating wild-type 
and drug resistant viruses. In 2007, Puttasontiphot et al. [6] 
investigated bacteria-antibiotic dynamics in a chemostat 
exposed to antimicrobial selection pressure. To support the 
model derivation, experimental data were collected, first from 
a culture of Enterococcus faecalis ATCC 29212 and Serratia 
marcescens ATCC 43861 growing in 1% Mueller-Hinton 
Broth II in the absence of antibiotics, and then from a culture 
of Bacteroides Fragilis with BMS-284756 for the antibiotic. 
Their full model involves the density of a sensitive strain S , 
that of a resistant strain R , the concentration of the limiting 
resource, or substrate, and the effective antibiotic level. 

We, on the other hand, consider a situation in which the 
resource is abundant so that we may take the interactions of 
the two strains to be independent of the substrate 
concentration. We further incorporate the delay   in the 
evolution of the resistant strain as well as the time it takes 
before the resistant members become mature enough to 
reproduce or transmit the chromosomal elements known as 
plasmids to affect the conversion of sensitive to resistant 
strain. Our referenced model is thus written as follows. 
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 -kS t I  (1)
 

( ( )) ( ) ( ( )) ( ) ( )R

dR
r R t R t H S t S t R t

dt
      

 
( )Rd R t    (2)

  
where the first term on the right of (1) is the growth rate of the 
sensitive strain, the second term accounts for the conversion 
of sensitive members to resistant ones. 

The function ( )H S  in this second term is the response 
function of the sensitive population to the conversion attempts 
of the resistant population. In [6], the response was assumed 
to take the form of a Holling type function: 

( ) r

r

H S
K S





 (3)         

In this paper, we shall let ( )H S  be a general continuous 
function and investigate the effect different formulations of 

( )H S  have on the dynamic behaviour of the model. 
The third term on the right of (1) is the death rate, while the 

fourth term is the killing rate of S  by administered drugs. We 
also assume that the host is being infected by the sensitive 
strain at the constant rate I. 

The first term on the right of equation (2) is the growth 
rate of the resistant strain. Here, we have taken into account 
the “cost of resistance” which corresponds to the phenomena 
that the resistant strain is less fit in the absence of treatment 
due to being out competed by the wild type strain [7]. 
According to this concept, naturally we expect the wild type 
strain to be stable with a higher transmission rate than the 
drug resistant strain. Furthermore, it was suggested in [7] and 
[8] that a decrease in the peak load of resistant virus could be 
attributed to the cytotoxic lymphocytes’ response or a lack of 
target cells that limits the resistant virus from replicating. We 
incorporate this effect by using the logistic growth term for 
the resistant strain, so that its growth rate decreases as the 
current density rises to its carrying capacity r . 

The second term on the right of (2) corresponds to the 
increase in the resistant population from conversion of the 
sensitive members. The last term is the death rate of the 
resistant population. The evolution of this strain has an 
intrinsic delay of   in time which accounts for the delay in 
the responses of the host and the immune system to the 
resistant strain. 

 
We shall first give a result on uniform persistence, then 

study the global stability in the case that the cost of resistance 

parameter 
1
r

   is relatively low. Finally, we investigate the 

effect of delay   on the oscillatory behaviour of the solution 
when   is rather high (low capacity r ). 

II. UNIFORM PERSISTENCE 
Frequently, the strictly positive solutions of biological 

model eventually approach the boundary of non-zero zone. 
Such a situation is interpreted as extinction of populations. 
Thus, the question that arises is of specifying the condition 
that each initially strictly positive solution is at some positive 
distance away from the boundary as time evolves [9]. In this 
part, we provide the restrictions to guarantee that each strictly 
positive solution is uniformly bounded away from the 
boundary, in other words, uniformly persistence. 

Letting 
           ( ) ( )R Rf S r H S S    , (4) 
               0S Sd k    , (5) 
               0R Rd   , (6) 
and 
             R Rr  , (7) 
we investigate some properties of the solutions of (1) and (2), 
and the equilibrium point ( , )b bS R  which, by definition, 
satisfies the following system: 
            ( )b b S S bI H S R S    , (8) 

        1
( )b

R
b f SR


 . (9) 

In what follows,   denotes the set of real numbers. We 
now state and prove our first result. 
 
Theorem 1 Let ( )H   be a non-decreasing function, 

S S  , and  ,S R
 
be a bounded positive solution of (1) 

and (2). Define 
 

       
   

   

lim inf , lim sup ,

lim inf , lim sup .

m M
t t

m M
t t

R R t R R t

S S t S S t
 

 

 

 
 

 
Then, 
              m b MR R R  , (10) 
and  
             m b MS S S  . (11) 
Proof  f   is monotonically increasing from the 

hypothesis that  H   is non-decreasing. For any bounded 

positive solution  ,S R  of (1) and (2), we can construct a full 

time solution  ,   by using an  -limit set of  ,S R  such 
that 
 
              0 max ,M

t
R t


 


   

            min ,m
t

R t




  

            , .m MS t S t     
 
(Please see [10-12] for details on full time solutions and their 
applications.) 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 831



 

 

Accordingly, from (2), we have 

 
 0 0     R Mr R   

 

          
        0 0 RH          , (12)    

and  

          1
0 0M

R

R f


   . (13) 

First, we will show that M bR R , that is 

    1 1
0 b

R R

f f S
 

 . 

Since
 

 f   is monotonically increasing, we need to prove 

that
 

 0 bS . 

For the sake of contradiction, we assume that
 

 0 bS . 

Consequently, M bR R . Since  0mS   , it follows that 
m bS S . 

We construct another full time solution  , f  e  by using 

 -limit set of  ,S R  such that 
 

               0 min ,m
t

S t


 f f


 

            max ,M
t

S t


 f


 

             .m Mt tR R   e 
 

 
Again, it follows that

 
 0 0f . 

From (1), we have 
          s s m mI H S S      e , (14) 

Since we already have  0m bS S S , and M bR R , (16) 
becomes 
          s s m mI H S S     e

 

           s s b b bH S R S I     . (15) 

This contradiction implies that
 

 0 bS , and thus M bR R . 
In addition, it follows that 

 0M bS S  . 
The other half of the proof is similar, but we need to 

construct a full time solution in an appropriate way to yield 

m bR R  and m bS S  ■ 
Remark 2 It is physically meaningful that the equilibrium 
is bounded in the range of all bounded positive solutions, and 
the numbers of both microbial strains in the body should 
adjust to some levels and remain steady when we are healthy. 
Corollary 3 Theorem 1 yields the following inequalities 

        1 1
m m M M

R R

f S R R f S
 

   , (16)  

     S S M m M S S m M mH S R S I H S R S          (17)  

Proof We initially verify (16) by constructing a full time 
solution  ,S R  such that 

          0 minm
t

R t


 


R R , 

       maxM
t

R t




R , 

        ,m MS t S t   S . 
 
Hence,

 
 0mS  S , and, from (2), we arrive at 

        1
m m

R

f S R


 . (18) 

From the proof of Theorem 1,  0 MS , which implies 

        1
M M

R

R f S


 , (19) 

in (13). Then, it is clear that 

         1 1
m m M M

R R

f S R R f S
 

   . 

 
In order to verify (17), we again construct a full time 

solution  ,S R  such that 
 
             0 maxM

t
S t


 


S S , 

           minm
t

S t





S , 

           ,m MR t R t   R . 
 
Since

 
 mR  R , we obtain 

       S S M m M S S M MH S R S H S S         R
         

I . (20)
By the definition of

  tR ,   MR �R , and from (14), we 
have 
          s s m mI H S S     R

 

         
  S S m M mH S R S    . (21)

According to (20) and (21), we therefore obtain 
      .S S M m M S S m M mH S S S I H S R S          ■ 

Remark 4 Under the assumptions of Theorem 1, uniform 
persistence of the system (1)-(2) physically represents the fact 
that our body will not be free of infection. It is reported that 
the bacterial populations colonize the mammalian digestive 
tract since birth, assisting in that life form’s efficient digestion 
and nutrients’ absorption [13]. 
 
Lemma 5 By the assumptions in Theorem 1, the following 
conditions are equivalent./ 
i) M bR R  ii) m bS S  iii) m bR R  iv) M bS S  
 
Proof To prove that i) implies ii), assume that M bR R . 
Then from the second inequality in (16), 
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        S S m M mI H S R S   
 

         
  S S m b mH S R S    . (22)  

Since  H   is non-decreasing, it follows that 
     S S m b m S S b b bH S R S H S R S I         . (24) 

Consequently, by (22) and (25), m bS S . 
To show that ii) implies iii), we suppose m bS S . We 

construct a full time solution  ,S R  such that, as before, 
 
          0 minm

t
R t


 


R R , 

        maxM
t

R t




R , 

         ,m MS t S t   S . 
 
It follows from (18) that 

          1 1
b b m m

R R

R f S f S R
 

    

However, we have m bR R . Hence, we must have m bR R . 
To show that iii) implies iv), we consider the first inequality 

of (17), 
 

     S S M b M S S M m MH S R S H S R S I         . (24) 

Since  H   is non-decreasing, 

      ,S S b b b S S M b MI H S R S H S R S          (25) 

Hence, M bS S . 
Now, to show that iv) implies i), suppose M bS S . From 

(9) and (16), we have 

          1 1
b b M M

R R

R f S f S R
 

   . 

Again, since ,M bR R  we have .M bR R  ■ 
 
Remark 6 Every non-constant periodic solution of (1) and 
(2) must oscillate around the basal level

 
 ,b bS R ; otherwise, 

one of the cases in Lemma 5 is satisfied which forces all 
strictly bounded positive solutions to converge to  ,b bS R . 

III. GLOBAL STABILITY IN THE CASE 
S S

   

In this section, we consider the case where the composite 
removal rate S Sd k    of the sensitive population is greater 

than its growth rate S . We first state and prove the following 

theorem on the stability of the equilibrium  ,b bS R . 

Theorem 7 Let ,S S   and
 
 ,S R  be a bounded positive 

solution of (1) and (2). Define 

     
 

1
,

1
sup ( )

bS SR

L f S
  

 , (26) 

     
 

2
0,

1
sup ( )

bS SR

L f S
 

 , (27) 

     
 

 3
b b

S S

H S S
L

 



. (28) 

Then,  
     1M b M bR R L S S   , (29)

     2b m b mR R L S S   , (30) 

     3b m M bS S L R R   , (31)

    3M b b mS S L R R   . (32) 

If 
2

1 2 3 1L L L   then every bounded positive solution of (1) and 
(2) converges to a positive equilibrium. 
 
Proof Note that although  f 

 
is monotonically 

increasing, (26) is well-defined because  S t  is bounded. By 

constructing a full time solution  ,   such that 
 

        0 max ,M
t

R t


 


   

       min ,m
t

R t




  

        ,m MS t S t    , 
 

we again have     1
0 0M

R

R f


   , and  0 bS . 

The mean value theorem implies that 
    
   ,

0
sup ( )

0 b

b

S Sb

f f S
f S

S  









. As a result,

 
     1
0M b b

R

R R f f S


  

 

 
    1 10 b M bL S L S S    . 

We now construct a full time solution  , f  e  such that 
 

        0 min ,m
t

S t


 


f f  

     max ,M
t

S t





f  

      .m Mt tR R    �e
 

 
With (8) and (14), we have 

 
      1

b m m m b b b
S S

S S H S S H S R S
 

   


e  

 
     3

b b
M b M b

S S

H S S
R R L R R

 
   


. 

In the same way, (30) and (32) can be proven. Hence, by (29)-
(32), 
     2

1 2 3M m M mR R L L L R R   . (33) 

If 2

1 2 3 1L L L  , then 0M mR R  . By Lemma 5, the solution 

( , )R S  converges to ( , )b bS R . 
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IV. GLOBAL STABILITY WHEN S S   

In this case, the system (1)–(2) becomes 
      S H S t S t R t I    , (34) 

    RR r R t R t   
 

 
       ( ) .RH S t S t R t R t       (35) 

The positive equilibrium of the system is given by 

  
  ,b b bI H S S R  (36) 

 
 1

b b

R

R f S


 . (37) 

 
Lemma 8 Let 0R Rr   , and  ,S R

 
be a bounded 

positive solution of (34) and (35). Also, let H be bounded 
such that 

 
. . . ( )

S

H g l b H S





, (38) 

 
. . . ( )
S

H l u b H S





. (39) 

The evolution ( )S t  is bounded by the recursive sequences, 
namely  km  and  kM , such that 

 ( )k km S t M  , 

 
   1,k k k km h M M h m  , (40) 

for which 

 

   
 0

b b b M

R R m

S f S H S R
M

H r R 



, (41) 

 

   
( )

( )
b b b m

M

S f S H S R
h x

H f x R
 , (42) 

 

   
( )

( )
b b b M

m

S f S H S R
h x

H f x R
 . (43) 

 
Proof We shall use mathematical induction. 0M  is 
generated by minoring the resistant population time derivative 
in (35) as follows: 

    ( )R R R RR R t r R t       
 

       ( )R M R R mR R t r R      . 
Hence, for any arbitrary t such that 0t t , 

 

0
0

( )( ) ( )R MR t tR t e R t 
 

    0( )1 R MR R m

R M

R t tr R
e

R
 


 

  . 

Since ( )R t  is a bounded evolution, we can take the limit as 

0t   . Then, 

 

 
( ) R R m

R M

r R
R t

R
 




 . (44) 

Referring to (42), the sensitive population time derivative in 
(34) is majored as follows: 

 

  ( )R R m

R M

H r R S t
S I

R
 


 

  . 

Therefore, for any arbitrary 0t t , 

 

 
0

0

( )
( ) ( )

R R m

R M

H r R
t t

RS t e S t
 


 




 

  
 

 
0( )

1
R R m

R MR M

R R m

H r R
t t

RI R
e

H r R

 


 

 


 


 
  
 

. 

We can take the limit as 0t    since ( )S t  is a bounded 
evolution. Hence, 

 
 

 
  0

( )
( ) b b b MR M

R R m R R m

S f S H S RI R
S t M

H r R H r R


   
  

 
 

Next, we suppose that there exists a k   such that 
( ) kS t M  for all t . Then, the resistant population time 

derivative in (35) is majored as follows: 

    ( ) ( )R k RR R t f M R t       
         ( ) ( )R m k MR R t f M R   . 
For any arbitrary 0t t , 

 
   0 0

0
( ) ( )( ) ( ) 1R m R mk M

R m

R t t R t tf M R
R t e R t e

R
 


       

Taking the limit as 0t   , we obtain 

 

 
( ) k M

R m

f M R
R t

R
 . (45) 

Considering (4.1), it follows from (45) that 

 

  ( )k M

R m

H f M R S t
S I

R


  . 

Hence, for any arbitrary 0t t , 

 

  
0

0

( )

( ) ( )
k M

R m

H f M R
t t

RS t e S t




  

 
 

 
0( )

1
k M

R m

H f M R
t t

RR m

k M

I R
e

H f M R
  

 
 
  

 
 
  

 

Taking the limit as 0t   , we find 

 
 

( ) R m

k M

I R
S t

H f M R




 

  

 
 

 ( )b b b m
k k

k M

S f S H S R
h M m

H f M R
   . (46) 

From (46), the resistant population time derivative in (35) is 
minored as follows: 

 ( ) ( )R M k mR R R t f m R   . 
Therefore, for any arbitrary 0t t , 

 

0
0

( )( ) ( )R MR t tR t e R t 
 

               

   0( )1 R Mk m

R M

R t tf m R
e

R



   . 

Taking the limit as 0t   , it follows that 
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 
( ) k m

R M

f m R
R t

R
 . (47) 

Referring to (47), the susceptible population time derivative in 
(34) is majored as follows: 

 

 
( )k m

R M

H f m R
S S t I

R


  . 

Therefore, for any arbitrary 0t t , 

 

  0

0

( )

( ) ( )
k m

R M

mH f R t t
RS t e S t

 



 

               
 

  0( )

1
k m

R M

m

R M

k m

H f R t t
RI R

e
H f m R


 

 
 
  
 

. 

Taking 0t   , then 

 
 

( ) R M

k m

I R
S t

H f m R




 
 

 
 

  1

( )b b b M
k k

k m

S f S H S R
h m M

H f m R    . ■ 

 
Lemma 9 Under the assumptions of Lemma 8,  km  is a 

bounded monotone increasing sequence, and  kM  is a 
bounded monotone decreasing sequence. 
 
Proof Considering (40), we can write 

                     
  1k km h h m  , 

and 
                      1k kM h h M  . 

where  h x
 

and  h x  are both monotone decreasing 

functions. Therefore,   h h x  and   h h x  are monotone 
increasing functions. We prove the hypothesis by induction. 

In the initial step, 

 

   
 0

b b b M

R R m

S f S H S R
M

H r R 



 

 
   

  0 0

b b b M

R R m

S f S H S R
H r H m m R 


 

 

    
 

 0 1
0

b b b M

m

S f S H S R
h m M

Hf m R
    

Next, assume there exists an integer k   such that 
1k kM M  . Then, 

           1 1k k k kM h h M h h M M     
Moreover, 
         1 1k k k km h M h M m     

Thus, 1k KM M   and 1k km m   for all 0k  . ■ 
 
Lemma 10 Under the assumptions of Lemmas 8-9, 

     
* *

b b M b b m
m b M

R S R R S R
R R R

M m
     

Proof According to Lemmas 8-9, we now have that 
            * *m b Mm S S S M    . 

Again, we construct a full time solution  ,S R  such that 
 
             0 minm t

R t


 


R R , 

           maxM t
R t





R , 

             ,m MS t S t   S . 
 
Subsequently, 

 
  

 
  1

0 0b
m

R b

R
R f f

f S
 S S . (48) 

Since  * *h m M , and 

 
   

 * *
m

b b
M b

R H
S f S M f m

R H S


 

 
    * * * 0m m

M M

R R
M f m M f

R R
  S . (49) 

As a result of (48) and (49), 

             
*

0 .b b M b
m

m b

R S R R f R
M R f S

 S  

Therefore, 

*

b b M
m

R S R
R

M
 . 

Similarly,
 *

b b m
M

R S R
R

m
  is proven

 
 ■ 

 
Theorem 11 Define 

             
4

b

b

S
L

R
 , (50) 

and 

             

*
5

b

M
L

R
 . (51) 

Then, 

  4b m M bS S L R R   , (52) 
and 

  5M b b mS S L R R   . (53) 
 

Under the assumptions of Lemmas 8-9, every bounded 
positive solution of (34) and (35) converges to the positive 
equilibrium if 1 2 4 5 1L L L L  , where 1L  and 2L  are defined as 
(26) and (27), respectively. 
 
Proof In order to prove (52), a full-time solution 
 , f  e  is constructed such that 

 

                  0 min ,m
t

S t


 


f f  

               max ,M
t

S t





f  

   .m Mt tR R    �e  
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Consequently, 

              
  ( )m

m

I
S

H S 


e
. 

Recall that ,m bS S  so that ( )bR  e . Therefore, 

 

    
   

( )
( )

m b b
b m

m b b

I H S H S R
S S

H S H S R



 

 


e

e
 

  

 
 

( )
( )

b

b b

I R
H S R




 




e

e

 
   ( ) .

( )
b b

b M b
b

S S
R R R

R



    


e

e
 

The inequality (53) can be proven in the same way by 
constructing a full time solution  ,S R  such that 

              0 maxM
t

S t


 


S S , 

            minm
t

S t





S , 

             ,m MR t R t   R . 
 
We conclude from (37), (38), (52), and (53) that 
            1 2 4 5M b M bR R L L L L R R   . 
 
When 1 2 4 5 1L L L L  , M bR R . Thus, by Lemma 5, bounded 
solutions of (34)-(35) converge to  ,b bS R . ■ 

V. OSCILLATION AND DELAY EFFECT 
Linearizing the system (1)–(2) about the basal levels 

( , )b bS R , we are led to the following associated characteristic 
equation. 
             2 0a be c      , (54) 
where 

      R b b b b b S Sa R R H S S H S       , (55) 

  ( ) ( )b b b b b bb H S S R H S S H S  , (56)  

      R b b b b b S Sc R R H S S H S        . (57) 

Considering (54) with (55)-(57), Martin et al. [14] provided 
certain sufficient conditions, 

 
       0R b b b b b S SR R H S S H S       , (58) 

         0R R b b b R S Sr H S S H S         , (59) 
 
so that the system (1)–(2) will have asymptotically stable 
solution if 
      0  ,  
where 

    0 2

1
arctan

a
c




 




 
 
 
 

, 

It will have oscillating solution if 0   and 

   22 2 2 2

2
2 2 4

2

a c a c c b


      
 . 

In order to investigate the effect of delays, let 0t  and 1t , 

such that 0 1t t , be two (large enough) consecutive zeros of 

bR R  with ( ) bR t R  for all
 

 0 1,t t t . Then, there is a 

point  * 0 1,t t t  such that
  0 1

* ,
( ) max ( ) bt t t

R t R t R


  . It follows 

that *( ) 0R t  , and 

             * *( ) ( )
( )

b

b

R
R t f S t

f S
 . 

Definition 12 Let 0t  and 1t , such that 0 1t t , be two 

(large enough) consecutive zeros of bR R  with ( ) bR t R  

for all  0 1,t t t . Then, there is a point  * 0 1,t t t  such that
 

 0 1
* ,

( ) max ( ) bt t t
R t R t R


  . If 0 * 2t t   , we say that R  is 

oscillating rapidly in the interval  0 1,t t . In the case 

( ) bR t R  for all
 

 0 1,t t t , we let  * 0 1,t t t  be the point 

such that 
 0 1

* ,
( ) min ( ) bt t t

R t R t R


   and define the rapid 

oscillation in the same way. 
An oscillating solution ( , )S R  of (34) and (35) is called 

eventually rapidly oscillating around the basal levels if R  is 
oscillating rapidly in every (but finite number of) intervals 
constructed by two consecutive zeros of bR R . 

If R  is not oscillating rapidly, we say R  is slowly 
oscillating. 

 
The existence of rapidly oscillating solutions have been 

discussed by Gyori and Trofimchuk [12] for Nicholson 
blowflies equations, Giang et al. [10] for nonlinear population 
models, and Giang et al. [11] for glucose-insulin interaction 
model with delays. 

 
Lemma 13 Suppose ( ) ( )F S H S S  is continuously 
differentiable and R Rr  . If ( , )S R  is an eventually 
rapidly oscillating solution of (1)-(2), then 
 
            2

3 1 ,R mrR
M b M bR R L e S S      (60) 

            2
4 1 ,R mrR

b m b mR R L e S S      (61) 

where 
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 
3

,
sup ( )

b

M

S SR m

R
L F S

rR  

 , 

 
4

0,
sup ( )

b

M

S SR m

R
L F S

rR 

 , 

 
Proof We construct a full time solution  ,   such that 
 
                     0 max ,M

t
R t


 


   

                   min ,m
t

R t




  

                     , .m MS t S t   
 

 

As before, we have 
1

(0) ( (0))M
R

R f


   , and 

(0) bS . From (2), we have 
 
 0

0( ) ( )m mR RrR rRt te R t e R t   

            
0

( ) ( ) ( )mR
t rR

t

se H s R s ds      

 
Let 0t   and 0 ( 0)t   be the first time in negative axis that 

0( ) bR t R . It follows that 

              0
3 1 ( )mRrR

M b M b
tR R L e S S    . 

By the definition of the fast oscillation, we have 0 2t   . 
Hence, we obtain (60) and the proof of (61) is similar. ■ 
 
Theorem 12 If 

      
 

 
2

2

1 2 3 42
21 1,mRrRb

S S

S
L L L L e  

 
 


 (62) 

                     0,S S    
and 
                    0,R Rr    
then, every rapidly oscillating solution of (1), (2) converges to 
the positive equilibrium. 
 
Proof From (31) and (32), we have 

         1
b

M b b m

S S

S
S S L R R

 
  


, (63) 

        2
b

b m M b

S S

S
S S L R R

 
  


. (64) 

Hence, from (60)-(61) and (63)-(64), 
 

 2

4 1 ( )mRrR

b m b mR R L e S S      

 2

4 21 ( )mRrR b
M b

S S

S
L e L R R 

 
  


 

 22

2 4 31 ( )mRrRb
M b

S S

S
L L e L S S 

 
  


 

 
2

22

1 2 3 42
1 ( )

( )
mRrRb

b M

S S

S
L L L L e R R 

 
  


 

( ).b MR R   

since (62) holds. Thus, we have b mR R . 

Similarly, we can show that M bR R , and that 

M b mS S S  . Therefore, the solution converges to 

( , )b bS R .■ 

VI. CONCLUSION 
We have shown that the system is uniformly persistent 

when the response function  H   is a non-decreasing 

function of S . Further, the equilibrium state ( , )b bS R  is 

globally stable in the case that the removal rate S Sd k    of 
the sensitive strain is greater than its specific growth rate. 

One crucial underlying assumption that ensures persistence 
and stability is that the “cost of resistance”   is low enough 
so that its inverse, the carrying capacity r , is high enough for 

R r  to exceed the death rate R  of the resistant strain. If the 
cost of resistance is sufficiently high then the persistence or 
stability of the system could be lost, leading to extinction of 
one strain or both, unless certain conditions on the delay   
are satisfied. 

The main advantage of modelling and analysis is that we 
may quantitatively investigate the possible strategies for 
therapy and control in terms of the complex dynamics of 
competing bacterial or viral strains. Clinically, it is difficult to 
assess pharmaco-dynamic effects of therapy regimens due to 
the complexity in repeatedly determining the viral load at the 
site of infection and antibiotic concentrations during the 
dosing interval [15]. Using dynamic models of sensitive-
resistant strains interactions can overcome these difficulties. 
Through the above model development and analysis, we gain 
insightful information that could prove useful in designing 
empiric therapy and monitoring strategies. 
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