
 

 

  
Abstract— Squat is defined as the increase of draught of vessel due 

to its forward movement in shallow water. In this paper the squat 

parameter is established for Series-60 hull forms vessels in different 

depths via experimental methods and afterward diverse numerical 

methods are utilized to model squat. So, some facilities for the ship 

movement testing in shallow waters are organized. A series of 

models of the vessel is manufactured and numerous tests are 

performed attentively. In the present work, capability of the 

Adaptive-network-based fuzzy inference system (ANFIS) in 

modeling and predicting squat parameter for ships in shallow waters 

is demonstrated well. In addition, It is also extracted the 

mathematical relations between dimensionless squat ( *
S ) and 

significant variables namely, block coefficient (CB), dimensionless 

distance between the seabed and ship floor (δ ) and hydraulic Froude 

Number )( hFn . Finally, the obtained results of ANFIS modeling are 

compared with those of a multiple linear regression and GMDH-type 

neural network. The consequences confirm that the ANFIS-based 

squat has higher predictability function than other employed 

methods. 

 

 

Keywords— ANFIS, GMDH, Squat, Shallow Water, Physical 

Model. 

I. INTRODUCTION 

To keep a safe passage of a ship in shallow water, it is 

important to study the relation between ship behaviors and the 

water depth in shallow waters. Grounding of ships in shallow 

waters may result in severe damage to the ship and, in extreme 

cases, may lead to the complete loss of port or channel 

capabilities. The reduction of the distance between ship floor 

and seabed, while the ship is moving forward, is called squat 

[1-3]. One can calculate the squat in shallow water by a 

number of methods such as analytical method [4], numerical 

and experimental methods [5] and [6]. Due to the existence of 

complicated three-dimensional fluid flow around the ship in 

shallow water, experimental methods are the most viable 

option and the most accurate method. 

Kreitner [7] was the first one who calculated the squat of a 

given vessel by fundamental equations of fluid mechanics. 
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Havelock [8] obtained the squat of a boat with elliptic hull 

form through analytical equations. Constantine [9] obtained 

some equations for the squat by one-dimensional hydraulics 

theory. Rubin and Naghdi [10] calculated the value of the 

squat for a certain ship by two-dimensional hydraulics method 

and verified their results by experimental means. Barras [11] 

introduced experimental relations for real vessels that now 

have applications for determining the squat in shallow and 

narrow canals. Tuck, Taylor and Millward [12] obtained other 

experimental relations for calculating the squat that has 

limited application and are not suitable for all ships and 

velocities. Due to the effects of the squat in shallow waters, 

the resistance of ships increases. This can be used for testing 

the physical model and estimating the extra force needed for 

ships movement in shallow waters. 

Commonly, there are many parameters influencing the squat 

such as block coefficient, the dimensionless distance between 

the seabed and the floor of ships, and hydraulic Froude 

Number. Due to the complexity of squat assessment and 

interrelationships among the influencing parameters, it is 

difficult to develop a parametric model solution especially for 

three-dimensional problem. So, a series of experiments must 

be carried out and then modeling should be done. Soft 

computing, such as ANFIS or ANN, could be a good approach 

for modeling and prediction of the squat as an important 

phenomenon in shallow water for ships.  Artificial neural 

networks (ANNs) have become popular because of their high 

computational rates, robustness and ability to learn, and they 

have been used in diverse applications in power systems, 

manufacturing, optimization, medicine, signal processing, 

control, robotics, and social/psychological sciences [13, 14]. 

Group Method of Data Handling (GMDH) algorithm is a self-

organizing approach through which gradually complicated 

models are generated, based on the evaluation of their 

performances on a set of multi-input-single-output data pairs 

),( iyiX  (i=1, 2, …, M). The GMDH was firstly developed 

by Ivakhnenko [15] as a multivariate analysis method for 

complex systems' modeling and identification. This way, 

GMDH was used to circumvent the difficulty of considering 

the a priori knowledge of the mathematical model of the 

process. In other words, GMDH can be used to model 

complex systems without having specific knowledge of them. 

The main idea of GMDH is to build an analytical function in a 

feed forward network based on a quadratic node transfer 

function [16] whose coefficients are obtained using regression 

techniques. In fact, real GMDH algorithm in which model 

coefficients are estimated by means of the least squares 

method has been classified into complete induction and 
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incomplete induction, which represent the combinatorial 

(COMBI) and multilayered iterative algorithms (MIA), 

respectively [17]. In recent years, however, the use of such 

self-organizing network leads to successful application of the 

GMDH-type algorithm in a broad range area in engineering, 

science, and economics [15-21]. Fuzzy logic is a problem-

solving technique that derives its power from its ability to 

draw conclusions and generate responses based on vague, 

ambiguous, incomplete and imprecise information. To 

simulate this process of human reasoning, it applies the 

mathematical theory of fuzzy sets, first defined by Lotfi zadeh, 

in 1965 [22]. ANFIS, developed in the early 90s by Jang [23], 

incorporates the concept of fuzzy logic into the neural 

networks to facilitate learning and adaptation. 

In this paper, first, the results of experimental method for 

the squat of commercial vessels in shallow waters are applied. 

Then, the use of ANFIS with different type of membership 

functions for modeling and prediction of squat parameters in 

shallow waters for ships has been demonstrated. After that, a 

comparison is made between two GMDH-type neural 

networks and multiple-linear regression models with the best 

ANFIS model, with respect to Mean Square Error (MSE) of 

modeling and prediction, on two predefined datasets namely, 

Training set and Testing set.  

II. EXPERIMENTAL PROCEDURE 

A. THE PRINCIPLES OF THE MODEL TESTING OF THE SQUAT 

For assessing the ship behavior by a model test, one should 

establish geometrical and kinematical similarities between the 

ship and its model. Consequently, a dynamic similarity will 

take place which is the result of the model testing. In most of 

the cases, the geometrical similarity is defined as scaling down 

the ship dimensions and water depth by a certain value. 

 

=  s s

m m

L h

L h
λ =                                                            (1) 

 

where λ is called scale, 
sL  denotes ship length, 

mL is model 

length, 
sh  is water depth for ship and 

mh  is water depth for 

model. 

In a case of squat model testing, the kinematical similarity 

is defined as the Froude Number of a model and the 

corresponding ship are to be the same and the model is to be 

large enough, the Reynolds Number of which falls in the 

turbulent region. 
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where subscript m refers to model and s refers to ship, 

hFn is Froude Number based on water depth, V is speed, g is 

gravitational acceleration and υ denotes kinematic viscosity. 

The dynamic similarity is achieved if one builds a model and 

shallow water, which are geometrically similar to the ship and 

its water depth, equation (1), and model moves forward with 

the speed of 
1

m s
V V

λ
= , then the dynamic similarity will 

be achieved as follows: 

 

s mS Sλ=                                                                      (3) 

Practically, there may exist some errors which are called the 

scale effect. Having enough experience in model testing with 

particular apparatuses, the scale effect can be minimized or 

deducted from the test results. 

B. Model properties and laboratory preparation 

Several tests are planned for the experimental analysis of the 

ship squat in shallow water. These tests are carried out at the 

marine laboratory of Sharif University of Technology. To 

perform the tests, two models are built, a shallow water tank is 

prepared, and measurement and data recording tools are 

provided. 

Two models with series 60 hull form and block coefficient 

of CB=0.7 and CB=0.75 and with the scale of 1:40 and 1:70 

are precisely manufactured. The main particulars of the 

models are presented in Table 1. 

 
TABLE 1 

MODELS PROPERTIES 

No. Length(m) Beam(m) CB Model Type 

1 2.50 0.31 0.70 commercial 

2 2.38 0.323 0.75 commercial 

 

 The models are shown in Figures 1 and 2. 

 

 
 

Fig. 1 model with Block coefficient of 0.7 

 

 
 

Fig. 2 Model with Block coefficient of 0.75 

 

In order to facilitate a shallow water condition with an exact 

gap between the model floor and tank bottom, an adjustable 

false bottom is installed in the tank. The adjustable false 
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bottom enables us to adjust the gap by the accuracy of 0.5 

millimeters. 

.  

C. THE SQUAT TEST PARAMETERS 

The tests are carried out at 4 different dimensionless depths, 

2.1 ,  15.1 ,  1.1 ,  05.1 ====
T

h

T

h

T

h

T

h   

where h is the depth of the water and T is the draft of the 

model. The tests are begun at the speed of 0.2 /m s and 

continued by the speed interval of 0.2 /m s  for low speeds 

and 0.1 /m s  for high speeds. Following the advice of the 

ITTC standard, each test is carried out three times and is 

repeated if the error is high. The test parameters of the models 

are shown in Tables 2 and 3. 

 
TABLE 2 

TEST PARAMETERS OF MODEL WITH CB=0.75 

h(cm) T(cm) 

T

h

 h

Th −
=δ  

16.8 16 1.05 0.0476 

17.6 16 1.1 0.091 

18.4 16 1.15 0.13 

19.2 16 1.2 0.1667 

 

TABLE 3 

TEST PARAMETERS OF MODEL WITH CB=0.7 

h(cm) T(cm) 

T

h

 h

Th −
=δ

 

9.45 9 1.05 0.0476 

9.9 9 1.1 0.091 

10.35 9 1.15 0.13 

10.8 9 1.2 0.1667 

 

D. THE TEST RESULTS 

In order to introduce a comprehensive equation for the 

squat, the authors introduce some new dimensionless 

parameters. These parameters are S
*
, dimensionless squat, and 

δ, dimensionless gap between the seabed and the model floor. 

The above-mentioned dimensionless parameters in 

conjunction with hydraulics Froude Number, hFn , are used 

for further analysis. They are as follow: 

 

h

S
S =*

,
h

Th −
=δ and

gh

V
Fnh =                           (4) 

 

Tests are carried out for two models at four different depths 

at several different speeds. The dimensionless squat versus the 

Froude's Number for CB=0.7 and CB=0.75 are shown in 

Figures 3 and 4. 

 

 
 Fig. 3 the test results for CB=0.75 at four different depths 

 

 
Fig. 4 the test results for CB=0.7 at four different depths 

 

Tests are continued until the model floor hits the seabed. 

That is why the test for small δ is cut at low Froude Number 

where for large δ is continued up to Froude Number of about 

0.6. 

According to Figures 3 and 4, due to interactions between 

the tank bottom and the ship floor, the increase in the speed of 

the model leads to an increase in the squat. It is also shown 

that as, δ, the dimensionless gap between the seabed and 

model floor increases, consequently the squat decreases. 

 

III. MODELING USING GMDH-TYPE NEURAL 

NETWORKS 

    By means of GMDH algorithm, a model can be represented 

as a set of neurons in which different pairs of each layer are 

connected through a quadratic polynomial, and thus produce 

new neurons in the next layer. Such representation can be used 

in modeling to map inputs to outputs. The formal definition of 

the identification problem is to find a function f̂ so that it can 

be approximately used instead of the actual one, f  in order to 
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predict output, ŷ , for a given input vector, 

),...,,(
32

,
1 n

xxxxX = , as close as possible to its actual 

output, y . Therefore, given M, to be the observation of multi-

input-single-output data pairs so that 

 

),...,,,(
321 iniiii

xxxxfy =  (i=1,2,…,M),                         (5) 

 

it is now possible to train a GMDH-type neural network to 

predict the output values, 
i
ŷ , for any given input vector 

, ),...,,,(
321 iniii

xxxxX = , that is 

)....,,2,1(),...,,,(ˆˆ
321

Mixxxxfy
iniiii

==         (6) 

The problem is now to determine a GMDH-type neural 

network so that the square of the difference between the actual 

output and the predicted one is minimised, that is, 

min]),...,,,(ˆ[
1

2

321 →−∑
=

M

i

iiniii yxxxxf .                   (7) 

The full form of the mathematical description can be presented 

by a system of partial quadratic polynomials consisting of only 

two variables (neurons) in the form of: 

2
5

2
43210

),(ˆ
jxaixajxixajxaixaajxixGy +++++==         (8) 

Consequently, the coefficients of each quadratic function 

i
G are obtained to optimally fit the output in the whole set of 

input-output data pair, that is, 

The general connection between input and output variables 

can be expressed by a complicated discrete form of the 

Volterra functional series in the form of: 

    minE →

∑
=

−

=
M

M
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2
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p
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i
G

i
(y

.                                      (9) 

In the basic form of the GMDH algorithm, all the 

possibilities of two independent variables out of total n input 

variables are taken in order to construct the regression 

polynomial in the form of equation (8) that best fits the 

dependent observations iy( , i=1, 2, …, M) in a least-squares 

sense. Consequently, 
2

)1(

2

−
=







 nnn
 neurons will be built up 

in the first hidden layer of the feed forward network from the 

observations { }( , , );  ( 1,2,..., )y x x i Mi ip iq = for different 

},...,2,1{, nqp ∈  [19]. In other words, it is now possible to 

construct M data triples { });  ( , , ( 1,2,..., )y x x i Mi ip iq =  from 

the observation, using such },...,2,1{, nqp ∈  in the form of: 
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Using the quadratic sub-expression in the form of equation 

(8) for each row of M data triples, the following matrix 

equation can be readily obtained as: 

 

YA =a                                                                            (10) 

 

where a  is the vector of unknown coefficients of the 

quadratic polynomial as in equation (8) 

T
aaa }5,...,

1
,

0
{=a                                                           (11) 

and 

T
MyyyyY },...,,,{ 321=                                                 (12) 

is the vector of output’s value from the observation. It can be 

readily seen that 
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The least-squares technique from multiple-regression analysis 

leads to the solution of the normal equations in the form of: 

 

YAAA TT 1)( −=a                                                               (14) 

which determines the vector of the best coefficients of the 

quadratic equation (9) for the whole set of  M  data triples. It 

should be noted that this procedure is repeated for each neuron 

of the next hidden layer, according to the connectivity 

topology of the network. However, such solution directly 

taken from solving normal equations (SNE) is rather 

susceptible to round off errors and, more importantly, to the 

singularity of these equations.  

The evolutionary methods such as genetic algorithms have 

been widely used in different aspects of design in neural 

networks because of their unique capabilities of finding a 

global optimum in highly multi-modal and/or non-

differentiable search space [24, 25]. In this work, the design of 

architecture is performed using Genetic Algorithm (GA). The 

incorporation of genetic algorithm into the design of such 

GMDH-type neural networks starts by representing each 

network as a string of concatenated sub-strings of alphabetical 

digits. The fitness, ( Φ ), of each string of the symbolic digits 

which represents a GMDH-type neural network to the model 

squat is evaluated in the form of: 

 

1/ EΦ =                                                                                (15) 

 

where E is the mean square of the error given by equation (9) 

is minimized through the evolutionary process by maximizing 

the fitness, Φ . The evolutionary process starts by randomly 
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generating an initial population of symbolic strings, each as a 

candidate solution. Using the aforementioned genetic 

operations of roulette wheel selection, crossover and mutation, 

the entire populations of symbolic strings is to improve 

gradually. In this way, GMDH-type neural network models of 

ship squat with progressively increasing fitness,Φ, are 

produced until no further significant improvement is 

achievable. It should be noted that such an evolutionary 

process was used in conjunction with the normal equation 

approach for the coefficients of the quadratic polynomials 

involved in the design of the GMDH-type networks.   The 

details of several types of GMDH neural networks are 

available in [26]. 

 

IV. ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM 

 

In this section, an adaptive-network-based fuzzy inference 

system–ANFIS is proposed. ANFIS is used for the modeling 

of nonlinear or fuzzy input and output data, and for the 

prediction of output according to the input. It uses a 

combination of the least squares method and back-propagation 

gradient descent method for training fuzzy inference system 

membership function parameters to emulate a given training 

dataset. Functionally, it is equivalent to the combination of 

neural network and fuzzy inference systems. 

In this study, the use of ANFIS is adopted in modeling ship 

squat in shallow water. ANFIS was first introduced by Jang 

[27]. The model is based on Takagi–Sugeno inference model 

[28, 29]. ANFIS uses a hybrid learning algorithm to identify 

the consequent parameters of Sugeno-type fuzzy inference 

systems. Furthermore, the Sugeno fuzzy model is assumed to 

have two inputs, m and n, and one output, f. For a first-order 

Sugeno fuzzy model, a typical rule set with two fuzzy if–then 

rules can be expressed as: 

 

Rule 1: If )( 1Aism  and )( 1Bisn  then                                                      

1111 rnqmpf ++=                                                            (16) 

Rule 2: If )( 2Aism  and )( 2Bisn  then 

2222 rnqmpf ++=                                                        (17) 

where 
1 2 1 2 1 2,  ,  ,  ,   and p p q q r r  are linear parameters and 

1 2 1 2,  ,   andA A B B  are nonlinear parameters. 

The entire system consists of five layers, fuzzy layer, 

product layer, normalized layer, de-fuzzy layer and total 

output layer. The relationship between input and output of 

each layer is discussed in the following sections.  

Layer 1 is the fuzzy layer, in which m and n are the input of 

nodes
1A , 

1B  and
2A ,

2B  respectively. 
1A ,

2A ,
1B  and 

2B  

are the linguistic labels used in the fuzzy theory for dividing 

the membership functions. The membership relationship 

between the output and input functions of this layer can be 

expressed as below: 

 


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where 
iO ,1
and 

jO ,1
denote the output functions, and 

iA
µ and 

jB
µ denote the membership functions. 

Layer 2 is the product layer that consists of two nodes 

labeled Π . The output 
1W  and 2W are the weight functions of 

the next layer. The output of this layer is the product of the 

input signal, which is defined as follows: 

 

2,1),()(,2 === inmwO
ii BAii µµ                        (19) 

 

where iO ,2  is the output of Layer 2. 

  The third layer is the normalized layer, whose nodes are 

labeled N. The function of this layer is to normalize the weight 

function in the following process: 

2,1,
21

,3 =
+

==
−

i
ww

w
wO i

i
                                    (20) 

where iO ,3  is the output of Layer 3. 

The fourth layer is the defuzzification layer. The nodes in 

this layer are adaptive nodes. The relationship between the 

inputs and outputs of this layer can be defined as the 

following: 

2,1)(,4 =++=
−

irnqmpwO iiiii                  (21) 

where iO ,4 is the output of Layer 4, and ip , iq and ir are the 

linear parameters of the node. 

The fifth layer is the output layer, whose node is labeled ∑ . 

The output of this layer is composed of all the ingredients of 

the inputs, which represents the results of the cleaning rates. 

The output can be expressed as below: 

2,1,,5 ===

∑

∑∑
−

i

w

fw
fwO

i i

i ii

i

iii              (22) 

where iO ,5 is the output of Layer 5. 

V. ANN AND ANFIS SQUAT MODELING 

A. Data Preparation 

The parameters of the interest in these multi-input single-

output systems, both GMDH-type neural network and ANFIS,  

that affect the ship squat are block coefficient (CB), the 

dimensionless distance between the seabed and the ship’s 

floor (δ ) and Hydraulics Froude Number ( hFn ), that is 

described in Section 2 in detail. There has been a total number 

of 82 input-output experimental data considering 3 input 

parameters, namely CB,δ , hFn  and one output namely, 

dimensionless squat (
*S ). In order to demonstrate the 
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prediction ability of both GMDH-type neural networks and 

ANFIS, the data have been divided into two different sets, 

namely training and testing sets. For dimensionless squat, 

training set which consists of 60 out of 82 inputs-output data is 

used for training both the neural network and ANFIS models. 

The testing set, which consists of 22 unforeseen inputs-output 

data samples, is merely used for testing to show the prediction 

ability of such GMDH-type neural network and ANFIS 

models during the training process. 

 

B. GMDH-type Neural Network modeling of ship squat in 

shallow waters 

The GMDH-type neural network is now used for such 

input-output data to find the polynomial model of 

dimensionless squat in respect to their effective input 

parameters.  In order to genetically design such GMDH-type 

neural network described in previous section, a population of 

50 individuals with a crossover probability of 0.7 and 

mutation probability of 0.07 has been used in 160 generation 

which no further improvement has been achieved for such 

population size. The structure of the evolved GMDH models 

with 2 and 3 hidden layers is shown in Figure 5.  

 

 
Fig. 5 Structures of GMDH neural network models for dimensionless 

squat 

(a) Two hidden layer with 3 neurons; 

 (b) Three hidden layer with 6 neurons 
 

Corresponding MSE are calculated as 0.000193 and 

0.000114 for training and testing set, respectively. The MSE 

for GMDH model with 3 hidden layers is 0.000168 and 

0.000096 for training and testing sets, respectively. One can 

define the maximum hidden layers of such GMDH neural 

networks higher than three until both training and testing 

errors decrease with increasing the hidden layers. When the 

number of hidden layers increase, the corresponding testing 

error increases (in spite of decreasing the training error), too. 

This is related to a model that has been made with less a 

hidden layer. When the over-fitting phenomenon happens, 

consequently, a model with less hidden layer must be chosen 

as the best model for modeling each process. For the squat 

modeling with GMDH neural networks, when four hidden 

layers are predefined for training, the testing error of this 

trained model is greater than the model with three hidden 

layers.  For these reason, three hidden layers’ model has been 

chosen as the best GMDH model for ship squat in shallow 

water. The good behavior of GMDH-type neural network 

model with 3 hidden layers is also depicted in Figure 6.  

 

 
Fig. 6 The variation of Dimensionless Squat with input data samples 

(GMDH with 3 Hidden Layers) 

 

The corresponding polynomial of such model for 

dimensionless squat is:  

 

1X  = -0.04741 + 0.40711 )(δ +0.40148 )( hFn  -

1.90223
2)(δ + 0.56707

2)( hFn   -1.06244 ))(( hFnδ   

2X =0.01047 -0.02127 )(CB -1.24918 )( hFn  -

0.03633
2)(CB + 0.47388

2)( hFn +2.11542 ))(( hFnCB  

 1Y = -0.04076 +0.02084 )(CB  -2.57000 )( 1X + 

0.05161
2)(CB + 0.46792

2

1 )(X + 4.83719 )(CB )( 1X  

2Y =   -0.00892+ 1.12175 )( 2X + 0.00519 )(CB + 

0.10599
2

2 )(X +0.01221
2)(CB -0.20689 ))(( 2XCB  

=1Z -0.00076+ 0.54077 )( 1Y + 0.52181 )( 1X - 34.252389       

2

1)(Y -39.33575
2

1 )(X + 73.80489 ))(( 11 XY  

=2Z 0.00116 -1.28813 )( 2Y    + 2.17806 )( 1Y  + 

59.16837
2

2 )(Y + 53.71903 
2

1)(Y  -12.53774 ))(( 12 YY  

*S =-0.00228 + 0.12841 )( 1Z + 0.84450 )( 2Z + 

37.20074
2

1)(Z + 35.56609
2

2 )(Z -72.70769 ))(( 21 ZZ  

 

C. ANFIS modeling of ship squat in shallow water 

The computation of data for ANFIS is conducted using 

MATLAB. The ANFIS training includes hybrid method. The 

parameters of the membership functions are optimized in the 

identification dataset through back propagation while the 

consequent parameters are calculated using a linear least 

squares method. The training epoch number for this 

optimization is set to be 200. The initial value of step size for 

the training is set to be 0.01. The ANFIS is a set for training 

and the tuning algorithm modified the ANFIS parameters to 

match the training data. Having been verified by the test data 

set, the dimensionless squat is established using the above 

neuro-fuzzy algorithm procedure.  In the case of choosing 

triangular membership function for three input parameters, the 

training process is performed after about 88 epochs of 

training. The MSE becomes steady, as shown in Figure 7.  
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Fig. 7 Convergence of ANFIS training (with triangular   

membership function) 

Under this circumstance, training is regarded as converged.   

In order to model such three-input single-output set of data, an 

ANFIS with two linguistic terms in each antecedent which is 

equivalent to two membership functions for each input 

variable, is considered. Different models are built, using 

triangular, bell-shape, Gaussian and trapezoidal membership 

functions. It should be noted that the number of parameters in 

each vector of coefficients in the concluding part of each 

TSK-type fuzzy rule is four, according to the assumed linear 

relationship of input variables in the consequents. 

Consequently, 82
3 =  TSK-type fuzzy rules are identified 

using ANFIS, given in the MATLAB fuzzy logic toolbox. 

Compared results of such models with different types of 

membership functions aspect to MSE of training and testing 

set have been shown in Table 4.   

 
TABLE 4 

COMPARISON RESULTS OF VARIOUS ANFIS MODEL WITH 

DIFFERENT MEMBERSHIP FUNCTION 

Mem.Function 
Mean Square Error 

Training Error Prediction Error 

gbellmf 2.20381E-05 5.15621E-05 

gaussmf 2.14398E-05 4.78557E-05 

trapmf 2.60888E-05 6.29373E-05 

trimf 1.93886E-05 3.89049E-05 

 

    It can be seen that the triangular membership functions 

result in the best values for both training and prediction errors. 

The triangular curve is a function of a vector x , and depends 

on three scalar parameters a , b and c as given below: 
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  Parameters a  and b  locate the feet of triangle and the 

parameter c  locates the peak. Figure 8 demonstrates the 

training and prediction behaviors of the ANFIS model 

obtained using triangular membership functions (trimf). 

 

 

Fig. 8 The variation of Dimensionless Squat with input data samples 

(Triangular membership function for inputs) 

 

 The ANFIS parameter values for inputs premise parameters 

of this model have been shown in Table 5.  

 
TABLE 5 

ANFIS PARAMETER VALUES FOR INPUTS PREMISE PARAMETERS 

Input Mem.Function(trimf) a  b  c  

CB  
A1 0.65 0.7 0.7499 

A2 0.7001 0.75 0.8 

δ  
A3 0.04951 0.09036 0.1268 

A4 -0.05038 0.2294 0.2858 

nhF  
A5 -0.4134 0.2265 0.5151 

A6 0.08751 0.6278 1.071 

 

Figure 9 shows the architecture of this ANFIS model that 

includes two membership functions for each input and made 8 

rules for this ANFIS model.  

 

Fig.9 Architecture of designed ANFIS with eight rules (with trimf 

for input parameters) 

 

Figure 10 and Figure 11 depict the experimental and 

predicted dimensionless squat (
*S ) of proposed ANFIS 

model, against Froude Hydraulic Number ( hFn ) in two 

arbitrary dimensionless distance (δ ) of each CB. 
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Fig.10 Experimental and predicted dimensionless squat obtained 

with the ANFIS against Froude Hydraulic Number for Block 

Coefficient equal to 0.7 

 

 

Fig.11 Experimental and predicted dimensionless squat obtained 

with the ANFIS against Froude Hydraulic Number for Block 

Coefficient equal to 0.75 

 

Figure 12 shows the triangular membership functions of 

input variables for which the obtained set of TSK-type fuzzy 

rules for modeling of a dimensionless ship squat in shallow 

water are as follow: 
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Fig.12 Triangular membership functions of input variables (ANFIS 

model with eight rules) 

 

VI. COMPARISON OF THE ANFIS RESULTS WITH OTHER 

TECHNIQUES 

  In two former sections the GMDH-type neural network and 

ANFIS, methods are used for modeling and prediction of ship 

squat in shallow water. In this section, initially, a simple 

method called multiple linear regressions is used and, 

eventually, the results of these three methods have been 

compared. In this part of study, the comparison of these three 

approaches is made on the basis of the accuracy, R-square 

fitting parameter (that is, the square of the correlation between 

the experimental dimensionless squat values and the predicted 

dimensionless squat values) and train and test performance.  

Multiple linear regression analysis is usually used to 

summarize data as well as to study the relations between 

variables [30]. 

Stepwise regression is basically a combination of backward 

and forward procedures and is probably the most commonly 

used method [31, 32]. In this method, the first variable is 

selected in the same manner as in the forward selection. If the 

variables fail to meet the entry requirements, the procedure 

terminates with no independent variables entering into the 

equation. If it passes the criterion, the second variable based 

on the highest partial correlation is selected. If it passes the 

entry criterion, it also enters the equation. After the first 

variable is entered, stepwise selection differs from forward 

selection: the first variable is examined to see whether it 

should be removed according to the removal criterion as in 

backward elimination. In the next step, variables which are not 

present in the equation are examined for removal. Variables 

are removed until none of the remaining variables meet the 

removal criterion. Variable selection terminates when no more 

variables meet entry and removal criteria [33]. The simple 

equation obtained for dimensionless squat with multiple 

regression analysis is:  

 

hFnCBS 620.0260.0538.0433.0 +−+−=∗ δ     (23) 

The comparison of the GMDH-type neural networks 

(with 2 and 3 hidden layers), ANFIS (with 8 rules and 

triangular membership function) and multiple linear regression 

models is presented in Table 7. The comparison shows that:  
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(i) the minimum R-square is obtained with the 

multiple regression model, 

(ii) the R-square of ANFIS is higher than that of 

GMDH-type neural network models, 

(iii) The training and test errors of ANFIS are smaller 

than those of GMDH and regression models. 

In brief, it may be stated that ANFIS yields most accurate 

results. 

 

VII. CONCLUSIONS 

This paper is conducted to demonstrate the usefulness of the 

artificial intelligence techniques for the prediction of ship 

squat in shallow water. GMDH-type neural networks and 

ANFIS are applied for modeling the ship squat that varies with 

three effective parameters, namely block coefficient (CB), 

dimensionless distance between the seabed and ship floor (δ) 

and Froude Number ( hFn ) that were investigated 

experimentally. The GMDH-type neural network model with 

3 hidden layer and 6 neurons within those layers is selected as 

the optimum and best network for modeling and prediction of 

ship squat among other GMDH-type models because of 

minimum MSE on two predefined sets, the training set and 

testing set. Eventually, the accuracy of predictions and the 

adaptability of the ANFIS have been examined. The ANFIS 

indicated that it is capable to learn the training dataset and 

accurately predict the output of test data. Triangular 

membership functions are chosen as the best membership 

function for ANFIS training of the experimental data. The 

results obtained with ANFIS and GMDH-type neural networks 

are compared with each other. These results were also 

compared with the multiple linear regression method. The 

comparison showed that the ANFIS performed better than 

GMDH-type neural networks and multiple linear regressions. 
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