

Abstract— The computing model based on data of the interaction
of progesterone receptor inhibitors with ligand binding domain was
developed. It allowed estimating inhibition constant for probable

inhibitors with high accuracy (
2

0.95R =). This model is based on
the feed forward back propagation neural network with the
Levenberg-Marquardt method and the GPU parallel program
realization was implemented. The last one speeded up in 734 times as
compared with serial MATLAB realization. The parallel realization
significantly increased the size of the processed data, while reducing
time-consuming.

Keywords— Artificial neural networks, molecular docking and

dynamics, parallel computation with GPU, progesterone receptor.

I. INTRODUCTION

AST 20 years the various methods of computer-assisted
drug discovery including structure-based and de novo drug

design etc. of pharmacologically promising compounds are
used in drug development [1]. Their application allows to
significantly reduce the cost and to accelerate the processes of
development and implementation. One of important task is the
correlation research of the internal computer-aided estimations
with kinetic values obtained in biochemical experiments. One

of these values is the dissociation constant (dK) of the

protein-ligand complex. It is commonly used to describe the
affinity of ligand-protein complex, i.e. how tightly the ligand
binds to the particular protein. In some cases, other values,
such as the inhibition constant (

iK) or values half maximal

inhibitory concentration (50IC) are used. There are two well-

known approaches for binding energy estimation. The first one

I. V. Romero Reyes is with the Institute of Biomedical Chemistry of

Russian Academy of Medical Sciences, 10, Pogodinskaya Street, Moscow,
119121, Russia (corresponding author to provide phone: +7-495-245-07-68;
e-mail: ilacai@ ibmc.msk.ru)

I. V. Fedyushkina is with the Institute of Biomedical Chemistry of Russian
Academy of Medical Sciences, 10, Pogodinskaya Street, Moscow, 119121,
Russia (corresponding author to provide phone: +7-495-245-07-68; e-mail:
ivf@ ibmh.msk.su).

V. S. Skvortsov is with the Institute of Biomedical Chemistry of Russian
Academy of Medical Sciences, 10, Pogodinskaya Street, Moscow, 119121,
Russia (corresponding author to provide phone: +7-495-245-07-68; e-mail:
vladlen@ ibmh.msk.su).

D. A. Filimonov is with the Institute of Biomedical Chemistry of Russian
Academy of Medical Sciences, 10, Pogodinskaya Street, Moscow, 119121,
Russia (corresponding author to provide phone: +7-495-255-30-29; e-mail:
dmitry.filimonov@ ibmc.msk.ru).

is based on the famous equation relating the dissociation
constant and the change in Gibbs free energy:

ln()dG RT K∆ = −

However, the computer-aided estimations of the change of
Gibbs free energy are very far from the true values. In
addition, they strongly depend on the way of molecule
description and selected parameters. Traditional considered
exact methods of thermodynamic integration are computer-
intensive and have essential restrictions on molecular
dimensions and degree of chemical diversity [2]. Rather
reliable is the calculation of value G∆ , but just for closely
related compounds. The second approach is based on
development of the scoring functions associated with the
target. Here we describe the new approach that combines the
both ones. The affinity of ligand-protein complex is estimated
based on independent terms calculated from the molecular
dynamics (MD) simulation of protein-ligand complex, that
were used as input data to the artificial neural networks.

A set of progesterone receptor (PR) inhibitors was chosen as
object of this research. Progesterone receptors are ligand-
activated transcription factors and belong to the family of
steroid hormone receptors. These proteins are present in most
human tissues and they control diverse physiological and
pathological processes such as regulation of proliferation of
breast and ovarian cells cancer, myometrium activity, central
nervous system and immune homeostasis etc.

II. PROBLEM FORMULATION

The main goal of this research was to develop the scoring
function of the change of Gibbs free energy based on
descriptors calculated from ligand structure and energy
parameters of protein-ligand complex. There were three main
stages in this work. The first one includes modeling of
complexes of PR inhibitors with ligand binding domain (LBD)
PR, MD simulation of these complexes and calculating the
energy parameters. The second one was selection of the
artificial neural network (ANN) and its training algorithm,
development of parallel ANN training algorithm and its
software implementation using graphics processing unit
(GPU). The graphical accelerator usage allows for
significantly reducing the general computation time. At the last
stage were training, testing, and validation of ANN for

ipK

value prediction.

Prediction of progesterone receptor inhibition
by high-performance neural network algorithm

Ilyakay V. Romero Reyes, Irina V. Fedyushkina, Vladlen S. Skvortsov and Dmitry A. Filimonov

L

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 7, 2013 303

III. PROBLEM SOLUTION

A. Docking and molecular dynamics

A set of ligands with known ipK values was taken from [3]

and it consists of 63 compounds.
The crystal structure of PR LBD/progesterone complex

(PDB code is 1A28) [4]. The modeling of complexes of PR
with ligands was performed as follows:
• The models of ligands were created using SYBYL 8.1
molecular modeling suite [5].
• The optimization of structures was done by short
minimizations by Powell method with TRIPOS force field.
The partial atomic charges for the ligand were calculated by
Gasteiger-Hückel method.
• Calculating of additional ligand descriptors: molecular
weight, surface area, molecular volume, polar surface area,
number of halogens atoms in a molecule was done using
SYBYL 8.1 molecular modeling suite.
• The flexible ligands docking to the binding site of PR was
performed using DOCK 6.5 [6]; the solvent-accessible surface
of the target for docking was built on the basis of the Connolly
algorithm with the probe radius 1.4 Å; electrostatic and van
der Waals potential fields generated over the target were
performed using the grid (spacing 0.3 Å); the non-bond
distance cutoff was 12.0 Å, the parameters for van der Waals
interactions were used from dw_AMBER_parm99.defn set.
The best docking pose was selected based on scoring function
of DOCK 6.5.
• Optimization of complex structure using Amber 9.0
program [7] as follows: 1) formation of solvent layer (explicit
water) with thickness no less than 2 Å in asymmetric
rectangular box; 2) energy minimization of the system in
periodically boundary conditions (PBC) up to 500 steps;
3) heating of the system from 0 K to 300 K. The simulation
was performed for 10 ps (in a 2 fs time step) with NVT
ensemble in PBC; 4) density normalization of system at 300 K
(for 10 ps, in a 2 fs time step, with NTP ensemble);
5) equilibrating of system at 300 K (for 10 ps, in a 2 fs time
step, with NTP ensemble) 6) productive MD simulating at
300 K (for 10 ps, in a 2 fs time step, with NTP ensemble). The
simulation time on this step is small. But the analysis of
complexes shows that the equilibration of ligand position and
closest amino acid residual requests about 2-3 ps. The analysis
of deep reorganization in protein structure is out the scope of
this work.

The productive MD simulation was the basis for calculation
of the change in virtual binding energy by MM-GBSA method
[8]. The values of separate components, electrostatic Coulomb
and wan der Waals interactions, hydrophobic contribution to
solvation free energy and reaction field energy calculated by
Poisson–Boltzmann (PB) и Generalized Born methods (GB),
were averaged over the set of 10 snapshots.

B. Neural network model

According to Kolmogorov’s theorem any multivariate
continuous function can be represented by the superposition of
a small number of univariate continuous functions [9].

Theorem (Kolmogorov, 1957). There exist fixed
increasing continuous functions ()ik xϕ on [0,1]I = so that

each continuous function f on
nI can be written in form

2 1

1 2

1 1

(, ,...,) () ,
n n

n i

k ik

k i

f x x x h xϕ
+

= =

=

∑ ∑

where kh are properly chosen continuous functions of one

variable.
It is clear this function has the structure of the neural

network with one hidden layer. The Stone-Weierstrass

Theorem says that every multivariate continuous function can
be approximated by a polynomial to any desired degree of
accuracy. It is possible to use the superposition of the addition
and a continuous linear function of one argument [10] instead
of polynomial (the superposition of the addition and the
multiplication).

There is the statement about the universal approximation
capabilities of any nonlinearity [10]. It is possible to design the
system for calculating of any continuous function with any
desired accuracy using linear operations and the unique
nonlinear element ϕ .

Thus neural nets are the universal approximators of
functions.

The back-propagation neural network (BPNN) [11] with
one sigmoid-type hidden layer and linear output layer was used
during this research. This type of neural networks is very
popular and is used more than other neural network types for a
wide variety of tasks [23], [24]. The applied architecture is
shown in Fig. 1. The BPNN is based on the supervised
procedure, i.e. the network constructs a model based on
examples of data with known outputs. Its learning and update
procedure works as follows: if the network gives the wrong
answer, the weights are corrected, and the error is lessened so
future responses of the network are more likely to be correct.

The number of hidden layers is normally chosen to be only
one to reduce the network complexity, and increase the
computational efficiency [12].

Fig. 1. Architecture of the proposed neural network.

The ANN input layer is determined from the characteristics

of the application inputs. There are 11 different properties for
each compound from input dataset. These properties are
physical and chemical ligand properties (molecular weight,
count of halogens, molecular surface, polar molecular surface,
molecular volume) and energy values of complex (non-bonded
electrostatic Coulomb and wan der Waals energies,
hydrophobic contribution to solvation free energy for PB and
GB calculations, reaction field energy calculated by PB and
GB).

The hidden layer automatically extracts [12] the features of
the input pattern and reduces its dimensionality. It was found

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 7, 2013 304

that 10 hidden neurons could accomplish the task at the hand
quite reasonable. The tangent hyperbolic activation function
was chosen for hidden layer. According to [12] BPNN may, in
general, learn faster (in terms of the number of training
iterations required) when the sigmoid activation function is
nonsymmetric. An activation function ()ϕ υ is antisymmetric

(i.e., odd function of its argument) if
 () ()ϕ υ ϕ υ− = −

as shown in Fig. 2.
The using function and its fast approximation are given as

follows:

1 1

1 1 1
1 1 2

2
tanh() 1

1

i i

i i i

n n

i i n n n

e e
a n

e e e

−

− −

−
= = ≅ −

+ +

where 1ia is th
i element of

1
a vector containing the outputs

from hidden neurons, and 1in is th
i element of

1
n vector

containing net-inputs going into the hidden neurons.
1
n vector

is calculated as:

1 10 1
n = W p+b

where p is the input pattern,
1
b is the vector of bias weighs

on hidden neurons, and
10

W is the weight matrix between 0th

(i.e. input) layer and 1th (i.e. hidden) layer. Each row of
10

W

contains the synaptic weights of the corresponding hidden
neuron.

Fig. 2. Hyperbolic tangent sigmoid transfer function.

The output layer of the network is designed according to the

need of the application output. Since the output of ANN is
expected to produce ipK , the number of output neurons is

one.

Since the values of targets will be in the range []5.45,8.82 ,

the pure linear activation function is selected for the outputs
neurons, and expressed as:

2 2
a = n

where
2
a is the column-vector coming from the second output

layer, and
2

n is the column-vector containing the net inputs

going into the output layer.
2

n is calculated as:

2 21 1 2

n = W a +b

where
21

W is the synaptic weight matrix between the first (i.e.

hidden) layer and the second (i.e. output) layer, and
2

b is the

column-vector containing the bias inputs of the output
neurons. Each row of

21
W matrix contains the synaptic

weights for the corresponding output neuron.
 In a training stage, a set of input-target set is used for
training and presented to the network many times. After the
training is stopped, the performance of the network is
validated. The BPNN learning algorithm involves a forward-
propagating step followed by a backward-propagating step. A
training set must have enough examples of data to be
representative for the overall problem.
 The batch mode of back-propagation learning was used in
this work. In this method weights updating is performed after
the presentation of all the training examples that constitute an
epoch. The epoch means one full cycle of training through all
training input patterns. For a particular epoch the mean
squared error (MSE) reproduces here in the composite form:

2

1

1
(),

2

() () ()

N

mean j

n j

j j j

E e n
N

e n d n y n

=

=

= −

∑∑

where the error signal ()je n pertains to output neuron j for

training example n , N is a the number of data points in the

training set. The error ()je n equals the difference between j
th

element of desired response vector ()nd and the

corresponding value of the network output ()jy n . The inner

summation with respect to j is performed over all the neurons

in the output layer of the network, whereas the outer
summation with respect on n is performed over the entire
training set in the epoch.
 Typically, for a BPNN to be applied, both training and a
validation set of data are required. Both of these sets contain
input and output matrices taken from real data. The first is
used to train the network, and the second to assess the
performance of the network after training. In the validation
stage, the input set is supplied into the network and the desired
output set is compared with that given by the neural network.
The agreement or disagreement of these two sets gives an
indication of the performance of the neural network model.
 Another decision that has to be taken is the subdivision of
the data set into different sub-sets which are used for training
and validation the BPNN. According to [12] the best solution
is to have separate data set, and to use the first set for training
and validation the model, and the second independent set for
testing of the model.

In our research we used all three sets: training, validation,
and test sets.

The Levenberg-Marquardt method [13] was used for
minimization of

meanE during the training. This algorithm is an

iterative technique that locates the minimum of a multivariate
function that is expressed as sum of squares of non-linear real-
valued functions [14,15]. It can be associated as a combination
of steepest descent and the Gauss-Newton method. When the

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 7, 2013 305

current solution is far from the correct one, the algorithm
behaves like a steepest descent method. When the current
solution is close to the correct solution it becomes a Gauss-
Newton method. The extended description of the Levenberg-
Marquardt method is also presented in [16].

The similar BPNN structure we used in research work [25].

C. Cross-validation methods

The essence of back-propagation learning is to encode an
input-output mapping into synaptic weights and thresholds of a
multilayer perceptron. The hope is that the network becomes
well trained so that it trains enough about the past to generalize
to the future. From such a perspective the learning process
amounts to a choice of network selection problem as choosing,
within a set of candidate model structures, the best one
according to a certain criterion. In this context, a standard tool
in statistics known as cross-validation provides an appealing
guiding principle.

K -fold cross-validation is one way to improve over the
holdout method. The dataset is divided into k subsets, and the
holdout method is repeated k times. Each time, one of the k
subsets is used as the test set and the other 1k − subsets are
put together to form a training set. Then the average error
across all k trials is computed. The advantage of this method
is that it matters less how the data gets divided. Every data
point gets to be in a test set exactly once, and gets to be in a
training set 1k − times. The variance of the resulting estimate
is reduced as k is increased. The disadvantage of this method

is that the training algorithm has to be rerun from scratch k
times, which means it takes k times as much computation to
make an evaluation.
Leave-one-out cross validation is K -fold cross validation

taken to its logical extreme, with K equal to M , the number
of data points in the set. That means that M separate times, the
function approximator is trained on all the data except for one
point and a prediction is made for that point. As before the
average error is computed and used to evaluate the model. The
evaluation given by leave-one-out cross-validation (LOO-CV)
error is good, but at first pass it seems very expensive to
compute. Fortunately, locally weighted learners can make
LOO predictions just as easily as they make regular
predictions. That means computing the LOO-CV error takes
no more time than computing the residual error and it is a
much better way to evaluate models.

In our research the following method was used. After
successful ANN training we divided the whole set randomly
and independently to train, validation and test sets 100 times.
The train set contained 70% of whole set, validation and test
sets were for 15% . Every time ANN was trained and tested
with these sets. Values of MSE were estimated. In this case the
cross-validation error

testCV for training set type can be

calculated as follows:

1/ 2

1

1
,

N
test

test k

k

CV MSE
N =

=

∑

where 100N = . This method is a variant of K -fold cross-
validation with independent random data dividing into train,

validation and test sets K different times. The advantage of
doing this is that we can independently choose how many trials
we average over.

D. Parallel algorithm

The runtime for parallel computing systems depends on
internal structure of the used algorithm. Also it depends on the
order of operations execution. It is possible to accelerate
algorithm realizations using large number of processors which
can execute algorithm operations in parallel mode. Just the
mutually independent operations can be performed at any
computing machinery. This means, the result of any of the
simultaneously performed operations must not be the argument
of any of them and affect by indirect way on their arguments.
Considering the implementation of the algorithm in time, its
operations are divided into the groups at any serial or parallel
computing system. All operations of each group are mutually
independent and simultaneously performed and the groups are
serially performed. Thus there is a special form of algorithm
presentation, which is called parallel form of the algorithm
[14], where groups of operations and their sequence are fixed.

For parallel algorithm it is has to know a set of operations,
which can be performed independently. Let’s consider the
operations of serial algorithm as graph vertexes. The partial
sequence is defined on the set of vertexes and operations. It
shows which operations can be performed after others ones
and allows to define graph arcs. If the operation corresponding
to B vertex uses the result of operation corresponding to A
vertex as one of its arguments, there is an arc from A vertex
to B vertex. In other case there is no arc between these
vertexes. A direct acyclic graph is obtained by following this
rule for all vertex pair. This graph is known as a graph of the
algorithm.

Fig. 3. The graph of the proposed neural network.

The graph of algorithm for the proposed ANN is shown in

Fig. 3. The input layer is selected as the first floor, which is the
group of mutually independent operations. The second floor is
the hidden layer. Thus the parallel form for the graph of the
algorithm for ANN is constructed.
Claim [17]. There is a fixed rounding procedure, where the

round-off error depends only on the input operations. Suppose
the algorithms performing one and the same set of arithmetic

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 7, 2013 306

operations. In order that influence of round-off errors for the
same input data of the algorithms to be the same, the
isomorphism for graphs of algorithms is sufficient and
necessary.

According to this claim the parallel form for the algorithm
saves the round-off error while performing mathematically
equivalence conversions.

E. Serial program realization

The mathematical program package MATLAB 2011b was
used for ANN simulation. The dataset is the sample of
descriptors calculated from ligand structure and energy
parameters of protein-ligand complex for 63 PR inhibitors.
The input is a set of 11 values and output has one value of

ipK . The linear regression model gives 2 0.38R = , indicating

the bad predictive power for linear model. As mentioned
above it is possible to define the nonlinear dependence in an
implicit form using neural networks.

Fig. 4. Comparison of target and ANN output values of

ipK for

training set.

Fig. 5. Comparison of target and ANN output values of ipK for

validation set.

Fig. 6. Comparison of target and ANN output values of

ipK for test

set.

The dataset was divided into training (45 events), validation

(9 events) and test (9 events) sets. Fig. 4 shows the correlation

of ANN outputs and target values with 2 0.95R = for training

set. Fig. 5 shows 2 0.98R = for validation set, and Fig. 6

illustrates 2 0.96R = for test set. The error histogram for all
mentioned sets is shown in Fig. 7. The root-mean-squared-
error (RMSE) for test set is 0.15.

The LOO-CV procedure was used. The dependence target
and ANN output values of

ipK is shown at Fig. 8. RMSE for

all 63 points equals 0.17 .

According to the used validation method mentioned above
frequency of occurrence for MSE was calculated for 100 times
of set dividing. Fig. 9 shows its cumulative distribution
function.

Cross-validation error for test sets is 0.2testCV = . The using

validation method allows estimating RMSE median value as

1/ 2RMSE 0.14= , and that RMSE is less than 0.34 with

probability 0.9.

Fig. 7. Error histogram of target and ANN output values of

ipK for

training set, validation and training sets.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 7, 2013 307

Fig. 8. Comparison of target and ANN output values of

ipK for

Leave-One-Out cross-validation.

Fig. 9. Cumulative distribution function of test set RMSE.

F. Parallel program realization

The Compute Unified Device Architecture (CUDA) allows
developers to use the C programming language for the
development of general-purpose applications using fine-grain
parallelism. CUDA is currently supported only on NVIDIA
GPUs. A simple extension to C had invoked that more non-
graphics developers port their existing applications to CUDA.
CUDA consists of a runtime library, advanced libraries, tools,
and an expanded version of C. CUDA gives developers access
to the native instruction set and memory of the parallel
computational elements in CUDA GPUs. It includes the
CUDA Instruction Set Architecture and the parallel compute
engine in the GPU.

The MATLAB serial realization was rewritten on C++ and
the parallel algorithm was implemented using NVIDIA
graphical processor unit and its CUDA 4.2 technology [18].
One of successful GPU using is presented in [26].

The calculations were performed using hybrid computing
system based on HP Proliant G7 server platform (AMD
Opteron 6100 processor) with TESLA S2050 “Fermi” GPU
computing system. Fig. 10 shows a simplified hardware block
diagram for the NVIDIA “Fermi” GPU architecture. Fermi
contains up to 512 general purpose arithmetic units known as
“streaming processors” (SP) and 64 “special function units”
(SFU) for computing special transcendental and algebraic
functions not provided by the SPs. Memory load/store units
(LDST), texture units (TEX), fast on-chip data caches, and a
high-bandwidth main memory system provide the GPU with
sufficient operand bandwidth to keep the arithmetic units
productive. Groups of 32 SPs, 16 LDSTs, 4 SFUs, and 4
TEXs compose a “streaming multiprocessor” (SM). One or
more CUDA “thread blocks” execute concurrently on each
SM, with each block containing 64–512 threads.

Three major classifications of computational kernels were
identified: matrix operations, random number generation and
sigmoid transfer function. These three kernels were generated
and tested individually and then integrated at a final stage.

For matrix operations the CUBLAS Library [19] was used.
It is an implementation of BLAS (Basic Linear Algebra
Subprograms) on top of the NVIDIA CUDA runtime. It allows
to access the computational resources of NVIDIA Graphics
Processing Unit. To use the CUBLAS library, the application
must allocate the required matrices and vectors in the GPU
memory space, fill them with data, call the sequence of desired
CUBLAS functions, and then upload the results from the GPU
memory space back to the host. The CUBLAS library also
provides helper functions for writing and retrieving data from
the GPU.

Random number generation was used during ANN training
and cross-validation. The CURAND Library [20] was taken
for it. It provides facilities that focus on the simple and
efficient generation of high-quality pseudorandom and
quasirandom numbers. A pseudorandom sequence of numbers
satisfies most of the statistical properties of a truly random
sequence but is generated by a deterministic algorithm. A
quasirandom sequence of n-dimensional points is generated by
a deterministic algorithm designed to fill an n-dimensional
space evenly. CURAND consists of two pieces: a library on
the host (CPU) side and a device (GPU) header file. The
second piece of it was used. This file defines device functions
for setting up random number generator states and generating
sequences of random numbers.

In our ANN the approximation of tangent hyperbolic
activation function was used, which includes exponential
function. According to Appendix C.2 from the CUDA
Programming Guide [21], intrinsic functions (i.e. used in the
kernel __expf(-x))are known to be the less accurate, but faster
versions of the non-underscored calls. This most probably
implies that all SPs will be capable of doing the calculation.
This accuracy loss is certainly acceptable trade to gain more
performance.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 7, 2013 308

Fig. 10. A simplified hardware block diagram for the NVIDIA

“Fermi” GPU architecture [22].

The separate module was developed for cross-validation

methods. LOO-CV can be executed in parallel because for
every event deletion the method is independent. Another
method based on K -fold cross-validation was also
parallelized for every random dividing.

The use of these integrations allowed achieving the
maximum efficiency. Results of parallel and serial calculations
gave the similar values and general speed-up was 734 as
compared with serial MATLAB realization.

IV. CONCLUSION

The feed forward back propagation neural network for
estimation of inhibition constant

ipK for probable PR

inhibitors was projected and showed good predictive ability.

For training set the correlation coefficient was 2 0.94R = and
mean-square-error was 0.02. Various types of cross-validation
methods showed the stability of used ANN. This neural
network model should be used for affinity estimation with high
accuracy. Additionally, this research showed that CUDA
implementations can be well suited for neural network
applications. The GPU parallel program realization was
implemented based on serial MATLAB realization. The speed-
up of it was 734. The use of graphical processor units with
corresponding software implementation will significantly
increase the size of the processed data, while reducing time-
consuming.

ACKNOWLEDGMENT

The work was partially supported by the Russian Ministry
of Education and Science (Grant No. 2012-1.1-12-000-2008-
069, Agreement No.8274).

REFERENCES

[1] A. S. Ivanov, A. V. Veselovsky, A. V. Dubanov, V. S. Skvortsov,
“Bioinformatics Platform Development: From Gene to Lead
Compound”, Methods Mol Biol. Vol.316, 2006, pp. 389-431.

[2] M. Lawrenz, J. Wereszczynski, J.-M. Ortiz-Sánchez, S. E. Nichols,
J. A. McCammon, “Thermodynamic integration to predict host-guest

binding affinities”, Journal of Computer-Aided Molecular Design,
Vol.26, No.5, 2012, pp. 569-576.

[3] Söderholm AA, Lehtovuori PT, Nyrönen TH. Docking and three-
dimensional quantitative structure-activity relationship (3D QSAR)
analyses of nonsteroidal progesterone receptor ligands. J. Med. Chem.
Vol. 49 (14), 2006, pp.4261-4268.

[4] Williams Sh. P., Sigler P. B. Atomic structure of progesterone
complexed with receptor. Nature. Vol. 393.1998. pp. 392-396.

[5] Sybyl 8.1.Tripos Inc., St. Louis, USA.
[6] I. D. Kuntz, J. M. Blaney, S. J. Oatley, R. Langridge, T. E. Ferrin, “A

geometric approach to macromolecule-ligand interactions”, J. Mol.

Biol., Vol.161, No.2, 1982, pp. 269-288.
[7] Amber 9. Available: http://www.ambermd.org
[8] P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong,

M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak,
J. Srinivasan, D. A. Case, T. E. Cheatham, “Calculating structures and
free energies of complex molecules: combining molecular mechanics
and continuum models”, Accts. Chem. Res., Vol.33, No.2, 2000, pp.
889-897.

[9] A. N. Kolmogorov, “On the representation of continuous functions of
several variables by superposition of continuous functions of one
variable and addition”, Dokl. Akad. Nauk SSSR, Vol.114, No.5, 1958,
pp. 953–956.

[10] A. N. Gorban, V. L. Dunin-Barkovsky, A. N. Kirdin, E. M. Mirkes,
A. Yu. Novokhodko, D. A. Rossiev, S. A. Terekhov and etc.
Neiroinformatika, Novosibirsk, Naika, 1998.

[11] D. E. Rummelhart, G. E. Hinton, R. J. Williams, “Learning internal
representations by error propagation”, Vol. 1 of Computational models

of cognition and perception, Cambridge, MIT Press, 1986, pp. 319–
362.

[12] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Ed.,
Pearson Education, Delhi, 1999.

[13] M. Hagan, M. Menhaj, “Training Feedforward Networks with the
Marquardt Algorithm”, IEEE Transactions on Neural Networks, Vol.5,
No.6, 1994. pp. 989-993.

[14] K. Levenberg, “A Method for the Solution of Certain Non-linear
Problems in Least Squares”, Quarterly of Applied Mathematics, 1944,
2(2), pp. 164-168.

[15] D. W. Marquardt, “An Algorith for the Least-Squares Estimation of
Nonlinear Parameters”, SIAM Journal of Applied Mathematics, 1963,
11(2), pp. 431-441.

[16] P. Pivoňka, J. Dohnal, “On-line Identification Based on Neural
Networks Using of Levenberg-Marquardt Method and Backpropagation
Algorithm”, WSEAS Transactions on Systems, Issue 2, Vol.3, pp.381-
385, April 2004.

[17] V. V. Voevodin, Vl. V. Voevodin, Parallel calculations. St. Petersburg,
2002.

[18] NVIDIA CUDA Technology. Available: http://www.nvidia.com/CUDA
[19] NVIDIA CUDA Toolkit 4.2 CUBLAS Guide, February 2012. Available:

http://developer.download.nvidia.com/compute/DevZone/docs/html/CU
DALibraries/doc/CUBLAS_Library.pdf

[20] NVIDIA CUDA Toolkit 4.2 CURAND Guide, March 2012. Available:
http://developer.download.nvidia.com/compute/DevZone/docs/html/CU
DALibraries/doc/CURAND_Library.pdf

[21] “NVIDIA CUDA C Programming Guide version 4.2”. Available: .
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/d
oc/CUDA_C_Programming_Guide.pdf

[22] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, K. Schulten, “GPU-accelerated
molecular modeling coming of age”, J Mol Graph Model., Vol.29,
No.2, 2010, pp. 116-125.

[23] Y. Ozel, I. Guney, E. Arca, “Neural Network Solution to the
Cogeneration System by Using Coal”, 12th WSEAS International

Conference on Circuits, Heraklion, Greece, July 22-24, 2008.
[24] S. Sureerattanan, H. N. Phien, et. al, “The Optimal Multi-layer Structure

of Backpropagation Networks”, Proceedings of the 7th WSEAS

International Conference on Neural Networks, Cavtat, Croatia, June
12-14, 2006.

[25] I. Fedyushkina, I. Romero Reyes, “Prediction of Glucocorticoid
Receptor Inhibition by High-Performance Neural Network Algorithm”,
Advances in Mathematical and Computational Methods. Mathematics

and Computers in Science and Engineering Series, Ed. Prof. Mihaiela
Iliescu, 2012, No 4, pp. 203-208.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 7, 2013 309

[26] S. Romero, M. A. Trenas, E. Gutierrez, E. L. Zapata, “Locality-
Improved FFT Implementation on a Graphics Processor”, Proceedings

of the 7th WSEAS Int. Conf. on Signal Processing, Computational

Geometry & Artificial Vision, Athens, Greece, August 24– 26, 2007.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 7, 2013 310

