
 

 

  

Abstract— The computing model based on data of the interaction 
of progesterone receptor inhibitors with ligand binding domain was 
developed. It allowed estimating inhibition constant for probable 

inhibitors with high accuracy (
2

0.95R = ). This model is based on 
the feed forward back propagation neural network with the 
Levenberg-Marquardt method and the GPU parallel program 
realization was implemented. The last one speeded up in 734 times as 
compared with serial MATLAB realization. The parallel realization 
significantly increased the size of the processed data, while reducing 
time-consuming. 
 
Keywords— Artificial neural networks, molecular docking and 

dynamics, parallel computation with GPU, progesterone receptor.  

I. INTRODUCTION 

AST 20 years the various methods of computer-assisted 
drug discovery including structure-based and de novo drug 

design etc. of pharmacologically promising compounds are 
used in drug development [1]. Their application allows to 
significantly reduce the cost and to accelerate the processes of 
development and implementation. One of important task is the 
correlation research of the internal computer-aided estimations 
with kinetic values obtained in biochemical experiments. One 

of these values is the dissociation constant ( dK ) of the 

protein-ligand complex. It is commonly used to describe the 
affinity of ligand-protein complex, i.e. how tightly the ligand 
binds to the particular protein. In some cases, other values, 
such as the inhibition constant (

iK ) or values half maximal 

inhibitory concentration ( 50IC ) are used. There are two well-

known approaches for binding energy estimation. The first one 
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is based on the famous equation relating the dissociation 
constant and the change in Gibbs free energy: 

ln( )dG RT K∆ = −   

However, the computer-aided estimations of the change of 
Gibbs free energy are very far from the true values. In 
addition, they strongly depend on the way of molecule 
description and selected parameters. Traditional considered 
exact methods of thermodynamic integration are computer-
intensive and have essential restrictions on molecular 
dimensions and degree of chemical diversity [2]. Rather 
reliable is the calculation of value G∆ , but just for closely 
related compounds. The second approach is based on 
development of the scoring functions associated with the 
target. Here we describe the new approach that combines the 
both ones. The affinity of ligand-protein complex is estimated 
based on independent terms calculated from the molecular 
dynamics (MD) simulation of protein-ligand complex, that 
were used as input data to the artificial neural networks. 

A set of progesterone receptor (PR) inhibitors was chosen as 
object of this research. Progesterone receptors are ligand-
activated transcription factors and belong to the family of 
steroid hormone receptors. These proteins are present in most 
human tissues and they control diverse physiological and 
pathological processes such as regulation of proliferation of 
breast and ovarian cells cancer, myometrium activity, central 
nervous system and immune homeostasis etc. 

II. PROBLEM FORMULATION 

The main goal of this research was to develop the scoring 
function of the change of Gibbs free energy based on 
descriptors calculated from ligand structure and energy 
parameters of protein-ligand complex. There were three main 
stages in this work. The first one includes modeling of 
complexes of PR inhibitors with ligand binding domain (LBD) 
PR, MD simulation of these complexes and calculating the 
energy parameters. The second one was selection of the 
artificial neural network (ANN) and its training algorithm, 
development of parallel ANN training algorithm and its 
software implementation using graphics processing unit 
(GPU). The graphical accelerator usage allows for 
significantly reducing the general computation time. At the last 
stage were training, testing, and validation of ANN for 

ipK  

value prediction. 

Prediction of progesterone receptor inhibition 
by high-performance neural network algorithm 

Ilyakay V. Romero Reyes, Irina V. Fedyushkina, Vladlen S. Skvortsov and Dmitry A. Filimonov  

L

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 7, 2013 303



 

 

III. PROBLEM SOLUTION 

A. Docking and molecular dynamics 

A set of ligands with known ipK  values was taken from [3] 

and it consists of 63 compounds.  
The crystal structure of PR LBD/progesterone complex 

(PDB code is 1A28) [4]. The modeling of complexes of PR 
with ligands was performed as follows: 
• The models of ligands were created using SYBYL 8.1 
molecular modeling suite [5]. 
• The optimization of structures was done by short 
minimizations by Powell method with TRIPOS force field. 
The partial atomic charges for the ligand were calculated by 
Gasteiger-Hückel method. 
• Calculating of additional ligand descriptors: molecular 
weight, surface area, molecular volume, polar surface area, 
number of halogens atoms in a molecule was done using 
SYBYL 8.1 molecular modeling suite. 
• The flexible ligands docking to the binding site of PR was 
performed using DOCK 6.5 [6]; the solvent-accessible surface 
of the target for docking was built on the basis of the Connolly 
algorithm with the probe radius 1.4 Å; electrostatic and van 
der Waals potential fields generated over the target were 
performed using the grid (spacing 0.3 Å); the non-bond 
distance cutoff was 12.0 Å, the parameters for van der Waals 
interactions were used from dw_AMBER_parm99.defn set. 
The best docking pose was selected based on scoring function 
of DOCK 6.5.  
•  Optimization of complex structure using Amber 9.0 
program [7] as follows: 1) formation of solvent layer (explicit 
water) with thickness no less than 2 Å in asymmetric 
rectangular box; 2) energy minimization of the system in 
periodically boundary conditions (PBC) up to 500 steps; 
3) heating of the system from 0 K to 300 K. The simulation 
was performed for 10 ps (in a 2 fs time step) with NVT 
ensemble in PBC; 4) density normalization of system at 300 K 
(for 10 ps, in a 2 fs time step, with NTP ensemble); 
5) equilibrating of system at 300 K (for 10 ps, in a 2 fs time 
step, with NTP ensemble) 6) productive MD simulating at 
300 K (for 10 ps, in a 2 fs time step, with NTP ensemble). The 
simulation time on this step is small. But the analysis of 
complexes shows that the equilibration of ligand position and 
closest amino acid residual requests about 2-3 ps. The analysis 
of deep reorganization in protein structure is out the scope of 
this work. 

The productive MD simulation was the basis for calculation 
of the change in virtual binding energy by MM-GBSA method 
[8]. The values of separate components, electrostatic Coulomb 
and wan der Waals interactions, hydrophobic contribution to 
solvation free energy and reaction field energy calculated by 
Poisson–Boltzmann (PB) и Generalized Born methods (GB), 
were averaged over the set of 10 snapshots. 

B. Neural network model 

According to Kolmogorov’s theorem any multivariate 
continuous function can be represented by the superposition of 
a small number of univariate continuous functions [9]. 

Theorem (Kolmogorov, 1957). There exist fixed 
increasing continuous functions ( )ik xϕ  on [0,1]I =  so that 

each continuous function f  on 
nI  can be written in form 

 
2 1

1 2

1 1

( , ,..., ) ( ) ,
n n

n i

k ik

k i

f x x x h xϕ
+

= =

 
=  

 
∑ ∑   

where kh  are properly chosen continuous functions of one 

variable. 
It is clear this function has the structure of the neural 

network with one hidden layer. The Stone-Weierstrass 

Theorem says that every multivariate continuous function can 
be approximated by a polynomial to any desired degree of 
accuracy. It is possible to use the superposition of the addition 
and a continuous linear function of one argument [10] instead 
of polynomial (the superposition of the addition and the 
multiplication). 

There is the statement about the universal approximation 
capabilities of any nonlinearity [10]. It is possible to design the 
system for calculating of any continuous function with any 
desired accuracy using linear operations and the unique 
nonlinear element ϕ . 

Thus neural nets are the universal approximators of 
functions. 

The back-propagation neural network (BPNN) [11] with 
one sigmoid-type hidden layer and linear output layer was used 
during this research. This type of neural networks is very 
popular and is used more than other neural network types for a 
wide variety of tasks [23], [24]. The applied architecture is 
shown in Fig. 1. The BPNN is based on the supervised 
procedure, i.e. the network constructs a model based on 
examples of data with known outputs. Its learning and update 
procedure works as follows: if the network gives the wrong 
answer, the weights are corrected, and the error is lessened so 
future responses of the network are more likely to be correct. 

The number of hidden layers is normally chosen to be only 
one to reduce the network complexity, and increase the 
computational efficiency [12].  

 

 
Fig. 1. Architecture of the proposed neural network. 

 
The ANN input layer is determined from the characteristics 

of the application inputs. There are 11 different properties for 
each compound from input dataset. These properties are 
physical and chemical ligand properties (molecular weight, 
count of halogens, molecular surface, polar molecular surface, 
molecular volume) and energy values of complex (non-bonded 
electrostatic Coulomb and wan der Waals energies, 
hydrophobic contribution to solvation free energy for PB and 
GB calculations, reaction field energy calculated by PB and 
GB). 

The hidden layer automatically extracts [12] the features of 
the input pattern and reduces its dimensionality. It was found 
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that 10 hidden neurons could accomplish the task at the hand 
quite reasonable. The tangent hyperbolic activation function 
was chosen for hidden layer. According to [12] BPNN may, in 
general, learn faster (in terms of the number of training 
iterations required) when the sigmoid activation function is 
nonsymmetric. An activation function ( )ϕ υ  is antisymmetric 

(i.e., odd function of its argument) if  
 ( ) ( )ϕ υ ϕ υ− = −   

as shown in Fig. 2. 
The using function and its fast approximation are given as 

follows: 

 
1 1

1 1 1
1 1 2

2
tanh( ) 1

1

i i

i i i

n n

i i n n n

e e
a n

e e e

−

− −

−
= = ≅ −

+ +
  

where 1ia  is th
i  element of 

1
a  vector containing the outputs 

from hidden neurons, and 1in is th
i  element of 

1
n vector 

containing net-inputs going into the hidden neurons. 
1
n  vector 

is calculated as: 
 

1 10 1
n = W p+b   

where p  is the input pattern, 
1
b  is the vector of bias weighs 

on hidden neurons, and 
10

W  is the weight matrix between 0th  

(i.e. input) layer and 1th  (i.e. hidden) layer. Each row of 
10

W  

contains the synaptic weights of the corresponding hidden 
neuron. 
 

 
Fig. 2. Hyperbolic tangent sigmoid transfer function. 

 
The output layer of the network is designed according to the 

need of the application output. Since the output of ANN is 
expected to produce ipK , the number of output neurons is 

one. 

Since the values of targets will be in the range [ ]5.45,8.82 , 

the pure linear activation function is selected for the outputs 
neurons, and expressed as: 
 

2 2
a = n  

where 
2
a  is the column-vector coming from the second output 

layer, and 
2

n  is the column-vector containing the net inputs 

going into the output layer. 
2

n  is calculated as: 

 
2 21 1 2

n = W a +b  

where 
21

W  is the synaptic weight matrix between the first (i.e. 

hidden) layer and the second (i.e. output) layer, and 
2

b  is the 

column-vector containing the bias inputs of the output 
neurons. Each row of 

21
W  matrix contains the synaptic 

weights for the corresponding output neuron. 
 In a training stage, a set of input-target set is used for 
training and presented to the network many times. After the 
training is stopped, the performance of the network is 
validated. The BPNN learning algorithm involves a forward-
propagating step followed by a backward-propagating step. A 
training set must have enough examples of data to be 
representative for the overall problem. 
 The batch mode of back-propagation learning was used in 
this work. In this method weights updating is performed after 
the presentation of all the training examples that constitute an 
epoch. The epoch means one full cycle of training through all 
training input patterns. For a particular epoch the mean 
squared error (MSE) reproduces here in the composite form: 

 
2

1

1
( ),

2

( ) ( ) ( )

N

mean j

n j

j j j

E e n
N

e n d n y n

=

=

= −

∑∑
  

where the error signal ( )je n  pertains to output neuron j  for 

training example n , N  is a the number of data points in the 

training set. The error ( )je n  equals the difference between j
th 

element of desired response vector ( )nd  and the 

corresponding value of the network output ( )jy n . The inner 

summation with respect to j  is performed over all the neurons 

in the output layer of the network, whereas the outer 
summation with respect on n  is performed over the entire 
training set in the epoch. 
 Typically, for a BPNN to be applied, both training and a 
validation set of data are required. Both of these sets contain 
input and output matrices taken from real data. The first is 
used to train the network, and the second to assess the 
performance of the network after training. In the validation 
stage, the input set is supplied into the network and the desired 
output set is compared with that given by the neural network. 
The agreement or disagreement of these two sets gives an 
indication of the performance of the neural network model. 
 Another decision that has to be taken is the subdivision of 
the data set into different sub-sets which are used for training 
and validation the BPNN. According to [12] the best solution 
is to have separate data set, and to use the first set for training 
and validation the model, and the second independent set for 
testing of the model. 

In our research we used all three sets: training, validation, 
and test sets. 

The Levenberg-Marquardt method [13] was used for 
minimization of 

meanE  during the training. This algorithm is an 

iterative technique that locates the minimum of a multivariate 
function that is expressed as sum of squares of non-linear real-
valued functions [14,15]. It can be associated as a combination 
of steepest descent and the Gauss-Newton method. When the 
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current solution is far from the correct one, the algorithm 
behaves like a steepest descent method. When the current 
solution is close to the correct solution it becomes a Gauss-
Newton method. The extended description of the Levenberg-
Marquardt method is also presented in [16]. 

The similar BPNN structure we used in research work [25]. 

C. Cross-validation methods 

The essence of back-propagation learning is to encode an 
input-output mapping into synaptic weights and thresholds of a 
multilayer perceptron. The hope is that the network becomes 
well trained so that it trains enough about the past to generalize 
to the future. From such a perspective the learning process 
amounts to a choice of network selection problem as choosing, 
within a set of candidate model structures, the best one 
according to a certain criterion. In this context, a standard tool 
in statistics known as cross-validation provides an appealing 
guiding principle.  

K -fold cross-validation is one way to improve over the 
holdout method. The dataset is divided into k  subsets, and the 
holdout method is repeated k  times. Each time, one of the k  
subsets is used as the test set and the other 1k −  subsets are 
put together to form a training set. Then the average error 
across all k  trials is computed. The advantage of this method 
is that it matters less how the data gets divided. Every data 
point gets to be in a test set exactly once, and gets to be in a 
training set 1k −  times. The variance of the resulting estimate 
is reduced as k  is increased. The disadvantage of this method 

is that the training algorithm has to be rerun from scratch k  
times, which means it takes k  times as much computation to 
make an evaluation.  
Leave-one-out cross validation is K -fold cross validation 

taken to its logical extreme, with K  equal to M , the number 
of data points in the set. That means that M separate times, the 
function approximator is trained on all the data except for one 
point and a prediction is made for that point. As before the 
average error is computed and used to evaluate the model. The 
evaluation given by leave-one-out cross-validation (LOO-CV) 
error is good, but at first pass it seems very expensive to 
compute. Fortunately, locally weighted learners can make 
LOO predictions just as easily as they make regular 
predictions. That means computing the LOO-CV error takes 
no more time than computing the residual error and it is a 
much better way to evaluate models. 

In our research the following method was used. After 
successful ANN training we divided the whole set randomly 
and independently to train, validation and test sets 100 times. 
The train set contained 70%  of whole set, validation and test 
sets were for 15% . Every time ANN was trained and tested 
with these sets. Values of MSE were estimated. In this case the 
cross-validation error 

testCV  for training set type can be 

calculated as follows: 

 
1/ 2

1

1
,

N
test

test k

k

CV MSE
N =

 
=  

 
∑   

where 100N = . This method is a variant of K -fold cross-
validation with independent random data dividing into train, 

validation and test sets K  different times. The advantage of 
doing this is that we can independently choose how many trials 
we average over. 

D. Parallel algorithm 

The runtime for parallel computing systems depends on 
internal structure of the used algorithm. Also it depends on the 
order of operations execution. It is possible to accelerate 
algorithm realizations using large number of processors which 
can execute algorithm operations in parallel mode. Just the 
mutually independent operations can be performed at any 
computing machinery. This means, the result of any of the 
simultaneously performed operations must not be the argument 
of any of them and affect by indirect way on their arguments. 
Considering the implementation of the algorithm in time, its 
operations are divided into the groups at any serial or parallel 
computing system. All operations of each group are mutually 
independent and simultaneously performed and the groups are 
serially performed. Thus there is a special form of algorithm 
presentation, which is called parallel form of the algorithm 
[14], where groups of operations and their sequence are fixed. 

For parallel algorithm it is has to know a set of operations, 
which can be performed independently. Let’s consider the 
operations of serial algorithm as graph vertexes. The partial 
sequence is defined on the set of vertexes and operations. It 
shows which operations can be performed after others ones 
and allows to define graph arcs. If the operation corresponding 
to B  vertex uses the result of operation corresponding to A  
vertex as one of its arguments, there is an arc from A  vertex 
to B  vertex. In other case there is no arc between these 
vertexes. A direct acyclic graph is obtained by following this 
rule for all vertex pair. This graph is known as a graph of the 
algorithm. 

 

 
Fig. 3. The graph of the proposed neural network. 

 
The graph of algorithm for the proposed ANN is shown in 

Fig. 3. The input layer is selected as the first floor, which is the 
group of mutually independent operations. The second floor is 
the hidden layer. Thus the parallel form for the graph of the 
algorithm for ANN is constructed. 
Claim [17]. There is a fixed rounding procedure, where the 

round-off error depends only on the input operations. Suppose 
the algorithms performing one and the same set of arithmetic 
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operations. In order that influence of round-off errors for the 
same input data of the algorithms to be the same, the 
isomorphism for graphs of algorithms is sufficient and 
necessary. 

According to this claim the parallel form for the algorithm 
saves the round-off error while performing mathematically 
equivalence conversions.  

E. Serial program realization 

The mathematical program package MATLAB 2011b was 
used for ANN simulation. The dataset is the sample of 
descriptors calculated from ligand structure and energy 
parameters of protein-ligand complex for 63 PR inhibitors. 
The input is a set of 11 values and output has one value of 

ipK . The linear regression model gives 2 0.38R = , indicating 

the bad predictive power for linear model. As mentioned 
above it is possible to define the nonlinear dependence in an 
implicit form using neural networks. 

 

 
Fig. 4. Comparison of target and ANN output values of 

ipK  for 

training set. 
 

 
Fig. 5. Comparison of target and ANN output values of ipK  for 

validation set.  

 
Fig. 6. Comparison of target and ANN output values of 

ipK  for test 

set. 

 
The dataset was divided into training (45 events), validation 

(9 events) and test (9 events) sets. Fig. 4 shows the correlation 

of ANN outputs and target values with 2 0.95R =  for training 

set. Fig. 5 shows 2 0.98R =  for validation set, and Fig. 6 

illustrates 2 0.96R =  for test set. The error histogram for all 
mentioned sets is shown in Fig. 7. The root-mean-squared-
error (RMSE) for test set is 0.15. 

The LOO-CV procedure was used. The dependence target 
and ANN output values of 

ipK  is shown at Fig. 8. RMSE for 

all 63 points equals 0.17 . 

According to the used validation method mentioned above 
frequency of occurrence for MSE was calculated for 100 times 
of set dividing. Fig. 9 shows its cumulative distribution 
function. 

Cross-validation error for test sets is 0.2testCV = . The using 

validation method allows estimating RMSE median value as 

1/ 2RMSE 0.14= , and that RMSE is less than 0.34 with 

probability 0.9. 

 
Fig. 7. Error histogram of target and ANN output values of 

ipK  for 

training set, validation and training sets. 
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Fig. 8. Comparison of target and ANN output values of 

ipK  for 

Leave-One-Out cross-validation. 
 

 
Fig. 9. Cumulative distribution function of test set RMSE. 

 

F. Parallel program realization 

The Compute Unified Device Architecture (CUDA) allows 
developers to use the C programming language for the 
development of general-purpose applications using fine-grain 
parallelism. CUDA is currently supported only on NVIDIA 
GPUs. A simple extension to C had invoked that more non-
graphics developers port their existing applications to CUDA. 
CUDA consists of a runtime library, advanced libraries, tools, 
and an expanded version of C. CUDA gives developers access 
to the native instruction set and memory of the parallel 
computational elements in CUDA GPUs. It includes the 
CUDA Instruction Set Architecture and the parallel compute 
engine in the GPU. 

The MATLAB serial realization was rewritten on C++ and 
the parallel algorithm was implemented using NVIDIA 
graphical processor unit and its CUDA 4.2 technology [18]. 
One of successful GPU using is presented in [26]. 

The calculations were performed using hybrid computing 
system based on HP Proliant G7 server platform (AMD 
Opteron 6100 processor) with TESLA S2050 “Fermi” GPU 
computing system. Fig. 10 shows a simplified hardware block 
diagram for the NVIDIA “Fermi” GPU architecture. Fermi 
contains up to 512 general purpose arithmetic units known as 
“streaming processors” (SP) and 64 “special function units” 
(SFU) for computing special transcendental and algebraic 
functions not provided by the SPs. Memory load/store units 
(LDST), texture units (TEX), fast on-chip data caches, and a 
high-bandwidth main memory system provide the GPU with 
sufficient operand bandwidth to keep the arithmetic units 
productive. Groups of 32 SPs, 16 LDSTs, 4 SFUs, and 4 
TEXs compose a “streaming multiprocessor” (SM). One or 
more CUDA “thread blocks” execute concurrently on each 
SM, with each block containing 64–512 threads.  

Three major classifications of computational kernels were 
identified: matrix operations, random number generation and 
sigmoid transfer function. These three kernels were generated 
and tested individually and then integrated at a final stage. 

For matrix operations the CUBLAS Library [19] was used. 
It is an implementation of BLAS (Basic Linear Algebra 
Subprograms) on top of the NVIDIA CUDA runtime. It allows 
to access the computational resources of NVIDIA Graphics 
Processing Unit. To use the CUBLAS library, the application 
must allocate the required matrices and vectors in the GPU 
memory space, fill them with data, call the sequence of desired 
CUBLAS functions, and then upload the results from the GPU 
memory space back to the host. The CUBLAS library also 
provides helper functions for writing and retrieving data from 
the GPU. 

Random number generation was used during ANN training 
and cross-validation. The CURAND Library [20] was taken 
for it. It provides facilities that focus on the simple and 
efficient generation of high-quality pseudorandom and 
quasirandom numbers. A pseudorandom sequence of numbers 
satisfies most of the statistical properties of a truly random 
sequence but is generated by a deterministic algorithm. A 
quasirandom sequence of n-dimensional points is generated by 
a deterministic algorithm designed to fill an n-dimensional 
space evenly. CURAND consists of two pieces: a library on 
the host (CPU) side and a device (GPU) header file. The 
second piece of it was used. This file defines device functions 
for setting up random number generator states and generating 
sequences of random numbers. 

In our ANN the approximation of tangent hyperbolic 
activation function was used, which includes exponential 
function. According to Appendix C.2 from the CUDA 
Programming Guide [21], intrinsic functions (i.e. used in the 
kernel __expf(-x) )are known to be the less accurate, but faster 
versions of the non-underscored calls. This most probably 
implies that all SPs will be capable of doing the calculation. 
This accuracy loss is certainly acceptable trade to gain more 
performance. 
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Fig. 10. A simplified hardware block diagram for the NVIDIA 

“Fermi” GPU architecture [22]. 

 
The separate module was developed for cross-validation 

methods. LOO-CV can be executed in parallel because for 
every event deletion the method is independent. Another 
method based on K -fold cross-validation was also 
parallelized for every random dividing. 

The use of these integrations allowed achieving the 
maximum efficiency. Results of parallel and serial calculations 
gave the similar values and general speed-up was 734 as 
compared with serial MATLAB realization. 

IV. CONCLUSION 

The feed forward back propagation neural network for 
estimation of inhibition constant 

ipK  for probable PR 

inhibitors was projected and showed good predictive ability. 

For training set the correlation coefficient was 2 0.94R =  and 
mean-square-error was 0.02. Various types of cross-validation 
methods showed the stability of used ANN. This neural 
network model should be used for affinity estimation with high 
accuracy. Additionally, this research showed that CUDA 
implementations can be well suited for neural network 
applications. The GPU parallel program realization was 
implemented based on serial MATLAB realization. The speed-
up of it was 734. The use of graphical processor units with 
corresponding software implementation will significantly 
increase the size of the processed data, while reducing time-
consuming.  
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