
 

 

  
Abstract—In this paper we study the elliptic curve  and  
over ring ,  where . More precisely we will establish a 
isomorphism between and  . After we define an internal 
composition law  on the set  and we proof that 

. At the end we give an example of 
cryptography. 
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I. INTRODUCTION 

et  be a prime number. We consider the ring 
 

is vector space with basis . 
 
Lemma 1.1: 

is invertible in  if and only if  
Proof: 

Let be invertible then there exist  
such that . 
So, therefore . 
We have 

 
and 

 
We deduce , so  

Assume then there exist in such that 
. We can write  

 
 Lemma 1.2: 
Let be a prime number. Then the following propriety are 
equivalent: 

1. is field 
2.    and  [4] 

 Proof: 
 

Assume that  isn't field then there exist is not 
invertible. 
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 By lemma 1.1,  we have . So, , 
. We can write , with .  

Suppose  is not divisible by  then  doesnot divise   and 
hence , then .  
Since, see (proposition 1.2 [ 10, 11]), we have  [4]. 
We deduce that   or   [4]. 

 
Suppose  , we can write ,  then 
isnotinvertible absurd. 

Assume   [4] then . There exist in  such 

that ,  since  then  and hence 
. So  

We deduce that  isnot invertible absurd.  

II. THE SET  

Let  and are two abeliangroups  with the same 
unit element  such that  and  are isomorphism. 

We put  the isomorphism between  two groups  and 
. 

 
 Theorem 1.2:  
Let   and  the mapping defined by: 

 

Where  

        Then is an internal composition law, commutative 
with identity element  and all elements in E are invertible. 
Proof: 
It is clearly that is an internal composition law over  
Show that  isidentity elementof . 

 Let in E. 
If then  , 
because  and  is unit element of . 
Else, then ,  
because and  is unit element of  

is commutatif ? 
We have   and   two abeliangroups  with the same 
unit element . Let . 
If  then  
If    then  
If  then   
If  then  
Let  a prime number such that and  ,   are 
two elliptic curves defined over the field  by: 
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Proposition 2.2 :  
If  then  
Proof : 
Assume that ,then 

and , so , i.e :
, absurd.  

 
Theorem2.3: 
 The mapping defined by : 

 

and ,  is an isomorphism of groups.  
Proof : 

is defined?. 
 Let  then , then  

, i.e:
therefore . 
is injective?.  

 Let  such that  
then  so,  i.e:  is 
injective. 

issurjective?  
 Let then . It is clearly 
that  so,  
therefore  and  i.e:  
issurjective.  

is homomorphism?. 
 Let  there is three cases: 
1stcase : 

 

with  and . See [7, P27]. 

 

with  and . 

It is clear that  then, 

and . So hence, 
. 

2ndcase and : 

 

with  and . See [7, P27]. 

 

with  and . 

It is clear that  then,  

and . So hence, 

. 
3thcase  and : 
We have: 

 
and 

 

So,  isan homomorphism.  
 
Corollary2.4:  
Let and  the mapping defined by: 

 

Such that: 

 

Then isan internal composition law, commutative with 
identity element and all elements in E are invertible. 
Proof: 
Since theorem 2.1, proposition 2.2 and theorem 2.3,  we have 

is an internal composition law, commutative with identity 
element and all elements in E are invertible.                      
 
Corollary 2.5: 

. 
Proof: 
We have:  is isomorphic to . Then 

, so  
 

III. CRYPTOGRAPHICEXAMPLE 
Let ,  and  
 We have: 

 
 

Coding of elementsof . 
 We will give a code to each element  defined as it 
follows: 
if  ,  where for 

and ,  then we code  as  follows: 
 

We conclude, 
E={00100,00131,00361,00411,00641,01021,01051,01351,014
21,02111,02661,03141,03631,04311,04461,05161,05611,062
01,06231,06501,06541,10121,10241,10531,10651,12251, 
12521,14031,14041,14111,14661,15021,15051,15351,15421,
16201,16231,16501,16541,20011,20061,23141,23631,25251,
25521,26311,26461,31141,31631,33001,33321,33451,35301,
35401,36341,36431,41331,41441,42031,42041,44001,44241,
44531,46311,46461,50101,50601,51141,51631,52221,52551,
54311,54461,60261,60321,60451,60511,61021,61051,61351,
61421,62201,62231,62501,62541,63161,63301,63401,63611,
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65221,65551}. 
We have:  
Remark: 
With this application, we can encrypt and decrypt any 
message of any length.This application was implemented by 
Maple. 

IV. CONCLUSION 
In this paper, we present an example of cryptography that is 

not associative.  
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