INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Credibility models for permanently updated
estimates In insurance

Pacakova Viera

Abstract—The article explains the possibilities of permanently
updated estimates in insurance theory and practice and presents
several examples of the derivation of the posterior distribution for
certain estimation situations with given prior distributions. Article
investigates the Bayesian estimators of the parameters of binomial,
Poisson and normal distribution using quadratic loss function. The
choice of the prior distribution specifies the models binomial/beta,
Poisson/gamma and normal/normal. In insurance practice these
models allow us permanently updated estimates of binomial
probability, of the credibility premium, or credibility number of
claims for short-term insurance contracts. The possibility to express
the Bayesian estimators in the form of credibility formulas allows
easy application of these models in insurance practice.

Keywords—~Bayesian  estimation, Binomial/beta  model,
Credibility premium, Normal/normal model, Posterior distribution,
Poisson/gamma model, Prior distribution.

typical feature of the insurance practice is the need to set

premium at the beginning of the insurance contract.
Number of occurrence of claims and the total claim amounts
for insurance company in the future are the random variables.
Their sufficiently, precise and reliable estimate is extremely
important to determine the correct premium for next year in
insurance company.

Credibility theory is a technique, or set of techniques, for
calculating premiums for short term insurance contracts. The
technique calculates a premium for a risk using two
ingredients: past data from the risk itself and collateral
data, i.e. data from other sources considered to be relevant.
The essential features of a credibility premium are that it is a
linear function of the past data from the risk itself and that it
allows for the premium to be regularly updated as more data
are collected in the future (Waters, 1994).

A credibility premium represents a compromise between the
two above mentioned sources of information. The credibility
formula for estimation of pure premium or claim frequency P,

in next year is:

INTRODUCTION

P=ZP+(1-Z)u 1)
where P, is estimation based on own past data in insurance
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company, or risk, u is estimation based on collateral data and
Z is a number between zero and one, known as the credibility
factor. Credibility factor Z is a measure of how much reliance
the company is prepared to place on the data from the policy
itself.

Credibility formula is often used in the form

P=2X+01-2)u )

We will present Bayesian approach to credibility

estimation by three important models for insurance practice.

Il. THE BAYESIAN INFERENCE
The Bayesian philosophy (1763) involves acompletely
different approach to statistical inference. Suppose
X = (X, X,,...X,) is a random sample from a population

specified by density function f(x/@) and it is required to

estimate parameter ©.

The classical approach to point estimation treats parameters
as something fixed but unknown. The essential difference in
the Bayesian approach to inference is that parameters are
treated as random variables and therefore they have probability
distributions.

Prior information about ® that we have before collection
of any data is the prior distribution f (@), which is probability
density function or probability mass function. The information
about ® provided by the sample data X =(X,,X,,... X,) IS

contained in the likelihood f(X/H)=ll[f(Xi/9). Bayes
i=1

theorem combines this information with the information
contained in f (&) in the form
i, (01x)=— X/0)1(6) 3)

[10q0)f(6)do

0

that determines the posterior distribution f, (& | X).

So after collecting appropriate data we determine the
posterior distribution that is the basis of all inference
concerning © .

Note that f(x)= J f(x/6) f(6)dé does not involve ©. It

9
is just aconstant needed to make it a proper density that
integrates to unity. A useful way of expressing the posterior
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density is to use proportionality. We can write

f(0/x)x f(x/0) () (4)

or simply
posterior oc likelihood - prior.

The posterior distribution contains all available information
about ® and therefore should be used for making decisions,
estimates or inferences.

The Bayesian approach to estimation states that we should
always start with a prior distribution for unknown parameter,
precise or vague according to the information available.

Note that we are referring to a density here implying that ®
is continuous. This concerns most applications because even
when X is discrete, as in binomial or Poisson distributions, the

parameters 7z or A will vary in a continuous space <0; 1> or

(O,+oo) respectively.

There may be some situations in which we need ,,non-
informative” prior. For example if ® is a binomial distributed
and we have no prior information about ®, the uniform

distribution on interval <0; 1) as a prior distribution would

seem appropriate.

We often have prior information about parameters based
on previous practice, respectively, estimates by experts. The
values of these parameters reflect the subjective opinion of the
decision maker, so Bayesian approach can be criticized as
subjective.

If we have found posterior distribution of an unknown
parameter ®,we need to answer the question how do we use

the posterior distribution of ®, given the sample data
X =(X,,X,,... X,) , to obtain an estimator of © .

At first we must specify the loss function g(x), which is

THE BAYESIAN ESTIMATOR

ameasure of the “loss” incurred when g(x) is used as an
estimator of ®. We seek a loss function which is zero when the
estimation is exactly correct, that is g(x)zG) and which
increases as g(x) gets father away from © .

There is one very commonly used loss function, called
quadratic or squared loss. The quadratic loss is defined by

L(g(x):0)=g(x)-6F (5)
and it is related to mean square error from classical statistics.
We will show that the Bayesian estimator that arises by
minimizing the expected quadratic loss is the mean of
posterior distribution. So
I[g(X)—

E (L(g(x):6))= of 1(6/x)do
=2 [g(x)

and
0 E(L(g(x);0

7ol f(o/x)do
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equating to zero
() [ F(o/x)do=[o f(0/x)do
Because of j f(6/x)d6 =1, we get
g(x)=E(9/x) (6)

We will consider three important examples of derivation of
the posterior distribution and the Bayesian estimators under
the quadratic loss function for certain estimation situations
with given prior distributions, important for insurance practice.

IV. THE POISSON/GAMMA MODEL

Suppose we have to estimate the claim frequency for a risk
and claim numbers have a Poisson distribution with parameter
A. We do not know the value of 1 but before having any data
from risk itself available, we assume that the prior distribution
of 2 is a gamma distribution G(«; f).

The claim frequency rate for a class of insurance business
may lie anywhere between 0 and +o. An insurer with a large
experience may quite accurately estimate the rate.

The gamma distribution may be convenient for representing
uncertainty in a current estimate of the claim frequency rate.
This distribution is over the whole positive range from 0
to + oo, and the mean a/f can be set equal to the current best
estimate. Uncertainty is represented by variance a/f? of the
gamma distribution G(a; ).

Our objectives is to estimate the unknown parameter 2.
Suppose we have n past observations X = (X;,X,, ... X,). The

Bayesian estimate of A, with respect to a quadratic loss
function, given these data, is
Ay = E(1/X)
that is the mean of the posterior density of 1.
By assumption the density function of the prior G(a; f)
distribution is
B

f(2)= @) ®)

The distribution of a number of claims is the Poisson with a
fixed but unknown parameter 4, so the likelihood function has
the expression:

tx/2) =] i e

i=1 i-
By Bayes’ theorem we get the posterior density of 4,

()

ia—l e—/?.ﬂ — C2 e—lﬂ /Ia—l

n
X

c e’ A (9)

given X = (X, X,, ... X, ), in the form
F(A/X)oc ™ AN .g7h got = gmilom) g2 (40
that is the gamma distribution with the new parameters
a,=a+ ) X
' Z ' (12)

ﬂ1=ﬂ+n

Thus the Bayesian estimator of 2 using the quadratic loss is
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- 7 _a+nX 12)
F+n £+n
which can be rewritten as
B:05+nX: n X g a
pg+n  f+n pg+n g
If we put factor credibility as
n
Z= 13
g+n 13)
then we get
Qg =E(A/X)=Z X+(1-Z) u (14)

which is the credibility formula for updating claim frequency
rates.

It can be seen from expression of credibility factor, since n
is non-negative and £ is positive, that Z is in the range zero to
one and it is increasing function of n. If no past data from the
risk itself are available, then n =0 and Z = 0 too and the best
estimate of 1 is a/f, the mean of the prior gamma distribution.
It can be seen that Z does not take the value one for any finite
value of n.

The value of Z depends on the amount of data available for
the risk n, and the collateral information through g, which
reflect the variance a/f° of the prior distribution.

V. APPLICATION OF POISSON/GAMMA MODEL

Credibility formula (14) allows easy application of
Poisson/gamma model in insurance practice. We try to show it
in this sample.

The annual number of claims resulting from motor third-
party liability insurance in insurance company in the years
2005-2011 is given in Table I, column labeled as x;. In
Poisson/gamma model for claim numbers we have assumed
our prior knowledge about the unknown parameter (annual
claim rate) A summarized by gamma distribution G(«; ) with
parameters a = 8400 and S = 0,4.

The number of claims arising from the risk in each year has
a Poisson distribution and we do not know the value of
parameter 2. What we do know is a prior distribution of 4,
which we will take to be gamma G(e; ) with parameters a =
8400 and g = 0,4. This distribution has mean x = o/ = 21 000.
The actual numbers of claims arising each year from this risk
are in the column named x; of Table I.

Figure 1 shows the credibility factor in successive years.
Calculation of credibility factors Z; in each year i on the basis
of previous year’s data is an application of formula (13). We
can see from this figure that the credibility factor increases
with time. As time goes we collect more data from the risk
itself and the higher the credibility factor should be because of
the increasing reliability of the data in estimating the true but
unknown expected number of claims for the risk.
Mathematically the fact that Z increases with time for this
particular model is simply because expression (13) is an
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increasing function of n for any positive value of g.
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Fig. 1 Credibility factors of Poisson/gamma model in successive
years

Last column denoted as Ag contains values of Bayes
estimators of annual claims numbers for each year based of
past ( i-1) observations by equation (14).

Table | Procedure to update Bayes estimator of 4

Year _
: Xi X Zi /B
2005 22954 - 0 21000
2006 23166 24954 0,7143 23824
2007 22402 23060 0,8333 22717
2008 19656 22841 0,8824 22624
2009 20142 22045 0,9091 21950
2010 22618 21664 0,9259 21615
2011 21544 21823 0,9375 21772
2012 - 21783 0,9459 21741
Source: Own calculation
30000
25000
15000 ——xi
—=-3B
10000
5000
0 T T 1

Fig. 2 Actual and estimated numbers of claims

Figure 2 shows the credibility estimate of the number of
claims in successive years for the gamma G(8 400; 0,4) prior
distribution for A.

Estimated number of claims increasing with time until it
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reaches the level of the actual claims numbers after 7 years.
This increase is due to progressively more weight, i.e.
credibility, being given to the data from the risk itself and
correspondingly less weight being given to the collateral data,
i. e. the prior distribution of 1.

VI.

Our problem is to estimate the pure premium, i.e. the
expected aggregate claims for a risk in next year. So X is
arandom variable denoting total claims from a risk in a
coming year and the distribution of X is normal, depends on
the value of an unknown parameter 6. The conditional
distribution of X/0 is normal and the unknown parameter 6 is
the mean of this distribution, because of

THE NORMAL/NORMAL MODEL

X/0 ~ N(6;07) (15)
The prior distribution of  is normal,
0 ~ Nluo}) (16)

where g, 012 022 are known. Suppose we have n past

observations of X, X=(X;,X,,...X,). Our problem is to

estimate E(X /@) and we use again the Bayesian estimate

with respect to the quadratic loss.
If @ was known, the pure premium would be

E(X/0)=6 17)
So the problem of estimating E(X /@) is the same as the
problem of estimating parameter 0 as a Bayesian estimator
0, = E(0/x) (18)
i.e. the posterior mean of 6 given x. We need to know the
form of the posterior density function f (6/x).
Suppose we know data of n previous observations

X = (X, X,, ... X,) SO we can express the likelihood f(6/x)
as
1 ) 2 =
n - ——(x-0) 7i§( o) LU I
f(e/X)OCHe 201 —e 2612i:1x e 20f +o'12
i=1

As we can see, the likelihood function is quadratic in 6, and

—l(al 0% +ay €+a3)
can be shown to be proportional to e 2

When ignoring terms not involving #, we can express the
normal prior distribution as being proportional to

_(0-n)
£(6)=——

20'22
N2z o,

The posterior density f(@/x) by Bayes  theorem is
proportional to

1

20'2

+*

62 >
o2

e o«ce

1

20'2

nxX

of

n H
29
o2

2 2,
-4 0
20‘12

f(0/x)oc e

and after adjustments
1

4

n 1 nX u

s 55

5+ ~ e
2 o1 02 o1p 02

f(0/x)ce (19)
So the posterior distribution f(6/x) is a normal, say with
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arameters 22,2, 1i. e.
I

(0-z)

_ 1
252

1 g2 A
~2
oce 20

&2

f(@/x)=ce (20)
We will find the parameters 7, o> by equating the power

of ¢* and 6 in two different expression of f(€/x). Then we
get

2 7 2
MO, +NXo,

ﬁ: 2 2 (21)
(op +nO'2
2 2
~> O, O
— 2l 2 > (22)
(oF -i-nO'2

We can find the Bayesian estimation of pure premium as the
mean of the posterior distribution, i. e.

Hol+nxXol

o, = 23
= ot ino? @)

That can be rewritten as
E(0/x)=Zx+(1-2Z)u (24)

which is a credibility estimate of the pure premium E(6/x)

with factor credibility
o,
2
o
L +o!

n
2

1
n+—1
O-Z

2
no,

Z:

25
o7 +no? )

VII.
Total aggregate claims in a particular insurance company
are modeled with a normal distribution N(@; af), where 6 is

unknown and o =1350007%
6 suggests that it is distributed by N(,u; 022) with known
=150 000°.

APPLICATION OF NORMAL/NORMAL MODEL

Prior information about

parameters x = 2100000 and &

Table 11 Bayes estimations of pure premium

i Xi x z 0

1 2112000 0 0 2100000
2 2140000 2112000 0,55249 2106630
3 1955000 2126000 0,71174 2118505
4 2315000 2069000 0,78740 2075591
5 2280000 2130500 0,83160 2125364
6 2035000 2160400 0,86059 2151979
7 2215000 2139500 0,88106 2134802
8 2150285 0,89629 2145070

Source: Own calculation

Aggregate claims from the last seven years were not
incorporated in the prior information and they are in Table II,
column named x;. We have already observed the values of
X1, X2, ..., Xy and we wish to estimate the expected aggregate
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claims in the coming , i. e. (n+1)th year.
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Fig. 3 Updated credibility factors of normal/normal model

Figure 3 shows the credibility factor Z in successive years.
Calculation of credibility factors Z; in each year i on the basis
of previous year’s data x; of the Table Il is an application of
formula (25). We can see from this formula and from the
figure 3 that the credibility factor Z increases with time.

The Bayes estimations of the pure premiums for each year
by equation (24) with credibility factors calculated by (25)
there are in the last column of Table II.

Figure 4 shows the actual and estimated aggregate claims

amounts in successive years with the prior normal N(,u;azz)

distribution for unknown parameter 6, which is the pure
premium.
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Fig. 4 Actual and estimated aggregate claims

VIII.

For estimation of a binomial probability ® from a single
observation X with the prior distribution of ® being beta with
parameters « and S, we will investigate the form of the
posterior distribution of ©.

Prior beta density function by assumption is

f(0)co ™ (1-0)", 0<6<1
F(a+ﬂ)
Tla)-T(8)

distribution on (0,1) is a special case of the beta with o = 1 and

THE BINOMIAL/BETA MODEL

omitting the constant Note that the uniform
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Likelihood is
f(x/0)cd* (1-6)", x=0,1,...,n,

n
omitting the constant { j . By (4) we get the posterior density
X

of ® inthe form
f (9/ X) oC HX (1— 9)”7)( 9“'1 (1_ 9) B1_ 9a+x—1 (1_ 6) n—x-1

We can see, apart from the appropriate constant of
proportionality, that it is the density of a beta random variable

with parameters «'=a+x and f'=f+n—x. Therefore
we can conclude that the posterior distribution of ® given X is
the beta distribution with parameters
a'=a+X
f'=F+n-x
Now we can determine the Bayesian estimator of ® under

quadratic loss. By (6) the Bayesian estimator is the mean of
this distribution, that is

a+X a+X
68 = =
(@+x)+(B+n-x) a+p+n
The Bayesian estimator of binomial ® can be expressed
as follows:

(26)

(27)

B n .§+ a+f «a
* a+pf+n n a+pB+n a+p
If we put Z = and u= , Which is the
a+pf+n a+pf

mean of the prior beta distribution, we get by (1) the Bayesian
estimator of ® in the form of credibility formula:

03=Z-%+(1—Z)-u (28)

IX. APPLICATION OF THE BINOMIAL/BETA MODEL

Let @ is unknown probability of getting a critical illness. To
estimate this probability we have found the data about the
number of insurance agreements on critical illness and the
number of claims in these insurance contracts in the past seven
years. Found data are shown in Table Il in the columns
designated as “n” and “x”.

Before data collecting we have no information at all about
this probability 6. In this situation if we aim the Bayes estimate
of 0, we need a “non-informative™ prior distribution, which is
uniform distribution on <0; 1>, or beta distribution with
parameters o =1 and g =1. This prior distribution of the
parameter & we will use in the first year for which we have no
data.

In each of subsequent year we will update the parameters a
and S according to the expression (26). These updated
estimates of parameters of posterior distribution include the
Table I11.
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Table 111 Updated estimates of parameters of posterior distribution

year n X o p
1 524 15 1 1
2 866 35 16 510
3 2879 85 51 1341
4 4420 155 136 4175
5 5916 325 291 8400
6 8661 411 616 13991
7 9299 504 1027 22241
8 1531 31036

Source: Own calculation

In table IV we can find the Bayesian estimators 6z of
probability € of getting a critical illness, updated in each year
by new information that we have. Values of 63 we have got in
each year as a mean of posterior distribution.

Table IV Bayesian estimators of binomial probability

year n X n/x Os
1 524 15 0,0286 0,5
2 866 35 0,0404 0,0304
3 2879 85 0,0295 0,0366
4 4420 155 0,0351 0,0318
5 5916 325 0,0549 0,0335
6 8661 411 0,0475 0,0422
7 9299 504 0,0542 0,0441
8 0,0470
Source: Own calculation
0.6
0.5 ‘\
0.4
0.3 \ ——0B
\ == x/n
0.2
0.1 \:
0 T T T T T T T
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Fig. 5 Comparison of MLE and Bayesian estimator of binomial

probability 6

We can see by expression (28), that Bayesian estimator 6z is

a weighted average of the maximum likelihood estimator
(MLE) x/n of binomial probability ¢ and of the prior mean
al(a+ ). The prior mean can be described as “no data”
estimate, and the MLE as the “all data” estimate. The Bayesian
estimate is somewhere in between these two. Comparison of
MLE and Bayesian estimator of probability & provides
Figure 5.

X. THE PARETO/GAMMA MODEL
The aggregate claims X from a risk are assumed to have the
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following Pareto density function:
0
f(X)=————,
( ) (1+ X)+(6’+1)

where 6 is an unknown parameter. Suppose 6 has a gamma
distribution G(a; f). Let X=(X,,X,,...X,) be a random
sample from the Pareto distribution. We will derive the
posterior distribution of the parameter 6:

f(6/x)oc prior x likelihood

w0 e x [[0@+x)""
i=1

0< X< +o0

n
oc 9a+n—1 e—ﬂe % He—(9+1) log(1+x; )
i=1

o 9a+n—1 e-e(ﬂ+t(x))

where t(x) = iZl:log(1+ X, ).

Therefore, the posterior distribution is gamma
G(a+n;f+t(x)) and the Bayesian estimate of 6 with

respect to the quadratic loss function is the mean of the
posterior distribution;

0, a+n 29)

B+ anlog(1+ X; )

This form of posterior mean as Bayesian estimator of 6
cannot be written in the form of the credibility formula. This is
the example that the Bayesian approach to estimation may not
always produce an estimator which can be rearranged to the
form of credibility estimator. The Bayesian approach to
credibility provides an answer to the problem of determining
the credibility factor Z, at least in certain cases.

Xl. EMPIRICAL BAYES CREDIBILITY THEORY

The assumption that we know the prior distribution
including parameters, as in previous models, is very strong and
so we need a more practical tool to relax this assumption. The
empirical Bayes credibility models that we will briefly
discussed in this section will provide an invaluable alternative
for this work.

Empirical Bayes credibility theory is the collective name for
the vast literature which has developed since Biihimann and
Straub’s (1970). Although this model is a basis for other more
specific models such as hierarchical, multidimensional or
regression credibility models.

Our problem is to estimate the premium, or claim rate, for

an individual risk. Let Xl,Xz,...,Xj,...,Xndenote the

aggregate claims, or numbers of claims, from this risk in
successive periods. We want to estimate the premium but do
not want to make the strong distributional assumptions of the

normal/normal model. Our first assumption is that the X,

j=12,...,n are identically distributed. Next we assume that

338
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the distribution of Xj ‘s depends on a parameter 6 whose is

fixed but unknown. As in the Bayesian formulation we assume
that @ varies over some super-population of risks, but we make
no assumptions regarding the distribution of . We do assume

that, given 6,
m(0)=E(X,/6)

s2(0)=D(X, /0)

The true premium for our risk is m(Q). We will assume that

(30)
(1)

we have n observed values of the Xj 'S, say X, Xy, X,

which we will denote X. Our problem is to estimate m(@) for

given X. In the empirical Bayes model we aim to found the
pure premium with respect to quadratic loss, which equals

E (m(8)/x).
The solution put forward by Bihlmann (1967) is to find the
best approximation to E(m(&)/x) among those functions

which are linear in the observed data. The form of empirical
Bayes credibility premium has been derived as

E(m(6)/x)=Z X +(1-Z)E(m(9)) (32)
with factor credibility
EnSZ(a) (39
" D(m())

In empirical Bayes credibility Model 1 we use the available
data (Tab. 5) to estimate the quantities E (m(6)), D (m(6)),

E(sz(e)), and hence obtain a Buhlman type credibility

estimate (1967) for a particular risk. In Model 2 the approach
of Buhlmann and Straub (1970) allowing for varying annual
volumes in the risks, and then after standardizing annual
aggregate claims by these volumes to obtain empirically based
credibility estimates for pure premiums. The example of
application of Model 2 we can find for example in [7], [13],
[15].

Table V Baseline data for empirical Bayes credibility Model 1

Risk Year j
i 1 2 j n
1 X11 X12 le Xln
2 X21 Xzz XZ] X2n
0 g g 0 g
i X Xis Xij Xin
0 g g 0 g
N XNl XNZ XNJ' XNn

Suppose again we want to estimate the pure premium or the
average number of claims for a particular risk, which is one,

say i-the risk of N similar risks. Let X; means of the total

claims, respectively total number of claims for the i-th risk,
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i=12,..,N, inthej-thyear, j=1 2,...,n, asin Table V.
Derived relations necessary for estimates are:

est E(m(0))= X (34)
estE (s 9):%2% (x, - X,f (35)
i=1 - j=1
1 & v
_Z(xi _X) -
estD(m@)= L7, . (36)
N2 X

The derivation of these relations can be found in Bithimann
(1967) and Waters (1994).

XIl. APPLICATION OF EMPIRICAL BAYES MODEL 1

The data in Table VI show the aggregate claims in five
years 2006-2010 experienced by four Czech insurance
companies (1-CP, 2-Kooperativa, 3-Allianz, 4-CSOB) in
millions of Czech crowns.

Table VI Aggregate claims in four Czech insurance companies

Insurance Year j

Comipany 1 9 3 4 5
1 9331 | 7839 8275 8280 8190
2 10114 | 9399 9947 | 10726 | 11076
3 2672 | 2523 2510 3086 3285
4 1589 | 1747 2072 2095 2124

Source: www.cap,cz

The next table contains calculations for estimations
E(m(6)), D(m(0)), E(sz(e)) by expressions (34), (35),
(36).

Table VII Auxiliary calculations

1 5

. A - o\ _

i X, (X, - X) 4JZ(X X,f

1| 83830 | 644652100 3135405

2 10252,4 19433990,56 435832,3

3 | 28152 | 917362944 123269,7

4 1925,4 15355425,96 58672,3
> | 23376 | 5040956696 931314,8

Source: Own calculation

Substituting from Table VII we get

est E(m(@))= X =23376/4 =5844

est E (s?(6))=931314,8/4 = 232828,7

est D(m(#)) = 50409566,96/3 - 931314,8/ 20 =
=16756623


http://www.cap,cz/
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Now we can calculate factor credibility Z by (33):

n 5
- E(s?(0)) 5, 2328287 =0,997229
D(m(9)) 16756623

Now we know all the necessary information for calculating
the credible net premium for each insurance company using
the formula (32). These estimates for the next year are shown
in Table VIII.

Table VIII Estimates the credible net premiums for next year

Insurance company E(m(e) x)
1-CP 8375,96
2-Kooperativa 10240,18
3-Allianz 2823,59
4-CSOB 1936,26
Source: Own calculation
XI11l. CONCLUSION
Bayesian estimation theory provides methods for

permanently updated estimates of the number of claims and
of the pure premium for each coming year in insurance
company. Bayesian approach combine prior information that
are known before collected of any data and information
provided by the sample data, which are number of claims or
aggregate claim amounts in previous n years.

The approach used in the binomial/beta, Poisson/gamma
and normal/normal models is essentially the same. The only
one important difference is in the distributional assumptions.
This approach has been very successful in these three cases. It
has made the notion of collateral data very precise, by
interpreting it in terms of a prior distribution and has given
formulae for the calculation of the credibility factor.

The biggest advantage of the Poisson/gamma,
normal/normal and binomial/beta models for insurance
practice is possibility to express them in the form of credibility
formulas by expressions (14), (24) and (28). These formulas
allow easy application of not quite trivial theory in insurance
practice, as seen from the examples in sections V, VIl and IX.

However, the Bayesian approach does have a few serious
drawbacks and limitations. This approach can be criticized as
subjective, because we should always start with a prior
distribution of estimated parameters.

Formulas (13) and (25) involve parameters, £ in the former
and o1, o, in the latter, which we have assumed to be known.
The values of these parameters reflect the subjective opinion
of the decision maker; there is no question of estimating these
parameters from data.

The second difficulty is that even if our problem fits into a
Bayesian framework, the Bayesian approach may not work in
the sense that it may not produce an estimate which can readily
be rearranged to be in the form of a credibility estimate (1).
This is the case of the model Pareto/gamma in section X.

The problem of estimation of unknown parameters when
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some data from related risks are available solves the so-called
Empirical Bayes Credibility Theory. Its principle is briefly
explained in section XI, detailed interpretation is not the
subject of this article. This theory is the content of many
publications, for example [1], [2], [3], [4], [5], [13], [15].

REFERENCES

P. J. Boland, Statistical and Probabilistic Methods in Actuarial

Science, London: Chapman&Hall/CRC, 2007.

H. Bihlmann, Experience rating and credibility, ASTIN Bull. 4, 119,

1967.

H. Buhlmann, E. Straub, Glaubwirdigkeit fir Schadensatze.

Mitteilungen  der  Vereinigung, Schweizerische Versicherungs-

mathematiker 70 (Credibility for loss ratios. Communications of the

Association Swiss actuaries 70), pp. 111-133, 1970.

H. Bihlmann, A. Gisler, Course in Credibility Theory and its

Applications, Berlin: Springer, 2005.

R. Kaas, M. Goovaerts, J. Dhaene, M. Denuit, Modern Actuarial Risk

Theory, Boston: Kluwer Academic Publishers, 2001.

E. Kotlebova, Bayesovska Statistickd indukcia v ekonomickych

aplikaciach (Bayesian Statistical Inference in Economic Applications),

Bratislava: Ekoném, 2009.

B. Linda, J. Kubanova, Credibility Premium Calculation in Motor

Third-Party Liability Insurance, Proceedings of the 14th WSEAS

International Conference on Mathematical and Computational

Methods in Science and Engineering (MACMESE'12), Sliema, Malta,

September 7-9, 2012, pp. 259-263.

Meelis Kaarik, Merili Umbleja, On claim size fitting and rough

estimation of risk premiums based on Estonian traffic insurance

example, International Journal of Mathematical Models and Methods

in Applied Sciences, Issue 1, Volume 5, 2011, pp. 17-24

V. Pacékova, The Bayesian Inference in Actuarial Sciences, Central

European Journal for Operations Research and Economics, Volume 5,

Number 3-4, 1997, pp. 255-268.

V. Pacékov4, Bayesian Estimations in Insurance Theory and Practice,

Proceeding of the 14th WSEAS International Conference on

Mathematical and Computational Methods in Science and Engineering

(MACMESE'12), Sliema, Malta, September 7-9, 2012, pp. 127-131.

L. Preckova, Asymmetry of information during the application of the

model for valuation the sum insured in case of business interruption in

the Czech Republic, International Journal of Mathematical Models and

Methods in Applied Sciences, Issue 1, Volume 5, 2011, pp. 212- 219,

E. Soltés, V. Pacékova, T. Soltésova, Vybrané kredibilné regresné

modely v havarijnom poisteni (Selected credibility regression models in

accident insurance), Ekonomicky casopis, Vol. 54, No. 2, 2006, pp.

168-182.

E. Soltés, Modely kredibility na vypocet poistného (Models for

calculating credibility premiums), Bratislava: (Publisher) Vydavatel'stvo

EKONOM, 2009.

[14] Y. K. Tse, Nonlife Actuarial Models, Cambridge: University Press,
20009.

[15] H. R. Waters, An Introduction to Credibility Theory, London and

Edinburgh: Institute of Actuaries and Faculty of Actuaries, 1994.

(1]
(2
(31

(4]
(5]
(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

Prof. RNDr. Viera Pacakova, PhD. graduated in Econometrics (1970) at
Comenius University in Bratislava, 1978 - RNDr. in Probability and
Mathematical Statistics at the same university, degree PhD at University of
Economics in Bratislava in 1986, assoc prof. in Quantitative Methods in
Economics in 1998 and professor in Econometrics and Operation Research at
University of Economics in Bratislava in 2006.

She was working at Department of Statistics, Faculty of Economic
Informatics, University of Economics in Bratislava since 1970 to January
2011. At the present she has been working at Faculty of Economics and
Administration in Pardubice since 2005.

Prof. Pacakovd has been concentrated on actuarial science and
management of financial risks since 1994 in connection with the actuarial
education in the Slovak republic and she has been achieved considerable
results in this area.





