Elliptic Curve Over $\mathbb{F}_{p}[i]$

Seddik.Abdelalim, Abdelhakim. Chillali and Said. Elhajji

Abstract-In this paper we study the elliptic curve $E_{a,b}$ and $E_{a,-b}$ over ring $\mathbb{F}_p[i]$, where $i^2 = -1$. More precisely we will establish a isomorphism between $E_{a,b}$ and $E_{a,-b}$. After we define an internal composition law* on the set $E = E_{a,b} \cup E_{a,-b}$ and we proof that $Card(E) = 2Card(E_{a,b}) - 1$. At the end we give an example of cryptography.

Keywords-Ellipticcurves, Ring, Finite Field, Isomorphism.

I. INTRODUCTION

et p be a prime number. We consider the ring $A = \{ a + ib / a, b \in \mathbb{F}_p, \quad i^2 = -1 \}.$ Ais vector space with basis (1, i).

Lemma 1.1:

a + ib is invertible in $\mathbb{F}_{p}[i]$ if and only if $a^{2} + b^{2} \neq 0$ [p] Proof:

 \Rightarrow)Let a + ib be invertible then there exist $c + idin \mathbb{F}_p[i]$ such that (a + ib)(c + id) = 1.

So, ac - bd + i(bc + ad) = 1, therefore $\begin{cases} ac - bd = 1\\ bc + ad = 0 \end{cases}$ We have

 $(a+ib)(a-ib)(c+id)(c-id) = (a^2+b^2)(c^2+d^2)$ and

(a+ib)(a-ib)(c+id)(c-id) = (a-ib)(c-id) = 1We deduce $(a^2 + b^2)(c^2 + d^2) = 1$, so $a^2 + b^2 \neq 0$ [p] \Leftarrow)Assume $a^2 + b^2 \neq 0$ [p]then there exist tinF_psuch that $(a^2 + b^2)t = 1$. We can write(a + ib)(a - ib)t = 1

Lemma 1.2:

Let *p*be a prime number. Then the following propriety are equivalent:

1. $\mathbb{F}_p[i]$ is field

2. $p \neq 1$ and $p \neq 3$ [4]

Proof:

 $1 \Leftarrow 2$

Assume that $\mathbb{F}_{p}[i]$ isn't field then there exist a + ib is not invertible.

This work was supported in part by the Laboratory of Mathematics, Computing and Application , Faculty of sciences University of Mohamed V Agdal, BP.1014 . Rabat, Morocco.

S. Abdelalim: Laboratory of Mathematics, Computing and

Application, Department of Mathematical and computer, Faculty of sciences University of Mohamed V Agdal, BP.1014 . Rabat, Morocco. seddikabd@hotmail.com

S. Elhajji: Laboratory of Mathematics, Computing and Application, Department of Mathematical and computer, Faculty of sciences University of Mohamed V Agdal, BP.1014 . Rabat, Morocco.elhajji@fsr.ac.ma.

By lemma 1.1, we have $a^2 + b^2 = 0$ [*p*]. So, $a^2 + b^2 = k$, $k \in \mathbb{Z}$. We can write $a = ta_1$, $b = tb_1$ with $a_1 \wedge b_1 = 1$. Suppose a is not divisible by p then p does not divise t and hence $p/(a_1^2 + b_1^2)$, then $a_1^2 + b_1^2 = kp$. Since, see (proposition 1.2 [10, 11]), we have $p \neq 3$ [4]. We deduce that p = 2 or p = 1 [4]. $1 \Rightarrow 2)$ Suppose p = 2, we can write $1^2 + 1^2 = 0$ [2], then $1 + 1^2 = 0$ *i*isnotinvertible absurd. Assume p = 1 [4] then $\frac{p-1}{2} = 2k$. There exist $cin \mathbb{F}_p$ such that $c^{\frac{p-1}{2}} \neq 1$, since $c^{p-1} = 1$ then $c^{\frac{p-1}{2}} = -1$ and hence $(c^k)^2 = c^{2k} = -1$. So $1^2 + (c^k)^2 = 1 - 1 = 0$.

We deduce that $c^k + i$ is not invertible absurd.

II. The set
$$E = E_{A,B} \cup E_{A,-B}$$

Let (G,*) and (H,∇) are two abeliangroups with the same unit element e such that G and H are isomorphism.

We put φ the isomorphism between two groups (G,*) and *(H*, ∇).

Theorem 1.2:

Let
$$E = G \cup H$$
 and Δ the mapping defined by
 $\Delta: E \times E \to E$
 $(x, y) \mapsto x \Delta y$
Where $x \Delta y = \begin{cases} x * y \text{ if } x, y \in G \\ x \nabla y \text{ if } x, y \in H \\ \varphi(x) \nabla y \text{ if } x \in G, y \notin G \\ x \nabla \varphi(y) \text{ if } x \notin G, y \in G \end{cases}$

Then Δ is an internal composition law, commutative with identity element e and all elements in E are invertible. Proof:

It is clearly that Δ is an internal composition law over *E*. Show that *e* is identity element of Δ .

Let xin E. If $x \in G$ then $x \Delta e = x * e = e * x = e \Delta x = x$, because $x \in G$ and e is unit element of (G_*) . Else, $x \in H$ then $x\Delta e = x\nabla e = e\nabla x = e\Delta x = x$, because $x \in H, \varphi(e) = e$ and e is unit element of (H, ∇) . Δ is commutatif? We have (G,*) and (H,∇) two abeliangroups with the same unit element e. Let $x, y \in E$. If $x, y \in G$ then $x\Delta y = x * y = y * x = y\Delta x$. If $x, y \in H$ then $x\Delta y = x\nabla y = y\nabla x = y\Delta x$. If $x \in G$, $y \notin G$ then $x\Delta y = \phi(x)\nabla y = y\nabla \phi(x) = y\Delta x$. If $x \notin G, y \in G$ then $x\Delta y = x\nabla \varphi(y) = \varphi(y)\nabla x = y\Delta x$. Let p a prime number such that p = 3[4] and $E_{a,b}$, $E_{a,-b}$ are

two elliptic curves defined over the field $\mathbb{F}_p[i]$ by:

A. Chillali: Department of Mathematics, USMBA, FPT, TAZA, MOROCCO. chil2015@hotmail.fr

$$\begin{split} & E_{a,b} = \{ (x,y) / y^2 = x^3 + ax + b \} \cup \{ \infty \} \\ & E_{a,-b} = \{ (x,y) / y^2 = x^3 + ax - b \} \cup \{ \infty \} \end{split}$$

Proposition 2.2 :

If $b \neq 0$ then $E_{a,b} \cap E_{a,-b} = \{\infty\}$ Proof :

Assume that $(x, y) \in E_{a,b} \cap E_{a,-b} = \{\infty\}$, then $y^2 = x^3 + ax + band y^2 = x^3 + ax - b$, so b = -b, i.e : b = -b0, absurd.

Theorem2.3:

The mapping pdefined by :

$$\rho: \mathcal{E}_{a,b} \to \mathcal{E}_{a,-b}$$
$$(x, y) \longmapsto (-x, iy)$$

and $\rho(\infty) = \infty$, is an isomorphism of groups. Proof : ρ is defined?.

Let $(x, y) \in E_{a,b}$ then $y^2 = x^3 + ax + b$, then $-y^2 = -x^3 - ax - b$, i.e. $(iy)^2 = (-x)^3 + a(-x) - b$ b therefore $\rho((x, y)) = (-x, iy) \in E_{a,-b}$. pis injective?.

Let(x_0, y_0), (x_1, y_1) $\in E_{a,b}$ such that $\rho((x, y)) = \rho((x_1, y_1))$ then $(-x_0, iy_0) = (-x_1, iy_1)$ so, $(x_0, y_0) = (x_1, y_1)$ i.e. ρ is injective.

pissurjective?

Let $(x, y) \in E_{a-b}$ then $y^2 = x^3 + ax - b$. It is clearly that $-y^2 = -x^3 - ax + b$ so, $(iy)^2 = (-x)^3 + a(-x) + b$ therefore $(-x, iy) \in E_{a,b}$ and $\rho((-x, iy)) = (x, y)$ i.e. ρ issurjective.

pis homomorphism?.

Let (x_0, y_0) , $(x_1, y_1) \in E_{a,b}$ there is three cases: $1^{\text{st}} \text{case} x_0 \neq x_1$:

$$\rho((x_{0}, y_{0}) + (x_{1}, y_{1})) = \begin{cases} \rho(m_{a,b}^{2} - x_{0} - x_{1}, m_{a,b}(x_{1} - x_{3}) - y_{1}) \\ (-m_{a,b}^{2} + x_{0} + x_{1}, im_{a,b}(x_{1} - x_{3}) - iy_{1}) \end{cases}$$
with $m_{a,b} = \frac{y_{1} - y_{0}}{x_{1} - x_{0}}$ and $x_{3} = m_{a,b}^{2} - x_{0} - x_{1}$. See [7, P27].
 $\rho((x_{0}, y_{0})) + \rho((x_{1}, y_{1})) = \begin{cases} (-x_{0}, iy_{0}) + (-x_{1}, iy_{1}) \\ (m_{a,-b}^{2} + x_{0} + x_{1}, m_{a,-b}(-x_{1} - x_{4}) - iy_{1}) \end{cases}$
with $m_{a,-b} = \frac{iy_{1} - iy_{0}}{-x_{1} + x_{0}}$ and $x_{4} = m_{a,-b}^{2} + x_{0} + x_{1}$.
It is clear that $m_{a,-b} = \frac{i(y_{1} - y_{0})}{-(x_{1} - x_{0})} = -im_{a,b}$ then,
 $m_{a,b}^{2} = -m_{a,-b}^{2}$ and $x_{3} = -x_{4}$. So hence,
 $\rho((x_{0}, y_{0}) + (x_{1}, y_{1})) = \rho((x_{0}, y_{0})) + \rho((x_{1}, y_{1}))$.
 2^{nd} case $x_{0} = x_{1}$ and $y_{0} = y_{1}$:
 $\rho((x_{0}, y_{0}) + (x_{1}, y_{1})) = \begin{cases} \rho(m_{a,b}^{2} - 2x_{0}, m_{a,b}(x_{0} - x_{3}) - y_{0}) \\ (-m_{a,b}^{2} + 2x_{0}, im_{a,b}(x_{0} - x_{3}) - iy_{0}) \end{cases}$
with $m_{a,b} = \frac{3x_{0}^{2}}{2y_{0}}$ and $x_{3} = m_{a,b}^{2} - 2x_{0}$. See [7, P27].
 $\rho((x_{0}, y_{0})) + \rho((x_{1}, y_{1})) = \begin{cases} (-x_{0}, iy_{0}) + (-x_{1}, iy_{1}) \\ (m_{a,-b}^{2} + 2x_{0}, m_{a,-b}(-x_{0} - x_{4}) - iy_{0}) \end{cases}$

with
$$m_{a,-b} = \frac{3(-x_0)^2}{2y_0}$$
 and $x_4 = m_{a,-b}^2 + x_0 + x_1$.
It is clear that $m_{a,-b} = -i\frac{3x_0^2}{2y_0} = -im_{a,b}$ then,
 $m_{a,b}^2 = -m_{a,-b}^2$ and $x_3 = -x_4$. So hence,

 $\rho((x_0, y_0) + (x_1, y_1)) = \rho((x_0, y_0)) + \rho((x_1, y_1)).$ $3^{\text{th}} \text{case } x_0 = x_1 \text{ and } y_0 = -y_1$: We have:

and

$$\rho((x_0, y_0)) + \rho((x_1, y_1)) = \begin{cases} (-x_0, iy_0) + (-x_1, iy_1) \\ \infty \\ \rho((x_0, y_0) + (x_1, y_1)) \end{cases}$$

 $\rho((x_0, y_0) + (x_1, y_1)) = \rho(\infty) = \infty$

So, ρ is an homomorphism.

Corollary2.4: Let $E = E_{a,b} \cup E_{a,-b}$ and + the mapping defined by: $+: E \times E \rightarrow E$

Such that:

$$P + Q = \begin{cases} P + Q \text{ if } P, Q \in E_{a,b} \\ P + Q \text{ if } P, Q \in E_{a,-b} \\ \rho(P) + Q \text{ if } P \in E_{a,b}, Q \notin E_{a,b} \\ P + \rho(Q) \text{ if } P \notin E_{a,b}, Q \in E_{a,b} \end{cases}$$

 $(P, 0) \mapsto P + 0$

Then +isan internal composition law, commutative with identity element ∞ and all elements in E are invertible. Proof:

Since theorem 2.1, proposition 2.2 and theorem 2.3, we have +is an internal composition law, commutative with identity element ∞ and all elements in E are invertible.

Corollary 2.5:

$$Card(E) = 2Card(E_{a,b}) - 1.$$

Proof:
We have: $E_{a,b}$ is isomorphic to $E_{a,-b}$. Then

$$Card(E) = Card(E_{a,b}) + Card(E_{a,-b}) - Card(E_{a,b} \cap E_{a,-b}), \text{ so}$$
$$Card(E) = 2Card(E_{a,b}) - 1. \blacksquare$$

III. CRYPTOGRAPHICEXAMPLE

Let
$$p = 7, a = 2 + 3i$$
 and $b = 1 + i$.
We have:

$$E_{a,b} = \{ (x, y) / y^2 = x^3 + ax + b \} \cup \{ [0:1:0] \}$$

$$E_{a,-b} = \{ (x, y) / y^2 = x^3 + ax - b \} \cup \{ [0:1:0] \}$$

Coding of elements of $E = E_{a,b} \cup E_{a,-b}$.

We will give a code to each element $P \in E$ defined as it follows:

if $P = [x_0 + x_1 i: y_0 + y_1 i: z]$, where $x_i, y_i \in \mathbb{F}_p$ for j = 0 or 1 and z = 0 or 1, then we code P as follows: $x_0 x_1 y_0 y_1 z_1$

We conclude.

We

E={00100,00131,00361,00411,00641,01021,01051,01351,014 21,02111,02661,03141,03631,04311,04461,05161,05611,062 01,06231,06501,06541,10121,10241,10531,10651,12251, 12521,14031,14041,14111,14661,15021,15051,15351,15421, 16201,16231,16501,16541,20011,20061,23141,23631,25251, 25521,26311,26461,31141,31631,33001,33321,33451,35301, 35401,36341,36431,41331,41441,42031,42041,44001,44241, 44531,46311,46461,50101,50601,51141,51631,52221,52551, 54311,54461,60261,60321,60451,60511,61021,61051,61351, 61421,62201,62231,62501,62541,63161,63301,63401,63611,

65221,65551}.

We have: Card(E) = 91

Remark:

With this application, we can encrypt and decrypt any message of any length. This application was implemented by Maple.

IV. CONCLUSION

In this paper, we present an example of cryptography that is not associative.

ACKNOWLEDGMENT

I would thank Laboratory of Mathematics, Computing and Application for his helpful comments and suggestions.

REFERENCES

- [1] A. Chillali, The j-invariant over E_{3d} ⁿ, Int.j.Open problems Compt. Math.Vol.5, No 4,December 2012,ISSN 1998-6262, Copyright ICSRS Publication, (WWW.i-csrs.org,pp.106-111, 2012).
- [2] A. Chillali, , Cryptography over elliptic curve of the ring $\mathbb{F}_q[\epsilon], \epsilon^4 = 0$ World Academy of science Engineering and Technology,78 (2011),pp.848-850
- [3] A. Chillali, Elliptic curve over ring, International Mathematical Forum, Vol.6, no.31, 2011 pp.1501-1505
- [4] A. Tadmori, A. Chillali and M. Ziane, Elliptic Curves Over SPIR of characteristic Two, proceeding of the 2013 international conference on applied mathematics and Computational Methode, www.europment.org/library/2013/AMCM-05.
- [5] A. Tadmori, A. Chillali and M. Ziane, Normal Form of the elliptic Curves over the finite ring, Journal of Mathematics and system sience, 4 (2014) 194-196.
- [6] A. Tadmori, A. Chillali and M. Ziane, Coding over elliptic curves in the ring of characteristic two, International journal of Applied Mathemathics and Informatics, (Volume 8. 2014).
- J.H. SILVERMAN, The Arithmetic of Elliptic curves, Graduate Texts in Mathematcs, Springer, Volume 106(1985).2,19,20,21
- [8] J.H. ~SILVERMAN, Advanced Topics in the Arithmetic of Elliptic curves, Graduate Texts in Mathematcs, Volume 151, Springer, (1994).
- W. Bosma and H. Lenstra, Complete system of two addition laws for elliptic curved, Journal of Number theory, (1995).J. U. Duncombe, "Infrared navigation—Part I: An assessment of feasibility (Periodical style)," IEEE Trans. Electron Devices, vol. ED-11, pp. 34–39, Jan. 1959.
- [10] Duverney, D., Th\'eorie des nombres. Dunod, 1998.
- [11] G. H. Hardy and E. M.Wright, An introduction to the theory of numbers, Oxford UniversityPress