
 

 

  
Abstract—At the Faculty of Applied Informatics, Tomas Bata 

University in Zlín, a laboratory circuit heating plant containing 
internal (state) delays was assembled. It provides unordinary step 
responses, which makes it difficult to be modeled, identified and 
controlled in general. This contribution aims controller design and its 
verification for the appliance by algebraic means in a robust sense. A 
simple negative control feedback is utilized. The ring of 
quasipolynomial meromorphic functions (RMS), which has been 
recently revised and extended, is briefly presented and serves as a 
primary algebraic tool for controller design. A mathematical model of 
the plant derived in our previous works based on the anisochronic 
principle is introduced. A free (selectable) controller parameter is set 
such that requirements of robust stability and robust performance are 
satisfied. The final controller is verified by simulations in Matlab-
Simulink. Because of the plant is controlled via a discrete-time 
program in a PC, a simple controller discretization based on delta 
models is proposed. A simple user-program interface has been 
programmed. Finally, the controller structure and setting is verified 
on a real process and compared with simulations. The obtained 
results show the applicability of the controller design methodology. 
In the future research, we intent to utilize other control system 
structures and/or to perform an optimization procedure for robust 
controller tuning. 
 

Keywords—Algebraic control, Delta models, Discretization, 
Heating system, Robust performance, Robust stability, Time-delay 
system. 

I. INTRODUCTION 

ODELLING, identification and control of systems with 
delays remain a challenging task in system and control 

theory [1] – [5]. Time-delay systems perform unconventional 
time- and frequency-domain characteristics, which disqualifies 
the use of many traditional modeling tools due to their infinite-
dimensional nature and, consequently, the obtained models can 
not be matched with most-used controller design 
methodologies and approaches. 

 Among many others, circuit heating and thermal plants 
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and processes are typical representatives of systems with 
internal (state) delays mainly due to transmission latencies in 
pipelines [6] – [9]. 

The objective of this paper is to control a laboratory heating 
(thermal) plant assembled at the Faculty of Applied 
Informatics of Tomas Bata University in Zlín in order to test 
control algorithms for systems with dead time. The original 
description of the apparatus and its electronic circuits can be 
found in [10]. The laboratory appliance can be viewed as a 
small-scale model of a real-word system, e.g. cooling system 
in cars. Although the plant was originally intended to test 
control algorithms for input delays only, it contains internal 
delays as well as it has been shown in [9]. In the cited 
literature, a detailed mathematical model of the process via 
anisochronic modeling principle [11] was derived and 
presented. 

Since algebraic control design for time-delay systems is one 
of the main authors’ interests, the ring of quasipolynomial 
meromorphic functions (RMS) originally developed in [12] 
and revised and extended in [13] is used in this paper as a 
primary tool for controller structure derivation for the heating 
plant. Moreover, a meromorphic transfer function 
representation as a fraction of quasipolynomials, which is a 
natural result of the use of the Laplace transform to the process 
model, is not suitable in an endeavor to meet some control 
requirements, such as internal stability, reference tracking, 
controller properness etc. [14], [15]. Controller design in RMS 
employs the Bézout identity to obtain stable and proper 
controllers along with the Youla-Kučera parameterization for 
reference tracking and load disturbance rejection. 

Generally, the obtained controller structure contains free 
(selectable) parameters which have to set suitably. There are 
many ways how to deal with this task, see e.g. [5], [16] – [18]. 
In this paper, the objective is to meet basic requirements on the 
control feedback robustness, namely, robust stability and 
robust performance. 

A simple discretization concludes the controller design 
procedure. It is based on the well-known delta models [19] and 
it provides easy-to-handle-with calculation of a discrete-time 
version of the controller, in contrast to some other more 
sophisticated methods operating in the state-space domain, se 
e.g. [20] – [21] which are rather usable for spectrum 
calculation [22] then for acquiring of an easy-handling control 
law. 
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The paper is organized as follows. The definition of the RMS 
ring and a concise overview of the algebraic controller design 
procedure in the ring are presented in Section II. A brief 
description and a model of the laboratory appliance are 
introduced in Section III. In Section IV, the controller 
structure designed using RMS for the plant is derived. The 
selection of a suitable controller parameter together with 
robustness tests is the matter of Section V. Section VI provides 
controller discretization. Finally, simulation and real-
experimental results are given in Section VII. 

II. RMS RING – DEFINITION AND CONTROLLER DESIGN 

The definition of the RMS ring and a controller design 
procedure for the simple feedback control structure using the 
ring are objectives of this section. 

A. RMS Ring Definition 

Originally, the ring was defined for retarded time-delay 
systems only [12]; however the original definition of RMS has 
some drawbacks (e.g. it does not constitute a ring, hence, it 
requires inclusion of neutral quasipolynomials etc.). Therefore 
the following revisited definition has been proposed in [13]. 

Definition 1 (RMS  ring). An element ( )sT  of RMS ring can 

be expressed as 
 

( ) ( )
( ) ∞∈= H
sx

sy
sT (C + ) (1) 

( ) ( ) ( )ssysy τ−= exp~  

 
where deg ( ) lsy =~ , deg ( ) nsx = ,  nl ≤  and 0≥τ . Neutral 

( )sT  must be formally stable. The difference between these 

two types of quasipolynomials can be found e.g. in [4], [15], 
and the definition of formal stability was presented e.g. in [23]. 

If ( )sT  includes distributed delays, all zeros of ( )sx  in C +  

must be those of ( )sy , i.e. it has removable singularities. ■ 

The properness can be alternatively given as follows [24]: A 
term ( )sT  is proper if and only if there exists a real positive 

number R such that 
 

( ) ∞<
≥>

sT
Rss ,0Re

sup  (2) 

B. Controller design in RMS 

Consider the simple negative feedback loop depicted in Fig. 
1. where ( )sW  is the Laplace transform of the reference 

signal, ( )sD  stands for that of the load disturbance, ( )sE  is 

transformed control error, ( )sU 0  expresses the controller 

output (control action), ( )sU  represents the manipulated input 

affected by a load disturbance, and ( )sY  is the plant output 

controlled signal in the Laplace transform. All the presented 
signals are assumed to be ratios of elements from RMS. 

 
 Fig. 1 Simple control negative feedback loop 

 
External inputs, reference and load disturbance signals, 

respectively, have forms 
 

( ) ( )
( ) ( ) ( )

( )sF

sH
sD

sF

sH
sW

D

D

W

W == ,  (3) 

 
where ( )sHW , ( )sH D , ( )sFW , ( )sFD ∈RMS. 

The plant transfer function is depicted as 
 

( ) ( )
( )sA

sB
sG =  (4) 

 
where ( ) ( )∈sBsA , RMS are coprime, i.e. there does not exist a 

non-trivial (non-unit) common factor of both elements, see 
[13] for details.  

The controller transfer function reads 
 

( ) ( )
( )

( ) ( ) MS

R

RsQsP

sP

sQ
sG

∈

=

,

 (5)  

 
An overview of basic steps in the controller design 

procedure is presented below (according to e.g. [25], [26]). 
Feedback stabilization 
Theorem 1 (Stabilization). Given a Bézout coprime pair 
( ) ( )sBsA , ∈RMS the closed-loop system is stable (in RMS sense) 

if and only if there exists a coprime pair ( ) ( )∈sQsP , RMS 

satisfying the Bézout identity 
 
( ) ( ) ( ) ( ) 1=+ sQsBsPsA  (6) 

 
A particular stabilizing solution of (6), say ( ) ( )sQsP 00 , , can 

be further parameterized as 
 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )sZsAsQsQ

sZsBsPsP

m0

0 0

=
≠±=

 (7) 

 
where ( )∈sZ RMS. ■ 

A proof of Theorem 1 based on [12] is going to be found in 
[26]. Parameterization (7) is used to satisfy remaining control 
and performance requirements, such as reference tracking, 
disturbance rejection etc. 
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Remark 1. Any two elements ( ) ( )∈sBsA , ∞H (C + ) form a 

Bézout (coprime) factorization if and only if  
 

( ) ( )( ) 0inf
0Re

>+
≥

sBsA
s

 (5) 

 
see e.g. [23], [24]. Note that (5) does not hold for formally 
unstable systems. ■ 

Reference tracking 
The task is to find ( )∈sZ RMS in (7) so that the reference 

signal is being tracked. The analysis on the scheme in Fig. 1 
yields the following requirement. 

Theorem 2 (Reference tracking). The reference signal 

( ) ( ){ }sWLtw 1−=  is tracked if and only if ( )sFW  divides the 

product ( ) ( )sPsA in RMS. ■ 

A detailed analysis of Theorem 2 and a suggestion how to 
select the structure of ( )sZ  can be found in [25], [26]. 

Load disturbance rejection 
Analogously to the previous subsection, one can derive the 

following statement. 
Theorem 3 (Load disturbance rejection). The load 

disturbance ( ) ( ){ }sDLtd 1−=  is asymptotically rejected if and 

only if ( )sFD  divides ( ) ( )sPsB  in RMS. ■ 

Again, see details in [25], [26]. 

III. CIRCUIT THERMAL PLANT DESCRIPTION AND MODEL 

  Prior to controller design for the laboratory plant, its 
description and a proposed anisochronic model ought to be 
introduced. 

The original appliance description was presented in [10] and 
a mathematical model was proposed in [9], the reader is hence 
referred therein for details. 

A. Plant Description 

A photo and a sketch of the appliance are depicted in Fig. 2. 
 

  
 

Fig. 2 Circuit heating plant 
 
The heat transferring fluid (namely distilled water) is 

transported using a continuously controllable DC pump {6} 
into a flow heater {1} with maximum power ( )tPH  of 750 W. 

The temperature of a fluid at the heater output is measured by 

a platinum thermometer giving value of ( )tHOϑ . Warmed liquid 

then goes through a 15 meters long insulated coiled pipeline 
{2} which causes the significant delay in the system. The air-
water heat exchanger (cooler) {3} with two cooling fans {4, 5} 
represents a heat-consuming appliance. The speed of the first 
fan can be continuously adjusted, whereas the second one is of 
on/off type. Input and output temperatures of the cooler are 
measured again by platinum thermometers giving ( )tCIϑ  and 

( )tCOϑ , respectively. The expansion tank {7} compensates for 

the expansion effect of the water. 

B. Mathematical (Anisochronic) Model 

Since the modeling and identification of the laboratory plant 
was thoroughly derived and presented in [9], only basic ideas 
and necessary results are given here. 

The methodology is based on the comprehension of all 
significant (lumped) delays and latencies in the model which is 
built in two steps: First, models of separate functional parts of 
the plant are found; second, the obtained sub-models are 
combined by means of their common physical quantities. 

Models of the heater, coiled insulated pipelines and the 
cooler, respectively, are given by the well-known energy (heat) 
balance equations 

 
( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( )

( ) ( ) ( ) ( )[ ]
( ) ( )

( ) ( ) ( ) ( )[ ]

( ) ( ) ( )
⎥⎦
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⎢⎣
⎡ −−+−

−−=

⎥⎦
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⎤
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⎡ −−+−

−−+−=
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with the following selected approximations and interpolations 
 

( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )[ ] 2
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2

2
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2
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tt

+=

+−+−=

+
+++=

−=

&

&

&&

ττ

τϑϑ

 (7) 

  
where the notation is the following 
 
c [J kg-1 K-1] – the specific water heat capacity 

( )tm&  [kg s-1] – the water mass flow rate 

MH [kg] – the overall water mass in the heater 
MC [kg] – the overall water mass in the cooler 
MP [kg] – the overall water mass in the pipeline 
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( )tHIϑ  [°C] – heater input temperature  

Aϑ  [°C] – ambient temperature 

Hτ  [s] – the delay of a water flow through the heater 

HCτ  [s] – the delay of a water flow between the heater and the 

cooler 

Cτ  [s] – the delay of a water flow through the cooler 

KCτ  [s] – the delay between a control signal to the cooling fan 

and the output temperature of the cooler 

CHτ  [s] – the delay of a water flow between the cooler and the 

heater 
( )tuP  [V] – pump input voltage  

( )tuC  [V] – cooling fan input voltage 

( )tKH  [W K-1] – the overall heater wastage energy heat 

transmission coefficient 
( )tKC  [W K-1] – the overall cooler heat transmission 

coefficient 

PK  [W K-1] – the overall long pipeline heat transmission 

coefficient  
h0, h1, h2, h3, h4, h5 – weighting coefficients for the estimation 
of the overall heat transmission coefficient of the heater 
c0 [W K-1], c1[W K-1 V-1], c2 – weighting coefficients for the 
estimation of the overall heat transmission coefficient of the 
cooler 
p0 [m3 s-1], p1 [V], p2 – weighting coefficients for the 
estimation of the mass flow rate of water 

 
Although there are three continuous-time manipulated 

inputs, i.e. ( )tPH , ( )tuP , ( )tuC  and three measured outputs 

( )tHOϑ , ( )tCIϑ , ( )tCOϑ , the intention is to control ( )tCOϑ  only 

by ( )tPH . For this relation, it was derived the following 

transfer function 
 

( ) ( )
( )

( )[ ] ( )
( )saasasas

sbsb

sP

s
sG

D

D

H

CO

ϑ
ττϑ
−++++

−+−==
exp

expexp

001
2

2
3

000  (8) 

 
It was determined that for the operating point 

 
[ ]

[ ]C24C,36,C8.43C,1.44,W300,V3,V5

,,,,,,

°°°°=
ACOCIHOHcp Puu ϑϑϑϑ

 (10) 

 
that the parameters in (8) are 
 

143,131,5.1,10624.7,10413.1

,009.0,1767.0,10146.2,10334.2

0
5

0
4

0

12
7

0
6

0

===⋅−=⋅=

==⋅−=⋅=
−−

−−

ϑττD

D

aa

aabb
 

 (11) 

IV. CONTROLLER STRUCTURE DESIGN FOR THE PLANT 

The task of this section is to design a controller structure 
using principles described in Section II. Hence, let the plant be 
described by the transfer function (8) and the external inputs 

be from the class of linearwise functions, i.e. (3) reads 
 

( ) ( )
( )

( )

( )
( ) ( )

( )
( )

( )sm

s
sm

d

sF

sH
sD

sm

s
sm

w

sF

sH
sW

d

d

D

D

w

w

W

W

00

, ====  (12) 

 
where ( )smw  and ( )smd  are arbitrary (quasi)polynomials of 

degree one with zeros in C + , say, ( ) ( ) 0mssmsm dw +== , 

>0m 0, for the simplicity, and 0w  and 0d  are real constants. 

The plant transfer function can be factorized analogously as 
 

( )
( )[ ] ( )

( )
( )

( )

( )
( )sA

sB

sm

saasasas

sm

sbsb

sG
D

D

=
−++++

−+−

=
ϑ

ττ

exp

expexp

001
2

2
3

000

 (13) 

 
where ( )sm  is a stable (quasi)polynomial of degree three, for 

instance, ( ) ( )3
0mssm += , again for the simplicity. 

The primary aim is to stabilize the control feedback loop 
using (6). If ( ) 10 =sQ , the following particular stabilizing 

solution is obtained 
 

( ) ( ) ( )[ ] ( )
( )saasasas

sbsbms
sP

D

D

ϑ
ττ

−++++
−+−−+

=
exp

expexp

001
2

2
3

000
3

0
0  (14) 

 
For reference tracking and disturbance rejection, both 

conditions from Theorem 2 and Theorem 3 must be satisfied 
simultaneously, i.e.  ( ) ( ) ( )( ) ( ) ( ) ( )( )sPsBsFsPsAsF DW || ∧ . 

Equivalently, ( )sP  must include at least one zero root which 

can be expressed by the condition 
 
( ) 00 =P  (15) 

 
Thus, try to choose the following structure 
 

( ) ( )
( ) 0

001
2

2
3

3
0

exp
Z

saasasas

ms
sZ

D ϑ−++++
+=  (16) 

 
where ∈0Z R, to obtain ( )sP  in an arbitrarily simple form. 

Condition (15) results in 
 

1
00

3
0

0 −
+

=
bb

m
Z

D

 (17) 

 
Finally, the controller structure is given by inserting (14), 

(16) and (17) into (6) as 
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( )
( )[ ]

( )( ) ( )[ ] ( )( )sbsbmmsbb

saasasasm

sG

DD

D

R

ττ
ϑ

−+−−++
−++++=

expexp

exp

000
3
0

3
000

001
2

2
33

0
 (18) 

 
The controller contains only one selectable (free) parameter 

0m  and it has anisochronic structure including internal delays 

(in its dynamics); however, it is simply realizable by 
integrators and delay elements, see the Matlab-Simulink 
scheme as in Fig. 3. 
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Fig. 3 Controller structure scheme 

V. ROBUST STABILITY AND ROBUST PERFORMANCE TESTS 

Robust analysis constitutes a set of possible tools for 
controller quality and performance evaluation, particularly 
when an ideal plant mathematical model does not match the 
real system behavior ideally. 

A. Theory overview 

We pay attention to unstructured uncertainty, more precisely 
multiplicative disk uncertainty which enables to develop 
simple general analytics methods and results. Let ( )sG0  be the 

nominal plant transfer function and 
( ) ( ) ( )[ ] ( )sGsWssG M 01 Δ+=  be a family of perturbed transfer 

functions. Here ( )sWM  is a fixed stable weight function 

expressing the uncertainty frequency distribution. Perturbation 
( )sΔ  is a variable stable transfer function 

satisfying ( ) 1≤Δ
∞

s . Moreover, ( )sG  and ( )sG0  have the 

same number of unstable poles. It holds that 
 

( )
( ) ( ) ωω

ω
ω ∀≤− ,j1
j
j

0
MW

G

G
 (19) 

 
which means that ( ) ( )ωω j/j 0GG  lies in the disk with center 1 

and radius ( )ωjMW . The weight function is selected so that it 

covers all systems from the family 
 

( )
( )
( ) ( ) ωω

ω
ω ∀≤− ,j1
j

j
max

0
M

sG
W

G

G
 (20) 

 
The closed-loop system is called robust stable if it is stable 

for the whole family of perturbed plant models. For 
multiplicative uncertainty, the feedback system as in Fig. 1 is 
robust stable if and only if 

 

( ) ( ) 1jj 0 <
∞

ωω TWM  (21) 

 
where ( ) ( ) ( ) ( )sWsYsGsT WY /0 ==  is the so-called (nominal) 

complementary sensitivity function, see e.g. [27]. 
The general notion of robust performance is that both, 

internal robust stability (21) and performance expressed by 
 

( ) ( ) 1jj <
∞

ωω SWP  (22) 

 
should hold for the whole family of perturbed plants 
where ( ) ( ) ( ) ( )sWsEsGsS WE /==  stands for the sensitivity 

function and ( )ωjPW  is the sensitivity weighting function. 

 Conditions (21) and (22) results in the following 
summarized condition 
 

( ) ( ) ( ) ( ) 1jjjj 00 <+
∞

ωωωω SWTW PM  (23) 

 
where 0S  means the nominal sensitivity function. 

B. Controller Robust Analysis 

Now let us analyze the robustness of the designed controller 
(18) for various settings of 0m  by means of the previous 

subsection. 
First, it is necessary to determine the family of plant transfer 

functions which is obtained by variations within the ranges of 
selected model parameters. We have selected three parameters 
the values of which are affected by measurements uncertainties 
or ambient conditions, namely, KC, KP and Aϑ . Intervals for KC 

and KP have been chosen on the basis of two identification 
measurements [9], [28], Aϑ  has been selected according to 

room temperature variations during the year. Hence, the 
intervals are the following 

 
[ ] [ ] [ ] CKK ACP °∈∈∈ 30,16,22,15,5.0,1.0 ϑ  (24) 

 

The set of Bode plots ( ) ( ) 1j/j 0 −ωω GG  for all eight 

combinations of margin values in (24) is depicted in Fig. 4. 

This set was covered by a plot expressing ( )ωjMW  given by 

the transfer function (25). 
 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 7, 2013 315



 

 

 
 

Fig. 4 Determination of ( )ωjMW  
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Verification of the robust stability criterion for several 

settings of 0m  is displayed in Fig. 5. 

 

 
Fig. 5 Robust stability verification 

 
The weighting function ( )ωjPW  has been chosen so that 

the nominal performance condition  
 

( ) ( ) 1jj 0 <
∞

ωω SWP  (26) 

 
holds for a selected range of 0m , as 

 

( ) ( )
( )( ) 144031500

90036000
1901350

140
900/1 2

2

++
+=

++
+=

ss

ss

ss

ss
sWP  (27) 

 
see Fig. 6. 

 
Fig. 6 Nominal performance – determination of ( )ωjPW  

 
Obviously, the decreasing of 0m  would lead to poor 

nominal performance at lower frequencies, whereas its 
increasing would cause the same effect at middle frequencies. 

Finally, test the robust performance condition (23) with 
( )sWM  and ( )sWP  given by (25) and (27), respectively, as it is 

depicted in Fig. 7.  
 

 
Fig. 7 Robust performance test 

 
The results confirm the preceding idea since for 005.00 =m  

and 02.00 =m  the feedback system has poor robust 

performance. Hence, we finally chose the range 
]012.0,008.0[0 ∈m  for simulations and real experiments, see 

Section VII. 

VI. DISCRETE-TIME CONTROLLER 

The computer connected with the laboratory appliance 
which serves for monitoring and control tasks utilizes CTRL-
V3 unit working with discrete-time samples. Because of this it 
is inevitable to discretize the control algorithm. There were 
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investigated a large number of discretization approaches, 
mainly for the spectrum estimation, e.g. [20], [21], [29]. A 
simple yet sufficient input-output method based on delta 
models [19] and linear delay interpolation [30] in this paper. 

The idea rests on the introduction of variable γ associated 

with the delta operator δ  defined as 
 

( ) ss TzT

z

αα
γ

−+
−=
1

1
 (28) 

 
where z  is the variable from the z-transform,  

[ ]1,0∈α represents a weighting parameter and sT  means a 

sampling period. The choice of α enables to obtain different 
first order models, such as forward ( 0=α ), backward ( 1=α ) 
or Tustin ( 5.0=α ) one. The substitution γ→s  in the 

transfer function system model results in a discrete-time model 
in z  associated with the shifting operator q. However, this 
substitution is applied to s-powers expressing derivatives only, 
whereas delay exponential terms are subjected to a natural 
transformation 

 
( ) ( ) ( )ηη −→− txsXsexp  (29) 

 
followed by (linear) interpolation 

 
( ) ( ) ( ) ( )idiidii txtxtx ,1,1 +−+−−≈− ταταη  (30) 

 
where ⎣ ⎦sii Td /η= , siid Td=,τ , ( ) siid Td 1,1 +=+τ , 

idiid ,1, +≤≤ τητ  and a weighting coefficient 

( ) [ ]1,0/, ∈−= sidii Tτηα . Then, finally 

 

( ) ( )zXzkTtx k
s

−→−  (31) 

 
The Tustin (trapezoidal) method was utilized in this paper 

with 1=sT . The final discrete rule for controller (18) reads 
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 (34) 

VII. CONTROLLER VERIFICATION 

In this closing section, simulation as well as real-experiment 
benchmarks and test are presented. Manipulated input and 
measured output simulation responses for continuous-time 
controller (18) as differences from the operating point, 

( )tPΔ and ( )tCOϑΔ , respectively, for three different values of 

0m  within the selected range ]012.0,008.0[0 ∈m  are 

displayed in Fig. 8 and Fig. 9, respectively where step load 
disturbance ( ) 10−=tdP  enters at 2000=t . 

 

 
Fig. 8 Continuous-time control response – u(t) 

 
Fig. 9 Continuous-time control response – y(t) 
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The value 012.00 =m  was selected for real experiments 

since the control responses are satisfactory enough and the 
control input does not reach saturation point (note that the 
maximum feasible value of the heat power is 

( ) W450=Δ tPMAX ). 

Let us compare continuous and discrete-time responses, as 
can bee seen in Figs. 10, 11 now. Obviously, both curves are 
nearly identical. 

 
Fig. 10 Continuous-time vs. discrete-time response – u(t) 

 

 
Fig. 11 Continuous-time vs. discrete-time response – y(t) 

 
 The discrete-time form of the controller law (32)-(34) is 

used to test real control performance on the laboratory 
appliance (without the impact of the load disturbance) and 
compared with simulations, see Figs. 12 and 13. 

Finally, the ability of the controller to asymptotically reject 
a simple “stepwise” disturbance is displayed in Fig. 14 where 
the cooler input voltage was abruptly changed from V3=cu  

to V9=cu . 

 

 
Fig. 12 Real vs. simulated response – u(t) 

 

 
Fig. 13 Real vs. simulated response – y(t) 

 

 
Fig. 14 – Step disturbance rejection verification 
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VIII. CONCLUSION 

Algebraic robust controller design for a laboratory thermal 
plant in the RMS ring has been the objective of the propounded 
paper. 

A revised definition of the RMS ring together with general 
algebraic controller design via the solution of the Bézout 
identity and the Youlla-Kučera parameterization have been 
presented first. A simple feedback loop has been utilized. The 
laboratory appliance appearance together with its model of a 
relation between one manipulated input and a measured output 
have been introduced in the second part of this contribution. 
presented first. Then, the particular controller derivation for 
the laboratory plant ensuring asymptotical reference tracking 
and (stepwise) load disturbance rejection has been given to the 
reader. Robust stability and robust performance tests have 
followed; as a result, a suitable range of a controller parameter 
has been chosen. A sketch of a simple discretization procedure 
based on delta models has been presented as well. Finally, 
simulation verification of both controller rules, i.e. continuous-
time and discrete-time ones, together with their comparison 
with real laboratory control responses have been brought out. 
The results confirm the usability and applicability of the 
presented robust controller design approach. 

The methodology is usable also for neutral time delay 
systems and those with distributed delays; however, in these 
cases a stabilizing controller may not be found. 

For the future research, we plant to utilize and perform more 
sophisticated (optimal) controller tuning ideas and/or to use 
other (more complex) control system structures (with more 
degrees of freedom etc.). 
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