

Abstract—This article describes platform for school courses of

programming embedded applications. It integrates several devices on

one stand together with supporting software libraries and it is
intended to provide easy-to-use platform for lessons. The devices

included in the platform are microcontroller development kit, panel
PC with Advantech I/O modules and several models of real-world

systems. The platform should make it easier for the students to

concentrate on the programming problems by providing documented
and unified interface between the control system and controlled

model of a technological process.

Keywords—embedded programming, microcontroller, panel PC,

teaching.

I. INTRODUCTION

MBEDDED computer systems can be found literally all

around us and their number increases rapidly. Even simple

devices which would be made of discrete parts several years

ago are now using microcontrollers and other highly integrated

circuits. With the increasing usage of microcontrollers, or

generally embedded computers, the need for qualified

programmers also increases. Universities and colleges must

prepare such experts, who will be able to design and program

embedded systems efficiently and appropriately. Obviously,

the subject is wide and the teaching process is more or less

focused on certain parts of the field, based on experience and

tradition of the department, etc. In general, it seems desirable

to shift the focus from learning about the microcontroller itself

to learning about how the microcontroller can be used as a tool

to solve practical problems. The student should preferably be

exposed to real-world engineering applications, not only to

simpler applications [1].

In our courses we also consider it important to allow

students to try their skills on a real hardware. In our experience

using real devices, such as models of technological processes,

real sensors and actuators and so on, makes the lessons much

more attractive for students and also their results are better

compared to lessons where only simulators and/or computer

models are used. We also try to make it possible for the

students to work with microcontrollers at home by providing

materials and tools for developing their own embedded

devices. [2], [3]. Such a simple and affordable device, which

can be built by the student, can greatly improve the interest in

the subject.

This work was supported by the Ministry of Education, Youth and Sports

of the Czech Republic under the Research Plan No. MSM 7088352102 and

by the European Regional Development Fund under the project CEBIA-Tech

No. CZ.1.05/2.1.00/03.0089).

At our department we teach microcontroller programming and

also programming of embedded systems with the help of real-

time operating systems. For these lessons we use several

teaching aids (models, development kits, etc.), which will be

described later, but the common problem we have is that these

tools are not unified or compatible. Basically, there are some

tools for microcontroller programming and different tools for

real-time OS programming and most of these tools have

different interfaces and different programming approaches.

Last but not least reason is also the physical arrangement of

these tools which are just placed on the table and connected to

the computer and if there is another lesson of a different course

in the classroom, the tools must be put away and later again

prepared – which is time consuming. As a better solution we

see to put the tools on a stand, which can be permanently

connected to the table. The stand should hold all the required

devices and prevent discomfort such as mixed cables or even

damage of the devices. The content of the platform does not

necessarily have to be invariable; it is better if there is option

to change some components (e.g. model of a technological

process), but the platform should provide common basic

functions, such us connection to power supply and the

programming interface and allow easy placement of variable

components.

II. DESIGN REQUIREMENTS

During the years that we teach microcontroller programming

and real-time programming courses, we have used and

developed many teaching aids, some of which are now

obsolete and some of which are still used. At the beginning we

used Motorola 68HC11 microcontroller in a kit containing

keyboard, display and programming interface. This kit was

also connected to a model of a technological process – a

heating plant, which allowed students to develop some real-

world applications for measuring and controlling the

temperature. This kit was a good tool, but as the 68HC11 was

aging we decided to move to newer hardware. However, we

found no commercially available ready-to-use device

equivalent to the older one. We decided to use

M68EVB908GB60 evaluation kit with Freescale HCS08

microcontroller. The kit is equipped with LCD display, push

switches, LED diodes and a buzzer. See fig. 1. It contains

HCS08 GB60 microcontroller with 60 kB of FLASH memory

for the program and 4 kB of RAM memory. The kit is quite

well suited for our purpose, but it has also some disadvantages,

for example, it is not well protected from damage by users and

Platform for teaching embedded programming

Dolinay J., Dostálek P., Vašek V. and Vrba P.

E

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 5, 2011 1110

its price is too high to be affordable for students to use at home

in their own projects. Nevertheless, this seems to be the best

option for us from the commercially available development

kits, so we plan to stick with it for some time.

We also developed several extension modules which can be

attached to this kit, for example, 7-segment, 4 digit

multiplexed display and keyboard, DC motor drive and simple

heating plant [4].

The kit together with modules allows developing of wide

range of applications but it also has some limitations such as

that each of the extension modules has more or less original

design and software interface, the connection of the module to

the kit is fragile and the kit itself is not well protected from

damage when just lying on the table. With the experience from

using this kit we formulated the following requirements on a

new platform for our courses:

• Single robust stand to hold all the components

• Possibility to attach different models of real-world

systems through the same interface

• Option to use either microcontroller system or a panel PC

to control the models

• Preferably use only commercially available parts for the

design; avoid custom-made components

With these requirements in mind the system described in the

following chapter was designed.

Fig. 1 microcontroller development kit used in lessons

III. PLATFORM DESIGN

This chapter describes the proposed system for teaching

courses of real-time programming both on microcontrollers

and on PC-based devices (panel PC).

All the devices should be organized on a stand which can be

placed on the table and replace the bunch of cables and boards

used now. The requirements on the stands are relatively simple

–good stability, enough space for the devices and low price.

Prototype stand can be seen in fig. 2, but there may be changes

to this design later.

Fig. 2 stand prototype

The stand itself is formed by two wooden boards and a “leg”

which is attached to the basement board and holds the front

board. The basement board has four rubber spacers on the

bottom side to prevent it from sliding on the table. The front

board then contains all the equipment, which is attached either

directly to the board (the MCU unit), or to a DIN rail (I/O

modules and models of real world systems) or placed in a hole

in the board (panel PC).

The contents of the stand are described in the following

sections.

A. Devices used in the platform

The proposed layout of the devices can be seen in fig. 2.

The most visible device is the panel PC which takes up the

bottom part of the stand. At the top part there should be the

microcontroller unit (for now, M68EVB908GB60 evaluation

kit, but with possible replacement in future). Below the MCU

unit there is DIN rail for placing models of technological

processes and I/O modules Advantech ADAM (used for

interfacing the models from panel PC).

Fig. 3 panel PC

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 5, 2011 1111

The microcontroller kit was described in the previous

section. The panel PC can be seen in fig. 3, its parameters are

summarized in table 1. It is Advantech PPC-L60T, which was

already available at our department.

Table 1 parameters of the Panel PC

CPU Via Eden CPU running at 400 MHz

RAM Memory 128 MB

Storage 80 GB hard-drive

Screen 6.4“ TFT LCD touch screen

Ports One RS232

One RS232/RS422/RS485

One USB

One VGA

One 1 Ethernet 10/100Base-T port

 In fact, the choice of the PC is rather arbitrary; it could be a

different device from different manufacturer. Our requirement

was only to have a PC-based device for courses where

multitasking real-time programing on such systems is taught

and to be able to control the models of technological processes

with this device.

In place of the models of technological processes we intend

to use commercially manufactured models intended primarily

for teaching PLC programming, but usable also for controlling

from microcontroller. These models actually simulate the

controlled object (such as wash machine or mixing unit) and

provide feedback to the controller system by their outputs and

also visually to the user by LEDs. The models use 24V logic

for inputs and outputs, so voltage adjustment is required to

connect them to the MCU unit. For connections to Panel PC

we use Advantech modules, which will be described later, and

these modules can work directly with the 24V levels, so no

adjustment is necessary. Model of washing machine can be

seen in fig. 4 and model of mixer unit in fix. 5. In both the

figures is can be noted that there are the LED indicators which

show the status of the object, such as the temperature in

washing machine (30, 40, 60, 90 degrees C). The status is read

by the controlling unit in the form of binary input. For

example, there are four binary outputs from the model which

report the temperature. If the temperature reaches 60 °C, the

corresponding output will read logical 1. On the other hand,

when the controlling unit turns on/off some function of the

model, e.g. switches on the pump in the washing machine, (by

driving the appropriate model input high) the corresponding

LED on the model will turn on.

Besides these models we intend to develop our own models

also. In the first place, this will be a simple heating plant

similar to the one described in [4]. Such models are used at our

faculty not only in lessons of programming, but also in lessons

on theory of control, where students measure the transfer

functions of these plants and verify their design of controllers.

It seems to be useful part of the educational process – to allow

the students to see several aspects of the use of such model.

Fig. 4 model of washing machine

Fig. 5 model of mixer unit

One aspect is being a hardware designer and programmer,

who needs to create the hardware and software of the control

system for such a model, which is essentially the same as

creating control system for a real system), and secondly as the

user of the device, who does not have to deal with the

hardware and software of the system, but has to design and

control system itself (choose the proper controller and set its

parameters).

Besides the model of heating plant we want to create also

some other models, possibly more attractive models, such as

DC or servo motor control, etc.

B. Connection of the devices

Now that we have described the devices used in the

platform we can move on to the connection between these

devices.

The connection can be divided into two main parts:

• Connection of the platform to the computer on which the

software is developed (development PC).

• Connection between the models of real-world systems

and the control units (panel PC or MCU unit).

All the connections can be seen in fig. 6.

For connecting with the development PC on each

workplace, the MCU unit uses its standard programming

interface.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 5, 2011 1112

Fig. 6 connection of the components

This interface is RS232 line for the M68EVB908GB60

evaluation kit. It could be USB connection in future when we

move on to a new MCU development kit.

The panel PC will be connected with the development PC

via Ethernet.

For interfacing the panel PC with the technological

processes there are analog and digital I/O modules Advantech.

The following modules are used:

• ADAM-4050 - digital inputs and digital outputs.

• ADAM-4017 – analog inputs

The ADAM-4050 features seven digital input channels and

eight digital output channels. The outputs are open-collector

transistor switches that can be controlled from the computer,

for example to control solid-state relays, which in turn can

control heaters, pumps and power equipment. The computer

can use the module's digital inputs to determine the state of

sensors with digital outputs, such as safety switches or remote

digital signals [8].

The ADAM-4017 is a 16-bit, 8-channel analog input

module that provides programmable input ranges on all

channels. This module is offered as a cost-effective solution

for industrial measurement and monitoring applications. Its

opto-isolated inputs provide 3000 VDC of isolation between

the analog input and the module, protecting the module and

peripherals from damage due to high input-line voltages.

ADAM-4017 offers signal conditioning, A/D conversion,

ranging and RS-485 digital communication functions.

The ADAM-4017 uses a 16-bit microprocessor-controlled

sigma-delta A/D converter to convert sensor voltage or current

into digital data. The digital data is then translated into

engineering units. When prompted by the host computer, the

module sends the data to the host through a standard RS-485

interface [9]. There is also a “plus” version, ADAM 4017+,

which supports Modbus communication protocol.

Both the modules can be seen in fig. 7 and their parameters

are summarized in tables 2 and 3.

Fig. 7 advantech ADAM modules

Table 2 parameters of the Advantech ADAM-4050

Inputs 7 digital inputs

Outputs 8 digital outputs

open collector

Power dissipation 300 mW

Watchdog timer Yes

Power supply 10 – 30 VDC

Table 3 parameters of the Advantech ADAM-4017

Inputs 8 channels, independently

configurable

Input current ranges 4-20 mA

+/- 20 mA

Input voltage ranges 0 – 150 mV

0 – 500 mV

0 – 1 V

0 – 5 V

0 – 10 V

A/D converter 16-bit

Isolation 3000 VDC

Power supply 10 – 30 VDC

These ADAM modules are interconnected into RS485 bus

together with the panel PC. There is software library for

accessing the I/O modules from a student’s programs written

in C/C++ which was developed in a diploma thesis [5] and will

be described later.

The other side of the ADAM modules is connected to a

unified connector which allows connection to the models of

technological processes. This connector is the same as the

output connector from the MCU unit, so that it is easy to

control the models by either the panel PC or by the MCU unit

by simply plugging the appropriate connector from the control

system into the connector of the controlled model.

One part of the connection is also a connection unit for the

ADAM modules. The scheme of this unit can be seen in fig. 8

and the real unit in depicted in fig. 9.

This unit adjusts the signals to and from the model to the

ADAM I/O module and also distributes the power supply

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 5, 2011 1113

voltage to the model and to the ADAM modules. It thus makes

the connection mode well-arranged and variable. There is one

20-wires cable from the unit to the model of technological

process with standard connector for these models.

.
Fig. 8 scheme of the connection unit for the ADAM modules

Fig. 9 the connection unit for the ADAM modules

From the unit to the ADAM module there are two 10-wires

cables which go to the lower and upper terminal blocks on the

ADAM module (fir. 10). All the connectors use locks so that

they cannot be connected in a wrong way.

The power supply (24 V) is connected using round

connectors which can be seen on the left side of the unit. The

voltage is then distributer to the ADAM module and to the

model via the cables described above – to the standard pins as

required by both the devices.

The connection is currently realized only for the model of

the washing machine; the pins are summarized in the tables 4,

5 and 6. However, pin configuration of the ADAM module

will be the same for all other models, so the tables 4 and 5

apply for all models.

Fig. 10 wiring of the ADAM-4050 module

The pin configuration of the models of technological

processes will have different meaning for different models, but

physically it will be the same.

Table 4 – pin configuration for the ADAM-4050 module,

upper terminal

ADAM-4050

signal

Direction Meaning Pin

number

DI6 Input NC 1

DI5 Input Level 50% 2

DI4 Input Level 100% 3

DI3 Input Temperature 90 °C 4

DI2 Input Temperature 60 °C 5

DI1 Input Temperature 40 °C 6

DI0 Input Temperature 30 °C 7

DO0 Output Rotate right 8

DO1 Output Rotate left 9

DO2 Output High speed rotation 10

As mentioned earlier for connection of the MCU unit with

the models, it is necessary to perform voltage conversion

because the MCU unit uses 3.3 V logic, while the models use

24 V logic. The converter block intended for this purpose was

started in the course of a bachelor’s thesis, but is it not finished

as of now. The prototype uses resistor dividers for inputs to the

microcontroller to bring the 24 V level to 3.3 V, and transistor

switches to operate the 24V outputs from the converter by the

3.3 V outputs from the microcontroller. In future we would

like to implement more advanced version of this converter

with opto-isolation.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 5, 2011 1114

Table 5 – pin configuration for the ADAM-4050 module,

lower terminal

ADAM-4050

signal

Direction Meaning Pin

number

DO7 Output NC 1

DO6 Output Relay 2

DO5 Output Draining 3

DO4 Output Filling 4

DO3 Output Heating 5

Init Input Initialization 6

Data+ (Y) - RS485 7

Data- (G) - RS485 8

+Vs (R) Input Power supply (+) 9

GND (B) Input Power supply (-) 10

Table 6 – pin configuration for the model of washing

machine

Pin Direction Meaning I/O

assignment

1 Input GND -

2 Input +24 V -

3 Input Rotate right DO0

4 Input Rotate left DO1

5 Input High speed rotation DO2

6 NC - -

7 Input GND -

8 Input +24V -

9 Input Heating DO3

10 Input Filling DO4

11 Input Draining DO5

12 NC - -

13 NC - -

14 NC - -

15 Output Level 50% DI5

16 Output Level 100% DI4

17 Output Temperature 90 °C DI3

18 Output Temperature 60 °C DI2

19 Output Temperature 40 °C DI1

20 Output Temperature 30 °C DI0

IV. SOFTWARE FOR THE PLATFORM

Besides the hardware described above, there are also

software components of the educational platform. These

components should make it easier for students to create their

own programs. So far a library was created for communicating

with the ADAM modules from program running on the Panel

PC and also several helper functions for controlling the models

from MCU evaluation kit. We will focus on the library for

communication with the ADAM modules via RS485 interface

first.

The library is designed in three levels; the lowest level

communicating with the hardware and each higher level using

the functions offered by the lower level.

Fig. 11 three-level design of the software library

The design of the library is depicted in fig. 11. As can be

seen, at the lowest level, called communication there is one

module. This module handles communication via the RS 485

interface using the protocol of ADAM devices. It provides

generic functions such as send command or read reply, which

are common for all ADAM-40xx devices.

On the middle level, called module level, there are functions

specialized for given ADAM module, that is ADAM-4050 and

ADAM-4017. These functions provide functions such as

writing digital output value for ADAM-4050 or reading analog

input from ADAM-4017.

On the top level – model level – there are functions

specialized for given model of technological process.

Currently only functions for the washing machine are

implemented but the library is ready for extension to other

models. The functions provide high-level operations on the

model, such as “turn heater on” or “get water level”.

Obviously, not all functions may be available to the

students. For example, for simple tasks with focus on the

control algorithms it may be usable to provide the students

with ready-to-use functions at the highest level, so that they

can control the model without thinking about communication

with the I/O modules or even setting inputs and reading

outputs. They can simply use ready functions to turn heater on,

etc. and concentrate on the algorithms of controlling the

model. On the other hand, for more advanced students it may

be enough to provide basic I/O functions such as “set output N

to high” or “read input N state” and let the students implement

their own higher-level functions and use them in their program.

Let’s now look at the parts of the library in more detail.

A. Communication level

This part of the library is used to handle the serial

communication on Windows operating systems. It allows

opening and closing the ports and so on. Most of the

communication parameters are fixed; their values are required

by the ADAM modules. In the user programs it is possible to

set the communication speed.

The communication uses protocol ADAM, which is used by

Advantech for their ADAM modules. Optionally, there are

versions of the modules which communicate using Modbus

protocol, but in our case the modules with ADAM protocol are

utilized.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 5, 2011 1115

The ADAM protocol is plain text protocol with master-slave

support which allows data transfer between the ADAM

modules and control system (computer). The protocol defines

unified command common for all the modules which can be

extended by command specific for given module.

The basic set of commands contains commands for

identification and parameterization of the modules. The

extended set of commands then contains commands specific

for each module, such as setting output value.

Each command is terminated by CR character (ASCII code

13).

For example, the command for sending identification string

from the device is $AA2<CR>.

The meaning of the characters is:

• $ - leading character

• AA – the address of the device for which the command is

intended – as a hexadecimal number.

• 2 – the command itself

• <CR> - the terminating character

Given this information, an example of this command intended

for device with address 1 could be:

$012<CR>.

The device replies with message in the following format:

!AATTCCFF<CR>

Where the meaning of the characters is:

• ! – leading char indicating reception of a valid command

• AA – the address of the device which sent the message

• TT – two characters indicating the type of the code sent

by the device. Different devices send different codes

here.

• CC – code of the communication speed

• FF – various flags describing the state of the device

• <CR> - terminator

Alternatively, if the device does not recognize the

command, it can send the following answer:

?AA<CR>

The meaning is quite clear now: ? means that the device

does not know this command. AA is the address of the device

and <CR> is the terminator character.

Another basic command is to ask the device to send its

name. This command has the following form:

$AAM<CR>

The meaning of the parts being:

• $ - leading character

• AA – the address of the device for which the command is

intended – as a hexadecimal number.

• M – the command to send identification

• <CR> - the terminating character

The device then replies with message:

!AA(module name)<CR>

The meaning of the message is now quite clear. The

(module name) will be, for example, “ADAM4050” for the

ADAM-4050 module.

An example of a specific command, which is used by

modules with digital outputs, is the command to send the

current state of the inputs and outputs of the module:

$AA6<CR>

As can be seen the command follows the general structure

described above. The command code is 6.

The answer from the device, if it is ADAM-4050 is in the

form of:

!(data_output) (data_input)00<CR>

Where :

• ! indicates that valid command was recognized by the

device

• (data_output) are two characters which represent the

value of the output register of the device in

hexadecimal numbers.

• (data_input) are two characters which represent the value

of the input register of the device in hexadecimal

numbers.

• 00 – reserved characters

• <CR> - terminator

As can be seen from the above examples, all the values are

sent in text representation. If a numerical value is sent, it is

sent as two-character string containing the number represented

in hexadecimal digits.

B. Module level

This part of the library is used to control the ADAM

modules. For the washing machine only the ADAM-4050

module is needed (binary I/O), but there were also functions

for the ADAM-4017 (analog inputs) implemented.

The functions in this part allow changing the outputs of the

module and reading the inputs. The user does not need to

know the details of the communication with the ADAM

modules; he/she is shielded from this by the library.

The functions handle initial communication with the ADAM

module, including verification that it is the right type of

module, setting the address on the RS485 bus, handling inputs

and outputs and correct closing of the communication. In all

this the functions from the lower, communication level are

utilized by the functions on this level.

C. Model level

The functions contained in this part of the library are

focused on direct control of the washing machine model. In

future there should be equivalent functions created also for the

other models. The user can take advantage of functions which

turn on/off the inputs of the model and read its outputs, e.g.

turn on heater or water pump or read water level. All the

physical connections and lower level implementation such as

opening port and sending appropriate commands are hidden

from the user. This level uses the functions from the lower,

module level of the library.

D. Example of the program

To illustrate the use of the library we will show simple

program for controlling the washing machine. The code is

written in C with the use of the model library. See fig. 12.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 5, 2011 1116

Fig. 12 simple example program utilizing the library

The #include directive includes the model library for the

washing machine “pracka.h”.

In the main function we first create variable “model” which

will hold the handle to the washing machine object. This

variable is of type P_PRACKA, which is defined in the library

and represents a washing machine object.

Then the library is initialized by calling

PRACKA_inicializace() function. The input parameters are

quite self-explanatory. The variable “model” will receive

handle to the washing machine object or NULL if the

initialization fails. In the case of failure the program is

terminated.

Once we have valid handle to the model, we can call other

functions operating on the model. In the example, function

PRACKA_napousteni_zapnout() is called, which starts filling

the washing machine with water.

If any of the library functions fails, it returns 0, which

should be tested in the program, as can be seen in the example.

Note that in case of error the program not only terminates, but

first it correctly closes the connection with the model by call to

PRACKA_zavri().

The sample program continues by testing the level of water

in the washing machine. As can be seen, it calls function

PRACKA_voda_50() which sets the variable “snimac” to 1 or

0 depending on the value read from digital input. When the

washing machine reports that the water level reached 50

percent level, the do loop is terminated and the filling of water

is stopped by calling PRACKA_napousteni_vypnout(). The

program then closes connection with the model and terminates.

V. CONCLUSION

In this article we described teaching aid – platform for

courses of embedded systems programming. This platform

should make it easier to teach such courses by organizing all

needed devices on one stand and unifying the connection

between the control device (computer system or

microcontroller) and the controlled device (model of a real

process). It is targeted primarily on lessons which deal with

programming control systems, such as heating plant or motor

control.

The platform consists of a microcontroller unit (MCU

evaluation kit), an industrial computer (panel PC), several

models of real-world processes, I/O modules and other

supporting circuitry for connecting the computer systems to

the models.

Included in the platform is also software equipment in the

form of libraries of easy-to use functions, which should make

it easier for the students to write their own programs.

However, these libraries still need to be extended, improved

and tested before they can be utilized in the course.

Currently the platform is in the process of development of a

prototype. The basic structure and components are defined, but

still there is much work left before the platform can be

finalized both in the hardware and the software part.

REFERENCES

[1] Hamrita, T. K., McClendon, R. W., A New Approach for Teaching

Microcontroller Courses, International Journal of Engineering

Education, Vol.13, No.4, 1997, pp. 269-274.

[2] Dolinay, J., Dostalek, P., Vasek, V., Simple and Cheap Microcontroller

Kit for Students, Annals of DAAAM for 2010 & Procceeding of the

21st International DAAAM Symposium, Vienna 2010, pp. 0259, ISSN

1726-9679.

[3] Dolinay, J., Dostalek, P., Vasek, V., Implementation and Application of

a Simple Real-time OS for 8-bit Microcontrollers, In procceedings of

the 10th WSEAS International Conference on Electronics, Hardware,

Wireless and Optical Communications (EHAC'11), Cambridge 2011,

pp.023-026, ISSN1792-8133.

[4] Dolinay, J.; Dostalek, P. & Vasek, V. Educational models for lessons of

microcontroller programming, Proceedings of 11th International

research/expert conference TMT 2007, pp. 1447-1450, ISBN 978-9958-

617-34-8, Tunisia, September 2007, Hammamet.

[5] Vrba, P. Connection of Industrial PC with Models of Technological

Processes, Diploma thesis at TBU in Zlin, TBU Zlin 2010.

[6] Dolinay, J.; Dostalek, P.; Vasek, V & Vrba, P. Teaching Platform for

Lessons of Embedded Systems Programming, Proceedings of 13th

International conference on Automatic Control, Modelling & Simulation

ACMOS ‘11, pp. 158-160, ISBN 978-1-61804-004-6, Spain, May

2011, Lanzarote.

[7] Edu-mod Educational models [Online]. Available:

http://www.edumat.cz/produkty.php?produkt=edumod

[8] ADAM/4050 product description [Online]. Available:

http://www.advantech.com/products/ADAM-4050/mod_02B0D2AD-

0BBB-498A-8647-B910CE345125.aspx

[9] ADAM-4017 product description [Online]. Available:

http://www.advantech.com/products/ADAM-4017/mod_170C40F4-

E6AC-485E-9DF9-1E6EF60F971F.aspx

[10] Dostalek, P.; Vasek, V & Pekar, L. “Self-Tuning Digital PID Controller

Implemented on 8-bit Freescale Microcontroller”, International Journal

of Mathematical Models and Methods in Applied Sciences, Issue 4, Vol

4, pp. 274-281, ISSN 1998-0140, 2010.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 5, 2011 1117

