
 

 

  

Abstract—Nowadays there is a strong interest for improving 

the usability, ergonomics and safety in the assortment of 

human-assisted equipments and mechatronic gadgets that we 

all depend on in our modern way of life. This is due to the fact 

that the overall performance, in any human-machine process, 

in terms of productivity, energy cost, quality and safety 

depends both on the skills of the human operator and the 

machine technical conditions. Hence, for control purposes, and 

in order to enhance operator proficiency, the human 

complexity must be taken also into account. An effective 

strategy for developing new intelligent assisted-machines and 

human adaptive control schemes can be performed by first 

modeling the human-machine interface, which often takes 

place in multi-spatial dimensions. This work describes a 

simplified multi-variable modeling and control strategy for 

improving human operator performance on 2-D spatial 

environments, by combining state-space and frequency 

analysis identification methods with an optimal control 

approach. 

 

Keywords—Control system human factors, human-machine 

dynamics, human-in-the-loop control, manual tracking 

systems.  

I. INTRODUCTION 

ECENT studies [1] reveal that in many industrial and 

productive activities which involve manual operations, the 

human impact factor on the overall machine performance, 

regarding productivity, safety, quality and energy cost, can 

reach over 40 %. This fact leads to recent developments on 

human-assisted-control projects and on the design of new 

intelligent human-machine devices, aiming to improve the 

operator proficiency. These machines should be able to adapt 

according to the skills of the human operator, by previously 

evaluating/estimating the skills of the operator. 
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The Human Adaptive Mechatronics (HAM) concept [2]–[4] 

aims to intelligently assist the human operator in improving its 

skills. First HAM research projects were launched between 

2003 and 2008 in Japan [4]–[6]. Recent advances on HAM 

research include human operated manufacturing, adaptive 

assistance for vehicles and mobile working machines, 

laparoscopic surgery and surgical support systems [7], 

teleoperation [8], [9], haptic and other human-machine 

interfaces [10], intelligent coaching systems [11], space and 

marine environments, aviation [16], etc. 

It is clear that to conceive such a HAM device we need to 

model the whole system with the inclusion of the operator's 

systemic complexity. Since the 1940's that there have been 

extensive research on human modeling [4], [12], [13]–[15] and 

human-machine performance analysis [18]–[20], [25], [33] 

using pursuit and compensatory tracking experiences [18], 

[21], [25]. Although human-machine response do not always 

follow a linear behavior, there are studies [12]–[14], [17], 

[25]–[27] that have shown that linear systems theory can still 

be used to capture the most relevant characteristics of the 

overall human-machine system. Other complementary state of 

the art research for obtaining human operator characteristics 

covers also the use of Hidden Markov Models for recognizing 

actions in haptic devices [10], fuzzy-ARX, NARMAX, neuro-

fuzzy modeling techniques [22], variable strategy control 

(VSM) models, modeling the operator by an intermittent 

approach, using particle swarm optimization and the MOCM 

(modified optimal control model) method [1], and also 

clustering methods with self-organizing maps for estimating 

operational intention and skill in human-machine operations 

[23], [32], [34]. 
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Fig. 1 (a) a 2-D pursuit manual tracking time-trial, using Logitech's 

Extreme 3D Pro. 8-bit analog Joystick as the Human-Machine 

Interface (HMI). (b) LabVIEW pursuit test window (right) 
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II. AIM OF THE WORK 

The HAM project design and optimization may hold the 

following three steps: 

1) Modeling the human-machine characteristics; 

2) Quantify the overall skill; 

3) Select an “assistant-controller”. 

 

The main goal of this work covers the first and second 

phases of the HAM design, i.e. the problem of obtaining the 

human-machine dynamics, and the quantification of skill. A 

real-time LabVIEW application was developed for the 

execution and evaluation of multi-dimensional manual tracking 

experiences, using an analog Joystick as the human-machine 

input device (Fig. 1). The platform allows performing any 2-D 

pursuit and point-to-point manual tracking tasks, over a 

predefined MIMO process. A future goal will be to design and 

select a MIMO HAM switching-controller device which, for 

each process, and task, assists the operator to improve its skills 

by performing the improved tracking task. Hence, the present 

project serves as a framework for the development of new 

human-machine intelligent devices, which will be able to 

enhance the operator’s skills in many crucial areas involving 

manual operations. 

III. HUMAN-MACHINE MODELING 

The problem of the modeling approach is to obtain a state-

space linear model, from several pursuit manual tracking 

experiences, that accurately captures the relevant human-

machine dynamic characteristics. The proposed methodology 

uses previous frequency identification methods described in 

[24], [25], [28]–[29]. 

Consider an input normalized one-dimensional signal x(t) to 

be tracked, of duration T, built from a sum of N sinusoids at 

fixed multiple frequencies: 
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The I/O response for each of the frequencies may be 

obtained through the following scheme: 

 

 

 

 

 

 

 

 

Fig. 2 frequency analysis block diagram for each multiple frequency 

By performing the integration along time T, results in: 
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which corresponds to the resulting human-machine closed-

loop frequency response and static gain: 
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The static gain 0K  is obtained from the manual tracking 

average output, with the input offset ( 0x ) known. 

Voluntary motion affects machine movement because the 

operator and the machine form a closed-loop system. Hence, 

the resulting open-loop human-machine LTI models must be 

extracted from the closed-loop experimental data. Three 

multivariable modeling techniques are described below. 

A. Modeling from independent 1-D input/output collected 

data 

The aim of obtaining open-human-in-the-loop models for 2-

D spatial environments can be simplified by assuming that the 

output response in one axis does not influence the orthogonal 

direction. Therefore, a human-machine MIMO system may be 

modeled from two independent LTI transfer functions, which 

leads to a diagonal state-space dynamic matrix pattern, 

discarding the cross-terms: 
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where ( )x sJ  and ( )y sJ  are the frequency-domain input 

targets, and ( )x sP and ( )y sP  the frequency-domain output 

responses (for the X-axis and Y-axis, respectively). For each 

direction there are used separate sets of trials, and each axis 

input-output closed-loop transfer function is then obtained 

from the pursuit manual tracking data, by using the frequency 

analysis procedure. The two open-loop correspondent transfer 

functions are obtained, for each independent axis, through 

inverse manipulation. 

B. Modeling from independent 1-D tracking input signals, 

and 2-D output collected data 

The second modeling approach uses the same independent 

one-dimensional input tracking target signals, but extends the 

output response to 2-D spatial dimensions. Collected multi-

variable experimental data from the pursuit manual tracking 
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kS

y t  

( )
kC

y t  

cos
k
tω  

 

× 

× 

   ∫  

   ∫  

sin
k
tω  0 ( ) sin( )k k k ky t b tω ϕ≠ = +  

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 7, 2013 239



 

 

experiments is now used for obtaining four transfer functions. 

Hence, the multivariable human-machine matrix representation 

(M), using at this phase the cross-terms, may be re-written as 
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C. Modeling  from 2-D input/output collected data 

Previous work [25] revealed that the human-machine 

behavior may not be fully described with a single LTI model, 

and may also depend on the type of manual tasks involved. 

Hence, it seems more natural to use multi-variable input 

tracking target references, and collected multi-variable output 

responses, for obtaining the matrix representation, as defined 

in (10). Therefore, the resulting state-space model may also 

reflect full axis cross-dependency effects. 

IV. EXPERIMENTAL PROCEDURES 

In all the proposed three methods a same target normalized 

input signal x(t), feasible for a human to track, was generated 

from a sum of N different fixed frequencies. 

The magnitude characteristics and shape of x(t) are 

presented below: 

For the state-space model development fifty pursuit tracking 

time-trials, with T = 120 seconds duration were evaluated for a 

same participant with no history of neurological disease. A 

minimum 5 minute rest (at least) between trials was given to 

avoid human fatigue or memorization. 

The procedure of modeling from independent 1-D 

input/output collected data comprises the execution of two sets 

of twenty five 1-D pursuit manual tracking experiences, which 

are alternatively and independently performed for each axis. 

From the collected data, two amplitude independent open-loop 

nominal models were obtained by inverse manipulation: 
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Fig. 4 input signal for the one-dimensional pursuit manual tracking 

experiments. The period T is 120 seconds, and the input offset 

equals 0.2 
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Fig. 5 time domain target input and response (first 20 seconds) of a 

pursuit manual tracking time-trial (for the Y axis) 
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Fig. 3 input signal magnitude in the frequency domain for the one-

dimensional pursuit manual tracking experiments, based on the N = 

30 frequencies sum, ranging from 0.0083 Hz to 10 Hz 
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Fig. 6 open-loop magnitude Bode of uncertain data for the Y-axis, 

with confidence intervals for two standard deviation 
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The error bars in Fig. 6 and Fig. 7 show the standard 

deviations between the dynamics frequency domain data 

clusters. Magnitude is assumed similar for both the axes, and a 

unique simplified open-loop model, representing the human-

machine behavior was proposed through Matlab simulation. 

Hence, the state-space model will not reflect any axis cross-

dependency: 

 

3 2
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            (11) 

 

The experimental procedure for the second modeling 

approach is now described in detail: two equal sets of twenty-

five 1-D pursuit tracking time-trials, with T=120 seconds 

duration were alternatively evaluated as in the first modeling 

procedure, and with the same participant. 

From the full 2-D collected data, four open-loop nominal 

models can now be obtained from the magnitude Bode plots, 

through inverse manipulation. 
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Fig. 9 open-loop magnitude Bode of uncertain data, representing 

Myx 
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Fig. 10 open-loop magnitude Bode of uncertain data, representing 

Mxx 
 

 

10 
-2 

10 
-1 

10 
0 

10 
1 

-60 

-40 

-20 

0 

20 

40 

Frequency (Hz) 

 
Fig. 8 open-loop magnitude Bode of uncertain data, representing 

Myy 
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Fig. 7 open-loop magnitude Bode of uncertain data for the X-axis, 

with confidence intervals for two standard deviation 
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Fig. 11 open-loop magnitude Bode of uncertain data, representing 

Mxy 
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It can be confirmed that the magnitude behavior of 

xyM and yxM  can be neglected when compared with xxM  

and yyM . 

For the third modeling procedure a set of twenty five 2-D 

pursuit tracking time-trials (with 140 seconds duration each) 

was evaluated. To ensure the X and Y axis responses are 

uncorrelated, the input generated target signals have different 

periods (T1 = 120 seconds and T2 = 140 seconds), and are 

built from a sum of different ( kw ) frequencies. 

 

The resulting magnitude Bode plots are presented in Fig. 13 

and Fig. 14: 

 

The dynamics frequency response data obtained shows that 

the axis cross-dependency is higher than the one obtained from 

the second modeling method, but can still be considered 

negligible at most frequencies, except near the frequency range 

between 1.5Hz and 3Hz. 

 

The open-loop magnitude behavior for yyM  and xxM  is 

almost equal to the previous methods. Hence, the experimental 

results allows us to conclude that a simplified modeling 

procedure, based on the first method, may be used to model 

this human machine interface and applied to design an 

improved closed-loop multivariable control structure. 

V. OPTIMAL CONTROLLER DESIGN 

The manual tracking human-machine interface was applied to 

a 2D double-integrator unstable process (
2

10
( )P s

s
= ), 

implemented on both spatial dimensions (X, Y). In order to 

design an optimal MIMO controller to assist the human 

operator in conducting the pursuit tasks, a Linear Quadratic 

Gaussian (LQG) technique is proposed. This design combines 

an optimal regulator and an optimal estimator, representing a 

tradeoff between tracker performance and control effort, 

regardless any process disturbances and the measurement 

noise. 

 
 
Fig. 15 conceptual block diagram of the closed-loop HMI system to 

be controlled (example: propelling a mass in a zero gravity 

environment) 

 

An optimal LQG controller is formed from a linear-quadratic 

regulator (LQR) and a linear-quadratic estimator (LQE, or a 

Kalman state estimator). With the LQG synthesis, the stability 

of the resulting closed-loop system is achieved. An 
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Fig. 13 open-loop magnitude Bode of uncertain data, representing 

Myy and Myx 
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Fig. 14 open-loop magnitude Bode of uncertain data, representing 

Mxx and Mxy 
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Fig. 12 input magnitude for the Y axis target signal (gray) and the X 

axis target signal (bold), based on the N=30 frequencies sum, 

ranging from 0.0083 Hz to 10 Hz 
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independent design for the regulator and the estimator is 

assured by the separation principle. For the LQ-optimal 

control pursuit tracking tasks, the following criterion was 

considered: 

( )2 2

0

( ) ( ) ( ) dJ u y t u t tρ
∞

= +∫                 (12) 

 

where ρ represents a weighting value to specify the tradeoff 

between control effort and regulation performance, with y 

defined as the output response and u as the input reference. 

For each axis, a controller Co(s) was obtained from an optimal 

LQG regulator with ρ = 1e+12. 

 
4 3 2

5 4 3 2

-1.039e004 - 4.683e004 - 5.478e006 - 7.086e006  - 3.667e004
( )

+ 417.1 + 8.749e004 + 1.137e007 + 9.131e008 + 3.668e010
o

s s s s
C s

s s s s s

=     

(13) 

 

A complete state-space representation of the closed-loop 

controlled HMI system may be written as: 
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The MIMO control system is implemented using a Zero-

Order-Hold discretization method, under a 10 ms sampling 

period. 

VI. RESULTS AND CRITICAL VIEW 

A human-machine state-space linear model obtained from 

the first (simplified) method was successfully applied on the 

design of an improved closed-loop control structure. A real-

time 2-D manual tracking twenty seconds experiment, using an 

analog joystick, was conducted for evaluating operator skill 

under an unstable process P(s). Any proposed pursuit tracking 

operator skill index or task-performance criterion must take 

into account variables such as precision or acuity, and also 

human effort. Hence, for the performance quantification three 

metrics were introduced: to measure acuity, is was proposed 

the mean quadratic Cartesian error (MQE) between the input 

target and the output response, and for measuring the operator 

effort (force and movement) the mean quadratic Cartesian 

deformation (MQD) and the total absolute value of the 

Cartesian movement divided by the experiment duration 

(TMD) were also proposed. 

The experiment used an origin centered irregular octagon 

polygon as moving target. A four second delay was given to 

allow the operator to move the target to the initial position. 

The obtained results confirm that with the proposed controller 

the task performance is enhanced while manual effort is 

considerably reduced, especially at low and medium 

frequencies. 
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Fig. 16 time domain manual tracking response for an octagon 

polygon target reference, without any controller, over a double-

integrator P(s) unstable process 
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Fig. 17 time domain manual tracking response for an octagon 

polygon target reference, with the LQG controller Co(s), over a 

double-integrator P(s) unstable process 
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Fig. 18 acuity and effort for an octagon polygon reference, without 

any controller, over a double-integrator P(s) unstable process 
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The time evolution of the mean quadratic Cartesian error 

MQE (over a two-second window) is presented in Fig. 20, to 

analyze the operator's learning process in becoming skillful. 

From the experimental data it can be concluded that with the 

inclusion of the Co controller the evaluated edge (polygon) 

transition human time responses (at t = 2, 5, 7, 10, 12, 15, 17 

and 20 seconds) are faster, and the human operator takes less 

time and effort to became expert in the pursuit tracking task, 

which validates the simplifying human machine modeling 

strategy used for the controller design. By combining the 

defined metrics, a task-performance Tp index (Appendix) may 

also be proposed, for quantifying the overall proficiency. 

The robustness of the obtained closed-loop human-machine 

control system was also confirmed between 0.037 Hz to 10 Hz 

by the use of a bound for uncertainty model B(s), assuming a 

closed-loop control system diagonal representation. 
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Nevertheless, it should be stated that at frequencies below 

0.037 Hz, the open-loop amplitude experimental data has 

higher dispersion levels. 

VII. CONCLUSION 

This work developed and validated a human machine multi-

variable modeling methodology, based on a diagonal state-

space dynamic approximation, for the HAM design 

philosophy. For that purpose it introduces also a multi-model 

LQG control design strategy to enhance the operator's 

proficiency. This human-machine simplified modeling 

approach takes only into account the amplitude dynamics 

frequency response. 

Skill evaluation Cartesian metrics are also proposed for 

quantifying operator's proficiency in 2-D manually operated 

pursuit tasks. A real-time monitoring human-machine setup 

was developed, implemented and tested, to validate the 

effectiveness of the applied identification and control methods. 

This modeling and control approach has proven to improve 

the overall human skills during manual tracking operations, 

which occur in many human-machine tasks, such as 

navigation, piloting, driving, etc. 

A future promising work direction also covers manual point-

to-point (PTP), path planning, and obstacle avoidance tasks, 

which often take place in operated manufacturing and mobile 

working machines. An evaluation criteria based on a pre-

defined task-performance index, and using Fitts law can then 

be used for quantifying the operator's skill. In other words, the 

task-performance index of users fit to Fitts law [30]–[32] 

improves when skills increase. 

APPENDIX 

The mean quadratic Cartesian error (MQE) is obtained from 

all the discrete input target instant values [ ] 2
X k ∈ℜ , and the 

correspondent outputs [ ] 2Y k ∈ℜ . 
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For a total of N samples, trial duration trialT , and sampling 

rate f.  

The mean quadratic Cartesian deformation (MQD) is 

defined as: 
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Fig. 20 (a) time evolution of the mean quadratic Cartesian error over 

a two-second window. without any controller, and (b) with the 

proposed LQG controller 
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Fig. 19 acuity and effort for an octagon polygon reference, with the 

LQG controller Co(s), over a double-integrator P(s) unstable 

process 
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 With the instant joystick deformation values [ ] 2D k ∈ℜ  

expressed as 

[ ] [ ] [ ]( , )x yD k d k d k=                 (21) 

The total absolute value of the Cartesian movement divided 

by the experiment duration (TMD) is defined as 

[ ] [ ]( ) [ ] [ ]( )( )2 2

2

1 1

1

. y y x x

N

k

d k d k d k d k

TMD
N

f
=

− − + − −

=
−

∑

           (22) 

A generically operator task-performance weight index Tp 

may be defined as 

pT MQE MQD TMDα β ϕ= ⋅ + ⋅ + ⋅     (23) 

with           1α β ϕ+ + =         (24) 

The optimal K gain matrix, for which the feedback law: 

u Kx= −             (25) 

minimizes the quadratic cost criteria J: 

( )
0

( ) 2 dT T TJ u x Qx x Nu u Ru t

∞

= + +∫         (26) 

is computed through solving the resulting Ricatti equation. 
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