
 

 

  
Abstract—The article explains the possibilities of permanently 

updated estimates in insurance theory and practice and presents 
several examples of the derivation of the posterior distribution for 
certain estimation situations with given prior distributions. Article 
investigates the Bayesian estimators of the parameters of binomial, 
Poisson and normal distribution using quadratic loss function. The 
choice of the prior distribution specifies the models binomial/beta, 
Poisson/gamma and normal/normal. In insurance practice these 
models allow us permanently updated estimates of binomial 
probability, of the credibility premium, or credibility number of 
claims for short-term insurance contracts. The possibility to express 
the Bayesian estimators in the form of credibility formulas allows 
easy application of these models in insurance practice. 
 

Keywords—Bayesian estimation, Binomial/beta model, 
Credibility premium, Normal/normal model, Posterior distribution, 
Poisson/gamma model, Prior distribution. 

I. INTRODUCTION 
 typical feature of the insurance practice is the need to set 
premium at the beginning of the insurance contract. 

Number of occurrence of claims and the total claim amounts 
for insurance company in the future are the random variables. 
Their sufficiently, precise and reliable estimate is extremely 
important to determine the correct premium for next year in 
insurance company. 

Credibility theory is a technique, or set of techniques, for 
calculating premiums for short term insurance contracts. The 
technique calculates a premium for a risk using two 
ingredients: past data from the risk itself and collateral 
data, i.e. data from other sources considered to be relevant. 
The essential features of a credibility premium are that it is a 
linear function of the past data from the risk itself and that it 
allows for the premium to be regularly updated as more data 
are collected in the future (Waters, 1994).  

A credibility premium represents a compromise between the 
two above mentioned sources of information. The credibility 
formula for estimation of pure premium or claim frequency cP  
in next year is: 

( ) µZPZP rc −+= 1       (1) 

where rP  is estimation based on own past data in insurance  
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company, or risk,  μ  is estimation based on collateral data and  
Z  is a number between zero and one, known as the credibility 
factor. Credibility factor Z is a measure of how much reliance 
the company is prepared to place on the data from the policy 
itself. 

 Credibility formula is often used in the form 
( ) µZxZPc −+= 1       (2) 

 We will present Bayesian approach to credibility 
estimation by three important models for insurance practice. 

II. THE BAYESIAN INFERENCE  
The Bayesian philosophy (1763) involves a completely 

different approach to statistical inference. Suppose 
)...,,( 21 nxxx=x  is a random sample from a population 

specified by density function ( )θ/xf  and it is required to 
estimate parameter .Θ   

The classical approach to point estimation treats parameters 
as something fixed but unknown. The essential difference in 
the Bayesian approach to inference is that parameters are 
treated as random variables and therefore they have probability 
distributions.  

Prior information about Θ  that we have before collection 
of any data is the prior distribution ),(θΘf which is probability 
density function or probability mass function. The information 
about Θ  provided by the sample data )...,,( 21 nxxx=x  is 

contained in the likelihood ( ) ( )∏
=

=
n

i
ixff

1

// θθx . Bayes 

theorem combines this information with the information 
contained in )(θΘf  in the form 

( ) ( ) ( )
( ) ( )∫

=Θ

θ

θθθ
θθθ

d
/

ff
fff

x
xx                 (3) 

that determines the posterior distribution )( xθΘf .  
So after collecting appropriate data we determine the 

posterior distribution that is the basis of all inference 
concerning Θ . 

Note that ( ) ( ) ( )∫=
θ

θθθ dfff xx  does not involve Θ.  It 

is just a constant needed to make it a proper density that 
integrates to unity. A useful way of expressing the posterior 
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density is to use proportionality. We can write  

( ) ( ) ( )θθθ fff // xx ∝                 (4) 

or simply 
posterior ∝  likelihood · prior. 

 
The posterior distribution contains all available information 

about Θ  and therefore should be used for making decisions, 
estimates or inferences. 

The Bayesian approach to estimation states that we should 
always start with a prior distribution for unknown parameter, 
precise or vague according to the information available.  

Note that we are referring to a density here implying that Θ  
is continuous.  This concerns most applications because even 
when X is discrete, as in binomial or Poisson distributions, the 
parameters π or λ will vary in a continuous space 1;0   or 

)∞+,0  respectively. 
There may be some situations in which we need „non-

informative” prior. For example if Θ  is a binomial distributed 
and we have no prior information about ,Θ  the uniform 

distribution on interval 1;0  as a prior distribution would 

seem appropriate.  
 We often have prior information about parameters based 

on previous practice, respectively, estimates by experts. The 
values of these parameters reflect the subjective opinion of the 
decision maker, so Bayesian approach can be criticized as 
subjective. 

III. THE BAYESIAN ESTIMATOR 
If we have found posterior distribution of an unknown 

parameter ,Θ we need to answer the question how do we use 
the posterior distribution of ,Θ  given the sample data 
 )...,,( 21 nxxx=x , to obtain an estimator of Θ . 

At first we must specify the loss function ( ),xg which is 

a measure of the “loss” incurred when ( )xg  is used as an 
estimator of Θ. We seek a loss function which is zero when the 
estimation is exactly correct, that is ( ) Θ=xg  and which 

increases as ( )xg  gets father away from Θ .  
There is one very commonly used loss function, called 

quadratic or squared loss. The quadratic loss is defined by  
( )( ) ( )[ ]2; θθ −= xx ggL          (5) 

and it is related to mean square error from classical statistics.  
We will show that the Bayesian estimator that arises by 

minimizing the expected quadratic loss is the mean of 
posterior distribution. So 

( )( )( ) ( )[ ] ( ) θθθθ d; 2 xxx fggLE ∫ −=  

and  
( )( )( )
( ) ( )[ ] ( ) θθθθ d2; xx
x
x fg

g
gLE

∫ −=
∂

∂
 

equating to zero 

( ) ( ) ( )∫∫ = θθθθθ dd xxx ffg  

Because of ( )∫ =1dθθ xf , we get 

( ) ( )xx θEg =             (6) 
We will consider three important examples of derivation of 

the posterior distribution and the Bayesian estimators under 
the quadratic loss function for certain estimation situations 
with given prior distributions, important for insurance practice. 

IV. THE POISSON/GAMMA MODEL 
Suppose we have to estimate the claim frequency for a risk 

and claim numbers have a Poisson distribution with parameter 
λ. We do not know the value of  λ  but before having any data 
from risk itself available, we assume that the prior distribution 
of  λ is a gamma distribution G(α; β).  

The claim frequency rate for a class of insurance business 
may lie anywhere between 0 and +∞. An insurer with a large 
experience may quite accurately estimate the rate.  

The gamma distribution may be convenient for representing 
uncertainty in a current estimate of the claim frequency rate. 
This distribution is over the whole positive range from 0 
to  + ∞, and the mean α/β can be set equal to the current best 
estimate. Uncertainty is represented by variance α/β2 of the 
gamma distribution G(α; β). 

Our objectives is to estimate the unknown parameter λ. 
Suppose we have n past observations )...,,( 21 nxxx=x . The 
Bayesian estimate of  λ, with respect to a quadratic loss 
function, given these data, is 

( )xλλ EB =                 (7) 
that is the mean of the posterior density of  λ.  

By assumption the density function of the prior G(α; β) 
distribution is 

( ) ( )
1

2
1 −−−− =

Γ
= αβλβλα

α

λλ
α

βλ ecef     (8) 

The distribution of a number of claims is the Poisson with a 
fixed but unknown parameter λ, so the likelihood function has 
the expression:   
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By Bayes’ theorem we get the posterior density of  λ, 
given )...,,( 21 nxxx=x , in the form 

( ) ( ) 11/ −++−−−− ∑=⋅∑∝ ii xnxn eeef αβλαβλλ λλλλ x  (10) 

that is the gamma distribution with the new parameters  

n

x
n

i
i

+=

+= ∑
=

ββ

αα

1

1
1               (11) 

Thus the Bayesian estimator of  λ using the quadratic loss is 
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which can be rewritten as 
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If we put factor credibility as 

n
nZ
+

=
β

        (13) 

then we get 
  ( ) ( ) µλλ ZxZEB −+== 1x        (14) 

which is the credibility formula for updating claim frequency 
rates.  

It can be seen from expression of credibility factor, since n 
is non-negative and β is positive, that Z is in the range zero to 
one and it is increasing function of  n. If no past data from the 
risk itself are available, then n = 0 and Z = 0 too and the best 
estimate of λ is α/β, the mean of the prior gamma distribution. 
It can be seen that Z does not take the value one for any finite 
value of n. 

The value of Z depends on the amount of data available for 
the risk n, and the collateral information through β, which 
reflect the variance α/β2 of the prior distribution. 

V. APPLICATION OF POISSON/GAMMA MODEL 
Credibility formula (14) allows easy application of 

Poisson/gamma model in insurance practice. We try to show it 
in this sample. 

The annual number of claims resulting from motor third-
party liability insurance in insurance company in the years 
2005-2011 is given in Table I, column labeled as xi. In 
Poisson/gamma model for claim numbers we have assumed 
our prior knowledge about the unknown parameter (annual 
claim rate) λ summarized by gamma distribution G(α; β) with 
parameters α = 8400 and β = 0,4.  

The number of claims arising from the risk in each year has 
a Poisson distribution and we do not know the value of 
parameter λ. What we do know is a prior distribution of λ, 
which we will take to be gamma G(α; β) with parameters α = 
8400 and β = 0,4. This distribution has mean μ = α/β = 21 000. 
The actual numbers of claims arising each year from this risk 
are in the column named  xi  of Table I. 

 Figure 1 shows the credibility factor in successive years. 
Calculation of credibility factors Zi  in each year i on the basis 
of previous year’s data is an  application of formula (13). We 
can see from this figure that the credibility factor increases 
with time. As time goes we collect more data from the risk 
itself and the higher the credibility factor should be because of 
the increasing reliability of the data in estimating the true but 
unknown expected number of claims for the risk. 
Mathematically the fact that Z increases with time for this 
particular model is simply because expression (13) is an 

increasing function of n for any positive value of β.  
 

 
 
Fig. 1 Credibility factors of Poisson/gamma model in successive 

years  
 
Last column denoted as λB  contains values of Bayes 

estimators of annual claims numbers  for each year  based of 
past ( i-1) observations by equation (14).  

 
Table I Procedure to update Bayes estimator of  λ 

Year 
i xi x  Zi λB 

2005 22954 - 0 21000 
2006 23166 24954 0,7143 23824 
2007 22402 23060 0,8333 22717 
2008 19656 22841 0,8824 22624 
2009 20142 22045 0,9091 21950 
2010 22618 21664 0,9259 21615 
2011 21544 21823 0,9375 21772 
2012 - 21783 0,9459 21741 

Source: Own calculation 
 

 
 

Fig. 2 Actual and estimated numbers of claims 
 
Figure 2 shows the credibility estimate of the number of 

claims in successive years for the gamma G(8 400; 0,4) prior 
distribution for λ. 

Estimated number of claims increasing with time until it 
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reaches the level of the actual claims numbers after 7 years. 
This increase is due to progressively more weight, i. e. 
credibility, being given to the data from the risk itself and 
correspondingly less weight being given to the collateral data, 
i. e. the prior distribution of λ. 

VI. THE NORMAL/NORMAL MODEL 
Our problem is to estimate the pure premium, i.e. the 

expected aggregate claims for a risk in next year. So X is 
a random variable denoting total claims from a risk in a 
coming year and the distribution of X is normal, depends on 
the value of an unknown parameter θ. The conditional 
distribution of  X/θ  is normal and the unknown parameter θ  is 
the mean of this distribution, because of  

( )2
1;~ σθθ NX              (15) 

The prior distribution of θ  is normal, 
 ( )2

2;~ σµθ N                     (16) 

where μ, 2
1σ  2

2σ  are known. Suppose we have n past 

observations of X, )....,,( 21 nxxx=x  Our problem is to 

estimate ( )θXE  and we use again the Bayesian estimate 
with respect to the quadratic loss.  

 If θ was known, the pure premium would be 
    ( ) θθXE =                      (17) 

So the problem of estimating ( )θXE  is the same as the 
problem of estimating parameter θ as a Bayesian estimator  

( )xθθ EB =                (18) 
i.e. the posterior mean of  θ given x. We need to know the 
form of the posterior density function ( )x/θf . 

 Suppose we know data of n previous observations  
)...,,( 21 nxxx=x  so we can express the likelihood ( )x/θf  

as 

( )
( ) ( ) θ

σ
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As we can see, the likelihood function is quadratic in θ, and 

can be shown to be proportional to 
( )32

2
12

1 aaa
e

++− θθ
. 

When ignoring terms not involving θ, we can express the 
normal prior distribution as being proportional to 

( )
( )

θ
σ

µ
θ
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1 +−
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∝= eef  

The posterior density ( )x/θf  by Bayes` theorem is 
proportional to  

( )
θ

σ

µ
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σ
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σ
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and after adjustments 
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So the posterior distribution ( )x/θf  is a normal, say with 

parameters µ~ , ,~2σ i. e. 

( )
( )

θ
σ

µ
θ

σσ

µθ

θ 2
2

22

2

~

~

~2

1
~2

~

/
+−

−
−

∝= eecf x        (20) 

We will find the parameters µ~ , 2~σ  by equating the power 

of θ2 and θ in two different expression of ( )x/θf . Then we 
get 

2
2

2
1

2
2

2
1~

σσ
σσµµ

n
xn

+
+

=                  (21) 

2
2

2
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2
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12~

σσ
σσσ
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=                  (22) 

We can find the Bayesian estimation of pure premium as the 
mean of the posterior distribution, i. e. 

2
2

2
1

2
2

2
1

σσ
σσµθ

n
xn

B +
+

=           (23) 

That can be rewritten as  
( ) ( ) µθ ZxZE −+= 1x           (24) 

which is a credibility estimate of the pure premium ( )xθE  
with factor credibility 
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VII. APPLICATION OF NORMAL/NORMAL MODEL 
Total aggregate claims in a particular insurance company 

are modeled with a normal distribution ( )2
1; σθN ,  where θ is 

unknown and .000135 22
1 =σ  Prior information about 

 θ  suggests that it is distributed by ( )2
2;σµN  with known 

parameters 0001002=µ  and .000150 22
2 =σ  

 
Table II Bayes estimations of pure premium 
i xi  Z θB 

1 2112000 0 0 2100000 

2 2140000 2112000 0,55249 2106630 

3 1955000 2126000 0,71174 2118505 

4 2315000 2069000 0,78740 2075591 

5 2280000 2130500 0,83160 2125364 

6 2035000 2160400 0,86059 2151979 

7 2215000 2139500 0,88106 2134802 

8  2150285 0,89629 2145070 
Source: Own calculation 
 
Aggregate claims from the last seven years were not 

incorporated in the prior information and they are in Table II, 
column named xi. We have already observed the values of  
x1, x2, …, xn and we wish to estimate the expected aggregate 
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claims in the coming , i. e. (n+1)th  year. 
 

 
Fig. 3 Updated credibility factors of  normal/normal model 

 
Figure 3 shows the credibility factor Z in successive years. 

Calculation of credibility factors Zi  in each year i on the basis 
of previous year’s data xi of the Table II is an  application of 
formula (25). We can see from this formula and from the 
figure 3 that the credibility factor Z  increases with time. 

The Bayes estimations of the pure premiums for each year 
by equation (24) with credibility factors calculated by (25) 
there are in the last column of Table II. 

Figure 4 shows the actual and estimated aggregate claims 
amounts in successive years with the prior normal ( )2

2;σµN   
distribution for unknown parameter θ, which is the pure 
premium.  

 

 
Fig. 4 Actual and estimated aggregate claims  

VIII. THE BINOMIAL/BETA MODEL 
For estimation of a binomial probability Θ from a single 

observation X with the prior distribution of Θ being beta with 
parameters α and β, we will investigate the form of the 
posterior distribution of Θ. 

Prior beta density function by assumption is 
( ) ( ) 11 1 −− −∝ βα θθθf , 10 << θ      

omitting the constant 
( )

( ) ( )βα
βα

Γ⋅Γ
+Γ

. Note that the uniform 

distribution on (0,1) is a special case of the beta with α = 1 and 

β = 1. This corresponds to the non-informative case. 
Likelihood is  

( ) ( ) xnxxf −−∝ θθθ 1/ , nx ,...,1,0= , 

omitting the constant 







x
n

. By (4) we get the posterior density 

of  Θ  in the form 

( ) ( ) ( ) ( ) 1111 111/ −−+−+−−− −=−−∝ xnxxnxxf βαβα θθθθθθθ  

We can see, apart from the appropriate constant of 
proportionality, that it is the density of a beta random variable 
with parameters  x+=′ αα  and  xn −+=′ ββ . Therefore 
we can conclude that the posterior distribution of Θ given X is 
the beta distribution with parameters  

xn
x
−+=

+=′

ββ
αα

'
          (26) 

Now we can determine the Bayesian estimator of Θ under 
quadratic loss. By (6) the Bayesian estimator is the mean of 
this distribution, that is  

( ) ( ) n
x

xnx
x

B ++
+

=
−+++

+
=

βα
α

βα
αθ    (27) 

The Bayesian estimator of binomial Θ can be expressed 
as follows: 

βα
α

βα
βα

βα
θ

+
⋅
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+⋅
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=
nn

x
n

n
B     

If we put 
n

nZ
++

=
βα

 and 
βα

αµ
+

= , which is the 

mean of the prior beta distribution, we get by (1)  the Bayesian 
estimator of Θ  in the form of credibility  formula: 

( ) µθ ⋅−+⋅= Z
n
xZB 1       (28) 

IX. APPLICATION OF THE BINOMIAL/BETA MODEL 
Let θ is unknown probability of getting a critical illness. To 

estimate this probability we have found the data about the 
number of insurance agreements on critical illness and the 
number of claims in these insurance contracts in the past seven 
years. Found data are shown in Table III in the columns 
designated as “n” and “x”. 

Before data collecting we have no information at all about 
this probability θ. In this situation if we aim the Bayes estimate 
of θ, we need a “non-informative” prior distribution, which is 
uniform distribution on <0; 1>, or beta distribution with 
parameters α = 1 and β = 1. This prior distribution of the 
parameter θ we will use in the first year for which we have no 
data. 
 In each of subsequent year we will update the parameters α 
and β according to the expression (26). These updated 
estimates of parameters of posterior distribution include the 
Table III. 
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Table III Updated estimates of parameters of posterior distribution  

year n x α β 

1 524 15 1 1 
2 866 35 16 510 
3 2879 85 51 1341 
4 4420 155 136 4175 
5 5916 325 291 8400 
6 8661 411 616 13991 
7 9299 504 1027 22241 
8   1531 31036 

Source: Own calculation 
 

In table IV we can find the Bayesian estimators θB of 
probability θ of getting a critical illness, updated in each year 
by new information that we have. Values of θB we have got in 
each year as a mean of posterior distribution. 
 

Table  IV  Bayesian estimators of binomial probability θ 
year n x n/x θB 

1 524 15    0,0286    0,5 
2 866 35 0,0404 0,0304 
3 2879 85 0,0295 0,0366 
4 4420 155 0,0351 0,0318 
5 5916 325 0,0549 0,0335 
6 8661 411 0,0475 0,0422 
7 9299 504 0,0542 0,0441 
8    0,0470 

Source: Own calculation 
 

 
Fig. 5 Comparison of  MLE and Bayesian estimator of binomial 

probability θ  
 

We can see by expression (28), that Bayesian estimator θB is 
a weighted average of the maximum likelihood estimator 
(MLE) x/n of binomial probability θ and of the prior mean  

)./( βαα +  The prior mean can be described as “no data” 
estimate, and the MLE as the “all data” estimate. The Bayesian 
estimate is somewhere in between these two. Comparison of 
MLE and Bayesian estimator of probability θ provides 
Figure 5. 

X. THE PARETO/GAMMA MODEL 
The aggregate claims X from a risk are assumed to have the 

following Pareto density function: 

( )
( ) ( ) +∞<<

+
=

++
x

x
xf 0,

1 1θ

θ
 

where θ  is an unknown parameter. Suppose θ has a gamma 
distribution G(α; β). Let )...,,( 21 nxxx=x  be a random 
sample from the Pareto distribution. We will derive the 
posterior distribution of the parameter θ: 

( )

( ) ( )∏
=

+−−− +×∝

×∝
n

i
ixe
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1log11 θβθαθ  

    ( )( )xtn e +−−+∝ βθαθ 1  

where ( ) ( )∑
=

+=
n

i
ixt

1

1logx .  

Therefore, the posterior distribution is gamma 
( )( )xtnG ++ βα ;  and the Bayesian estimate of θ with 

respect to the quadratic loss function is the mean of the 
posterior distribution: 

( )∑ ++

+
= n

i
i

B

x

n

1́

1logβ

αθ       (29) 

This form of posterior mean as Bayesian estimator of θ 
cannot be written in the form of the credibility formula. This is 
the example that the Bayesian approach to estimation may not 
always produce an estimator which can be rearranged to the 
form of credibility estimator. The Bayesian approach to 
credibility provides an answer to the problem of determining 
the credibility factor Z, at least in certain cases. 

XI. EMPIRICAL BAYES CREDIBILITY THEORY 
The assumption that we know the prior distribution 

including parameters, as in previous models, is very strong and 
so we need a more practical tool to relax this assumption. The 
empirical Bayes credibility models that we will briefly 
discussed in this section will provide an invaluable alternative 
for this work. 

Empirical Bayes credibility theory is the collective name for 
the vast literature which has developed since Bühlmann and 
Straub`s (1970). Although this model is a basis for other more 
specific models such as hierarchical, multidimensional or 
regression credibility models.  

Our problem is to estimate the premium, or claim rate, for 
an individual risk. Let nj XXXX ...,,...,,, 21 denote the 

aggregate claims, or numbers of claims, from this risk in 
successive periods.  We want to estimate the premium but do 
not want to make the strong distributional assumptions of the 
normal/normal model. Our first assumption is that the jX , 

nj ...,,2,1=  are identically distributed. Next we assume that 
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the distribution of jX ‘s  depends on a parameter θ whose is 

fixed but unknown. As in the Bayesian formulation we assume 
that θ varies over some super-population of risks, but we make 
no assumptions regarding the distribution of θ.  We do assume 
that, given θ,  

( ) ( )θθ jXEm =         (30) 

( ) ( )θθ jXDs =2         (31) 

The true premium for our risk is ( )θm . We will assume that 

we have n observed values of the jX ’s, say nxxx ,...,, 21  

which we will denote x . Our problem is to estimate ( )θm  for 
given x . In the empirical Bayes model we aim to found the 
pure premium with respect to quadratic loss, which equals 

( )( )xθmE .  
The solution put forward by Bühlmann (1967) is to find the 

best approximation to ( )( )xθmE  among those functions 
which are linear in the observed data. The form of empirical 
Bayes credibility premium has been derived as 

( )( ) ( ) ( )( )θθ mEZxZmE −+= 1x    (32) 

with factor credibility 

( )( )
( )( )θ
θ

mD
sEn

nZ 2

+
=        (33) 

In empirical Bayes credibility Model 1 we use the available 
data (Tab. 5) to estimate the quantities ( )( )θmE , ( )( )θmD , 

( )( )θ2sE , and hence obtain a Bühlman type credibility 
estimate (1967)  for a particular risk. In Model 2 the approach 
of Bühlmann and Straub (1970) allowing for varying annual 
volumes in the risks, and then after standardizing annual 
aggregate claims by these volumes to obtain empirically based 
credibility estimates for pure premiums. The example of 
application of Model 2 we can find for example in [7], [13], 
[15]. 

 
 

Table V Baseline data for empirical Bayes credibility Model 1  
Risk 

    i 
Year j 

1 2 … j … n 
1 11X  12X   jX1   nX 1  
2 21X  22X   jX 2   n2X  
⁞ ⁞ ⁞  ⁞  ⁞ 
i 1iX  2iX   ijX

  inX  
⁞ ⁞ ⁞  ⁞  ⁞ 
N 1NX  2NX   NjX

  NnX  
 

 

Suppose again we want to estimate the pure premium or the 
average number of claims for a particular risk, which is one, 
say i-the risk of N similar risks. Let ijX  means of the total 

claims, respectively total number of claims for the i-th risk, 

,...,,2,1 Ni =  in the j-th year, ,...,,2,1 nj =  as in Table V. 
Derived relations necessary for estimates are: 
 
  ( )( ) XmEest =θ               (34) 

  ( )( ) ( )∑ ∑
= =

−
−

=θ
N

i

n

j
iij XX

nN
sestE

1 1

22

1
11

    (35) 
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∑

= =
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iij

N

i
i

XX
nnN

XX
NmestD

1 1

2

1´

2

1
11

1
1

θ    (36) 

               
The derivation of these relations can be found in Bühlmann 

(1967) and Waters (1994).  

XII. APPLICATION OF EMPIRICAL BAYES MODEL 1 
The data in Table VI show the aggregate claims in five 

years 2006-2010 experienced by four Czech insurance 
companies (1-ČP, 2-Kooperativa, 3-Allianz, 4-ČSOB) in 
millions of Czech crowns. 
 

Table VI Aggregate claims in four Czech insurance companies 
Insurance 
Company 

i 

Year  j 

1 2 3 4 5 

1    9331 7839 8275   8280 8190 
2  10114 9399 9947 10726 11076 
3   2672 2523 2510 3086 3285 
4   1589 1747 2072 2095 2124 

Source: www.cap,cz  
 
The next table contains calculations for estimations 

( )( )θmE , ( )( )θmD , ( )( )θ2sE  by expressions (34), (35), 
(36).  

 
Table VII Auxiliary calculations 

i iX  ( )2XX i −  ( )∑
=

−
5

1

2

4
1

j
iij XX  

1    8383,0 6446521,00      313540,5 
2 10252,4 19433990,56 435832,3 
3  2815,2   9173629,44 123269,7 
4  1925,4  15355425,96   58672,3 

∑  23376 50409566,96 931314,8 
Source: Own calculation 
 

Substituting from Table VII we get 
 

( )( ) 844523376/4 === XmEest θ  

( )( ) 828,72324/8,9313142 ==θsEest  

( )( )
62375616

20/8,9313143/96,50409566
=

=−=θmDest
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Now we can calculate factor credibility Z by (33): 

( )( )
( )( )

0,997229

62375616
7,8282325

5
2 =

+
=

+
=

θ
θ

mD
sEn

nZ  

 
Now we know all the necessary information for calculating 

the credible net premium for each insurance company using 
the formula (32). These estimates for the next year are shown 
in Table VIII. 

 
Table VIII Estimates the credible net premiums for next year 
Insurance company ( )( )xθmE  
1-ČP  8375,96 
2-Kooperativa 10240,18 
3-Allianz 2823,59 
4-ČSOB 1936,26 

Source: Own calculation 

XIII. CONCLUSION 
Bayesian estimation theory provides methods for 

permanently updated estimates of the number of claims and 
of the pure premium for each coming year in insurance 
company. Bayesian approach combine prior information that 
are known before collected of any data and information 
provided by the sample data, which are number of claims or 
aggregate claim amounts in previous n years. 

The approach used in the binomial/beta, Poisson/gamma 
and normal/normal models is essentially the same. The only 
one important difference is in the distributional assumptions. 
This approach has been very successful in these three cases. It 
has made the notion of collateral data very precise, by 
interpreting it in terms of a prior distribution and has given 
formulae for the calculation of the credibility factor. 

The biggest advantage of the Poisson/gamma, 
normal/normal and binomial/beta models for insurance 
practice is possibility to express them in the form of credibility 
formulas by expressions (14), (24) and (28). These formulas 
allow easy application of not quite trivial theory in insurance 
practice, as seen from the examples in sections V, VII and IX. 

However, the Bayesian approach does have a few serious 
drawbacks and limitations. This approach can be criticized as 
subjective, because we should always start with a prior 
distribution of estimated parameters. 

Formulas (13) and (25) involve parameters, β in the former 
and σ1, σ2 in the latter, which we have assumed to be known. 
The values of these parameters reflect the subjective opinion 
of the decision maker; there is no question of estimating these 
parameters from data.  

The second difficulty is that even if our problem fits into a 
Bayesian framework, the Bayesian approach may not work in 
the sense that it may not produce an estimate which can readily 
be rearranged to be in the form of a credibility estimate (1). 
This is the case of the model Pareto/gamma in section X. 

The problem of estimation of unknown parameters when 

some data from related risks are available solves the so-called 
Empirical Bayes Credibility Theory. Its principle is briefly 
explained in section XI, detailed interpretation is not the 
subject of this article. This theory is the content of many 
publications, for example [1], [2], [3], [4], [5], [13], [15]. 
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