
 

 

 

Abstract— The Image Deblurring problem seems to be one of 
perpetual actuality. The research started in the Second World War for 
military purposes and continued until today proposing numerous 
techniques for a huge palette of applications, all aiming at recovering 
the original signal from a blurred one. The current paper synthesizes 
most of the efforts carried over the time, constructively comparing 
available approaches and offering a high degree of up-to-date 
completeness over this vast research subject. 
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I. INTRODUCTION 

LURRING is the process of altering a region of a signal 
with weighted sums of neighboring regions of the same 

signal. In the case of image blurring, a pixel’s value is affected 
by the adjacent pixels. 

Blurring is usually caused by the acquisition of the same 
information from the scene on different receiver cells. To 
exemplify: 
• echo is a kind of blurring, because the same sound can be 

localized in multiple time intervals; 
• defocusing is a kind of blur because a single scene 

element is not found only on the pixels that is should 
activate, but also on neighboring pixels. It can either 
originate from wrongly adjusted focus distance in a 
camera, or the lack of focusing elements, like in the X-
ray system; 

• motion smudging is also a type of blur because the same 
signal lands on different receiver cells as the object or 
receiver is moving. 

Important domains where deblurring is essential, are those 
in which a signal inherently cannot be physically focused (ex: 
high energy electromagnetic waves (X-rays), mechanical 
waves (sound/sonar)); a signal distortion varies over time 
(space images captured through the atmosphere; imperfect 
mirrors for the distances needed to be used); a signal’s 
distortion varies in space (like a car moving in front of a 
surveillance camera). In these domains other methods for 
recovery of the original signal are not known. 

With the popularization of cheap camera devices deblurring 
can now be integrated in nonessential desktop or mobile 
devices for recovering personal movies, photographs or audio 
recordings. 

Though methods for software restoration exist dating back 
to the Second World War, other inseparable processes, like 
noise addition and PSF distortion, made them applicable only 
for special devices and in limited scenarios (like fixing the 
aberration of the mirror on the Hubble telescope). However, 
this changed at the beginning of the 21st century, when 
research in the domain exploded. 

The image deblurring problem can be split into two distinct 
problems: recovering the Point Spread Function (PSF) and 
recovering the initial estimate using a known PSF. Blind 
deconvolution methods focus on recovering the PSF while 
non-blind methods rely on a known PSF for performing robust 
deconvolution. 

The PSF tells how a single point is spread on the receiver 
and it can be estimated, either from a single image or, more 
accurately, from multiple images. In multi-image PSF 
estimation methods, objects are either followed through the 
image sequence [1], or the problem is mathematically 
constrained to become less and less ill posed by using multiple 
blurred [2] or a blurred noisy image pair [3]. In single image 
PSF estimation, the blurred edges of objects represent the 
sources of motion information [4] at local level. At global 
level the comparison of the gradients of an entire image with a 
known general estimate [5] can be used to deduce the PSF. 

On the other hand, non-blind deconvolution methods 
address the problems of minimizing the huge impact additive 
noise has in deblurring with a known PSF [6] or the 
elimination of artifacts originating from approximate PSF 
estimations [7], [8], [9] and truncation of data in the altered 
image [10], [11]. 

 

II. THE NAÏVE METHOD 

The definition of convolution in discreet space is: 
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 where C  is the clear source signal, P  the PSF and ∗  is the 
convolution operator. This means that every point in the 
discreet space is affected by its neighbors, weighted by 
elements of the PSF. Thinking back, the initial image can be 
estimated by removing the neighbors weighted by the PSF, 
from each pixel. But as the neighbors themselves are affected 

An Investigation of Image Deblurring 
Techniques 

Mihai Zaharescu, Costin A. Boiangiu 

B 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 75



 

 

by the convolution, the mathematical solution is a linear 
system of equations. 

The problems faced with the naive method are: 
- the system is under-determined, thus pixels from 

borders cannot be calculated precisely, because a 
clear border is missing; 

- the actual computation needs very accurate precision in 
order not to propagate errors through the very large 
system; 

- the process involves determining the inverse of a very 
large matrix. One of the fastest methods is the 

conjugate gradient method, which converges after N  

iterations, where N  is the number of unknowns. 
Thus, the minimal complexity, speed and memory, is: 

 

( )( )MNNMO ⋅⋅⋅ log  (2) 

 

where M  is the size of the PSF kernel. Due to this 
complexity, finding the solution for a large image becomes 
virtually impossible. 

In order to address these problems the following has been 
done: 

- To avoid introducing any artifacts from the unknown 
borders, a test image was generated from a clear 
photo by applying convolution only to the center of 
the image. The result is a blurred image with known 
borders. 

- The complexity was minimized by using a 
programmatic approach with events: The 
algorithm tries to find the solution of the top left 
pixel. Every time a pixel value is inquired, it 
recursively tries to find the solution to the 
inquired pixel, thus propagating to the bottom 
right corner. Every time the program finds the 
solution to a pixel, it generates an event telling 
that the respective pixel is now known. So, 
every pixel that needed that value, can now 
update it, thus generating more known pixels. 
For a fast propagation, every equation holds the 
unknowns in a hash table along with their 
weights, ensuring )1(O retrieval. Likewise, 

every time an unknown is assigned to an 
equation, the unknown pushes in a stack the 
reference to the respective equation, in order to 
inform it. The total complexity resembles that of 
a simple convolution: )*( MNO ( N , the 

number of equations multiplied by M , the 
number of pixels added to each equation, plus 

MN * , the number of propagations). 
- The numeric instability problem was solved by 

choosing the fraction as number element. The 
fraction's nominator and denominator are also 
integers unlimited in size. The method avoids all 

truncation. The result is that either the program finds 
a solution without any loss of precision, or it runs out 
of memory. 

The results show that this method can give results in a 
timely manner; comparable to the simple naive convolution 
method (deconvolution takes 8 seconds, while the convolution 
takes 20 seconds, on a 2.67GHz machine) and that it is very 
robust to truncation errors. 

 
Even though the method works inside the program, as soon 

as the image is exported, additive noise affects it, thus, the 
equation becomes: 
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where N is random noise. Even if N is very small, it 
propagates through the system, generating significant 
alterations. With every propagation, the error accumulates, the 
final pixels ending up with a small signal to noise ratio, 
dependent of the number of pixels that propagated the result 
multiplied by the error each pixel applies. 

 
If a more complicated kernel is used, the errors propagate 

not only along lines, but also from line to line, thus the image 
ends up being indistinguishable after just a few propagations. 

 

b.  b.  

c.  
Fig. 2 a. Deblurring after bmp compression; b. Deblurring after jpg 

compression (quality 90); c. The propagation of noise 

 

a.  b.  

c.  d.  
Fig. 1 a. Initial image, b. blurred 5 times, c. deblurred 5 times, d. the 

PSF. No loss of precision is evident 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 76



 

 

 
In conclusion, the naive algorithm cannot be used without a 

regularization method. 

III. REGULARIZATION TECHNIQUES 

A. Introduction 
It was seen that deconvolution is an ill posed problem, 

either because the convolution kernel cannot be deduced 
exactly, because clear signal information is missing from the 
edges of the image or because additional unknown noise signal 
is present in the source image. 

Even the smallest perturbation propagates and accentuates 
in the deconvolution process. 

Regularization techniques aim to attenuate the great impact 
these unknowns have, by introducing additional information in 
the system. 

One example is introducing a constraint in the equations, so 
the result has small total variance. Signals with excessive and 
possible fake detail have great total variation (the integral of 
the absolute gradient). The last result is a clear illustration of 
this case: the wanted signal was too faint compared to the 
excessive generated detail. Introducing a variation constrain in 
the system can generate pleasing results. 

The work done by Jalobeanu et all on recovering signal 
from satellite images [12] showed that even in the highly noisy 
photo resulted from deconvolution resides a recoverable, 
separable and powerful enough useful signal, which they 
obtained by using complex wavelet packets. The reason why 
they used oriented wavelet packets and not the standard 
wavelet transform is because noise generated from 
deconvolution is not white noise but colored. It can be seen 
that every error propagates up and down through the image at 
regular intervals. Any thresholding on a normal wavelet 
transform is unable to eliminate such strong elements. 

 

B. Richardson-Lucy Deconvolution 
As seen previously, a way of smoothing out pixels that 

explode numerically is needed. One way of doing this is by 
processing the image iteratively and stopping the iteration 
process when the photo becomes unstable. 

Now, since a clear image C exists, both an estimate P PSF 
and the resulting blurred image B are known. For every pixel, 
its equation can be written as: 

 

j
j

kjk CPB ∑=  (4) 

 
meaning that the k-th pixel of the blurry image is the weighted 

sums of the neighbors, the weights being read from N . 
Because the kernel moves over every pixel, it is necessary to 

use an iterative method that restores little by little the 
information, as modifying a neighbor pixel influences the 
current pixel as well. 

The first step of the algorithm generates the correlation 
between a n initial image, which can be noise, and the PSF. 
The next step is to find the difference between the estimated 
image obtained at the first step and the actual blurred image. 
These differences will tell us how wrong we were when we 
picked an estimation of the clear image. In order to correct the 
original estimate, the obtained error is correlated with the 
inverse kernel. The iterations can continue, until the PSF is 
eliminated from the image completely or they can be stopped 
when noise becomes too evident. 

 

( ) ∑=+
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ki
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where )(iR  is the result of iteration i , B  is the blurred image 

and CB  is the correlated image. 
 
Image observed; 
Image psf; 
 
Image clear = random(); 
Image inverse_psf = inverse(psf); 
 
Image calculated_blur, difference, 
     projected_error 
 
While (iterations > 0) 
 calculated_blur = conv(clear,psf); 
 difference = observed / calculated_blur; 
 projected_error = conv(difference, 
                inverse_psf); 
 clear = clear * projected_error 
 
An article that can estimate when deconvolution method 
should stop is presented here [13]; if the algorithm runs for too 
long, noise begins to emerge, if it runs too little, then the blur 
is not completely eliminated. 

This is the Richardson-Lucy deconvolution method and it 
gives similar results to the Wiener deconvolution, which will 
be presented in the following section. 

C. Inverse Filtering 
The convolution operation generates a signal that repeats 

the PSF characteristics over the entire input function. 
Analyzing the frequency spectrum, the influence of the 
convolution can be clearly seen. Another way of performing 
convolution is by applying the frequencies characteristic to the 
PSF on the initial function, and this can be done by 
multiplying the two spectra in frequency domain: 

 

 

d.  b.  
Fig. 3 Deblurring using a more complicated PSF 
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pcb ∗=  (6) 

 

where c  is the resulting convoluted image, f  the initial 

image and g the PSF, all in frequency domain. In this context, 

∗  becomes normal multiplication in frequency domain. 
Deconvolution is calculated the other way around: 
 

pbc /=  (7) 

 

 
The observed noise in the naive method is very strong and 

has high frequency. Strong frequency elements are obtained 
when N is very small, thus, an idea of stabilizing the solution 
is to cut the small frequencies from the division. 

In order not to eliminate the small frequencies completely, 
which are an important detail factor in the final image, a 
slightly modified threshold function, called Inverse Filtering, 
is employed: 
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where g  represents the n
1  factor. 

This method shows great improvements, but generates 
unwanted waves, along strong edges, because of the missing 
frequencies and is still badly affected by additive noise. 

 
 

This method is also more stable in the case of approximate 
PSF functions, as in reality one cannot find the exact camera 
trajectory. 

An experiment was performed, with a few images affected 
by motion blur, taken with a normal camera. The user draws 
with the mouse an estimation of the movement, following 
bright spots in the picture and also has the ability to set the 
time in each point of the motion curve. Using this curve, the 
program generates a PSF and passes it to the above mentioned 
method. 

 
The results show that even the user can estimate a good 

enough PSF in order to recover an image. 
 

D. Wiener Deconvolution 
During World War II, Norbert Wiener was seeking for a 

way of receiving as much useful signal as possible from radar 
machine: 

 

( ) ( ) ( ) ( )[ ]tntctgtr +∗=  (9) 

 

where ( )tc  is the original clear signal, ( )tn  is noise, ( )tr  is 

the function intended to equal ( )atc +  and ∗  is normal 

multiplication, all functions being in frequency domain. ( )tg  

is the function that has the role of transforming the received 
signal into a close estimate of the original signal. 

The error can be calculated as the difference between the 
initial signal, delayed by the time taken by the signal to arrive 
at the destination, and the original transmitted signal: 

 

( ) ( ) ( )tratcte −+=  (10) 

 
Minimizing the square error 
 

( ) ( ) ( ) ( ) ( )trtratcatcte ++−+= 222  (11) 

 

a.  

b.  c.  
Fig. 6 a. User interface for drawing an estimate PSF, b. and c. Input 

and output images of inverse filtering 

 

a.  b.  
Fig. 5 a. Result of inverse filtering opposed to b. The naive method in 

deblurring with a complicated PSF 

 

a.   b.  

c.   d.  
Fig. 4 A blurred image and its Fourier transform. The estimated PSF and 

its Fourier transform. 
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generates a filter that can restore most of the stationary signal 
corrupted by stationary noise, as long as the signal and noise 
spectra are known. 

Later, this filter was adapted to work for functions like: 
 

( ) ( ) ( ) ( )tntptctb += *  (12) 

 
where p is a PSF. This is a convolution affected by additive 
noise. And the solution is the Wiener Deconvolution: 
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where cs is the clear image spectrum and ns  the noise 

spectrum. 
Given that g  has a greater power at the denominator, the 

function acts as a deconvolution, but has an extra filter meant 
for removing noise with a known spectrum. 

And the estimate clear image is: 
 

gbc ∗=  (14) 

 
 

IV. AUTOMATIC PSF ESTIMATION 

There are images where the user cannot find a clear element 
to follow, or the PSF isn't even a camera path, but a 
combination of defocus, movement and intersections. To solve 
this, a robust automatic method has to be developed. 

This problem has its origins in space observation research, 
where the solution is relatively easy because stars are point-
like elements. The telescopes’ PSH can therefore be deduced 
just by photographing a distant star. 

However, for a natural image, a solution could not be found, 
up until 2006, when Fergus's [5] research opened a big door in 
kernel estimation. He noticed that all natural clear photographs 
share a similar histogram of gradients. A blurred image 
changes the shape of the histogram. His approach estimates the 
PSF by going from small resolution to great resolution and 
tries to fit the resulting latent image to the mathematical 
gradient distribution, varying the PSF. 

 
 
An addition to the original idea is the observation that not 

all gradients are good for estimating the PSF [6]. Contrary to 
intuition, objects smaller than the kernel degenerate the 
prediction, thus, they should be ignored. Another small 
contribution is the usage of a better refinement method in 
kernel generation between resolutions that keep the 
connectivity of the pixels, which should happen when the 
trajectory of the camera is a connected curve. 

 
Iterative methods use the result from the last step in order to 

compute the next image. A denoised image contains clear 
edges in well defined positions. It also doesn't contain wave 
artifacts generated from approximating missing elements from 
the image or the kernel, thus it is a great estimate for following 
iterations. The noisy/blurry image pair method [3] can give 
very good PSF estimates. The noise filtered sharp image is the 
latent image in the iterative kernel estimation algorithm. As the 
result converges, the deblurred image can be used to clean the 
noise from the sharp image. As well, the ill conditioned 

 

 
Fig. 8. Left to right: Input image; gradients used in the estimation 

phase; deblurring result. Image from “Two Phase Kernel Estimation 
For Robust Deblurring” [6] 

 

 

 
Fig. 7 Top to bottom and left to right: a natural image; its gradients 

(gradient and probability) compared to a general natural image 
gradient distribution; blurry image; recovered image and kernel using 
Fergus' method. Image from “Removing Camera Shake from a Single 

Photograph” [5] 
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problem can become much less ill conditioned if more blurred 
images are given as input, for example, from a burst shooting 
or a video [2]. 

Methods in cepstral domain have also been proposed. They 
usually rely on interpreting the shape of the amplitude 
cepstrum. The amplitude cepstrum is obtained by taking the 
inverse Fourier Transform of the logarithmized amplitude of 
the Fourier transform. The idea is that a Fourier transform 
generates from a square wave, a sinc. The logarithm converts 
the sinc to a sin and the inverse Fourier converts from a sin 
into a square wave. This means that similar elements from the 
image will end up one over the other in the same place. As the 
movement is present everywhere on the image, the PSF should 
be evident on the cepstrum. The problem is that the phase 
element is thrown away, so it can have any orientation. Thus 
methods like this usually try to recover simple shapes from 
interpreting the geometrical shapes they can see in the center 
of the cepstrum [14], [15]. 

The deconvolution algorithms usually don't work well with 
Gaussian blurring, as high frequencies (which become very 
faint in the blurring phase) are eliminated in the regularization 
phase. This is an example aimed at resolving this particular 
problem, by introducing in the equations the presumption that 
the kernel is actually Gaussian. [16] 

Most of the deblurring methods assume a shift invariant 
linear blur model, which means that the image is blurred the 
same way everywhere. This is true only if the photographed 
objects are at the same distance, or at great distances from the 
camera, in order not to introduce perspective blur, and the 
camera follows only a translational movement in a plane 
parallel to the objects. As seen in the description, not very 
many images fall in this class of alterations. Rotational motion 
blur is the simplest example to show that the blur kernel 
changes at every pixel of the image (fragments of concentric 
circles). Blur caused by individual moving objects is even 
harder to describe. 

Two approaches [4], [17] try to deblur moving objects from 
static backgrounds. Firstly they separate the blurred elements 
and use only the transparent edges for estimating the motion 
direction. They cut out the moving objects by means of 
spectral mating [18], thus preserving the transparent shading 
left by the blur. The authors of the first article try to 
automatically deduce the movement in a simple manner 
(reducing the local kernel to a line), whilst the others need the 
user input in order to get an estimate of some local motions, 
which they interpolate. 

 
Both methods give good results, with the first being able to 

correctly estimate localized movement whereas the second 
uses a better deconvolution method. 

Another solution, which is used in multiple uniform moving 
objects, is to break all the moving elements into layers, using 
their motion print, deblurring each element separately and 
combining the fragments in the final image. [19] 

V. ARTIFACT MINIMIZATION 

A. Deringing 
There are now available methods for estimating the PSF and 

removing much of the amplified noise. Another artifact that is 
most unpleasant in image deblurring is ringing. Because the 
PSF mostly has null values, the inverses are very large values 
which amplify in excess frequencies, especially at borderlines, 
generating a periodic ripple near them. In spatial domain 
iterative methods, the initial estimation error propagates and 
accumulates through iterations, becoming more visible near 
the edges, where the correlation was most intense. Moreover, 
the PSF cannot be accurately estimated in reality. 

Photographing in dim light conditions is difficult, as the 
signal is too low compared to noise [3]. If one increases the 
exposure time in order to receive more useful signal, camera 
movement blurs the photograph. Various methods which 
correct one of the two exist, but with limitations: noise 
reduction algorithms eliminate fine detail whilst deblur 
algorithms generate the artifacts mentioned earlier. One 
interesting approach is to use an iterative method which takes 
what is good from each image, using the other as reference [3]. 
In the first iteration, a general denoise algorithm cleans the 
noisy image. The deblur algorithm deblurs the moved image 
using the cleaned image as base. The difference between the 
clean and noisy image generates a noise layer and the 
difference between the deblurred and clean image reveals the 
artifacts, or wave layer. The rings can now be eliminated 
without losing precious texture information. 

 

 
Fig. 9 3D kernel used to estimate nonuniform kernel shapes over a 

blurry image. Image from “Non-uniform Deblurring for Shaken 
Images” [HHH] 
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Another similar approach is to use just the blurred image as 

a base for estimating ringing artifacts[9]. After a general 
deblur algorithm generates the sharp result, the deringing 
algorithm takes into consideration only the initial, affected 
image and the clarified image. Using the unclear photo, it 
deduces uniform patches that are likely to suffer from long 
range ringing resulting from far away strong edges. Afterwards 
it identifies small regions around edges in the clarified image, 
which can suffer from short range ringing. The waves are then 
removed by a filter that is dependent on the wave size, or the 
distance from the edge. 

 
One great idea that makes the ringing problem obsolete is to 

use both intra-scale (the deconvolution is being fine tuned 
inside the respective resolution) and inter-scale (using the 
result from precedent resolution) elements in the 
deconvolution process [8]. The method starts with a small 
resolution that represents the base clarified image for the next 
greater resolution. Afterwards it computes the greater 
resolution by an iterative Joint Bilateral Richardson Lucy 
deconvolution. The resulting edge detections from the coarser 
resolution image is a base for a more accurate edge detection 
in the finer resolution image. With the aid of accurate edge 
detections, a regularization method removes unwanted artifacts 
in uniform areas. Moreover, using the smaller resolution as 
guide, and a residual deconvolution algorithm, more and more 
details can be recovered. This method eliminates ringing 
entirely and also generates a sharp image with insignificant 
texture loss. 

 

B. Outliers Handling 
The mathematical model presented before takes into 

account only Gaussian additive noise. In reality, there are other 
aberrations that can disturb the convolved image. For example: 
when taking pictures during night time, some bright spots, 
where the lights are present, appear on the photo. Those bright 
spots have intensities whose values go beyond the limited 
range of values provided by the image format specification, 
and are thus are clipped to the greatest value. This clipping, 
along with dead pixels or hot pixels are not taken into account 
in the original theoretical model. Other influences are color 
curves introduced by software in order to capture an image 
more similar to what can be seen. 

One proposed solution is to first remove the color curve by 
applying a gamma correction, so the colors vary linearly. 
Afterwards, the outliers elimination algorithm separates pixels 
that respect the model from those that could be possible errors 
(saturated and dark pixels). An Expectation Maximization 
method fills the areas where pixels were removed [10]. 

This model removes the very evident repetitive and wave 
like artifacts that originate from software truncations and 
hardware errors. It also generates far fewer rings caused by 
nonlinear color transformations, present in all photos taken by 
ordinary cameras today. 

 

C. Noise Reduction 
The regularization techniques presented before have the 

principal role of minimizing the influence of small noise 
signals in convolved images. The practical problem is that the 
majority of blurred images have a significant amount of noise, 
because they are captured in a medium where the signal is 
weak over a large period of time (space telescopes have the 
signal source very far away, medicinal imaging use a small 
quantity of radiation in order to minimize its impact on the 

 

 
Fig. 13 Left to right: input image; standard deconvolution (waves 
propagate from areas where information is lost); outliers handling. 

Image from “Outliers in Non-Blind Image Deconvolution” [10] 

 

 
Fig. 12 Left: input blurred image and kernel; right: result of 

interscale-intrascale algorithm. Image from “Progressive Inter-Scale 
Non-Blind Image Deconvolution” [8] 

 

 
Fig. 11 From left to right: input blurred image; recovered image with 

Richardson-Lucy algorithm; the RL result cleaned with the 
mentioned algorithm. Image from “Dual range deringing for Non-

blind image deconvolution” [9] 

 

 
Fig. 10 Description of the iterative process of the deblurring method 

which uses a blurred/noisy image pair. Image from “Image 
Deblurring With Blurred/Noisy Image Pairs” [3] 
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patient, the photo camera compensates with time for a night 
scene). The result is that noise is comparable to the signal 
power. In these conditions, the regularization techniques are 
inefficient at providing a good result. 

Wohlberg and Rodrigues developed a mathematical model 
which deals with impulse noise alone. [20] The solution is a 
modified Total Variance (TV) regularization, which generates 
an image with the smallest variations between pixels that still 
follow the original signal's shape. The variance is defined as: 
 

( ) ( )
p

p
yx uDuD

q
22 +

λ
 (15) 

 
where D  is the derivative and lambda the power of the filter. 
And the measure of how close the generated signal is to the 
original one is the p  norm of: 

 

p

pu sK
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−
1

 (16) 

 
where K  is a linear operator representing the forward 
problem and s is the altered signal. 

Both of these functions are modified in order to 
accommodate pixels that fall over of below a threshold, in 
order to locate and eliminate salt and pepper noise. 

The authors of "Two-Phase Kernel Estimation for Robust 
Motion Deblurring" [6] use a similar but faster technique, 
which still produces good results for impulse noise and 
moderate results for Gaussian noise. 

Knowing that a natural image has most derivates round 0, a 
sparse prior that opts to concentrate the derivates at a small 
number of pixels, the rest leaving almost unchanged in the 
deconvolution process. [21] This way, the image has sharp 
edges, less noise and smaller ringing artifacts, but fine texture 
details are lost due to the convolution. 

One very interesting solution [12] does not use 
regularization at all and generates impressive results. The 
simplest deconvolution algorithm generates an unregularised 
result which contains the entire, unfiltered signal hidden in an 
image that looks just like noise. The novel idea is in filtering 
the result with a special kind of wavelet packets. Instead of 
using wavelets on lines or columns, which can only detect 
horizontal or vertical signal orientations, the authors 
developed 26 orientated wavelets for different scales and 
orientations. Being able to characterize the signal in 26 
different ways, the noise at known power was very well 
separated from the orientated texture. 

VI. CONCLUSIONS 

In the past years, deconvolution proved to be a resolvable 
problem that can aid in many domains, from medical imaging 
to space photography. The theoretical problems that made 
deconvolution be overlooked for everyday photography until 
the third millennium, like ill conditioned systems, high ratios 
of noise amplification because of inversion of small values in 

the blur kernel, artifacts originating from real values truncation 
and others, found their solutions with practical approaches in a 
very short time. Another very interesting domain, super 
resolution can now be enhanced by the aid of this new 
technology, by removing the blur that inherently is generated 
when the combination of multiple images ends [22], or by 
reading more information from the larger space occupied by 
the moved object on the image [23], [24] . 

This domain has proven that is now ready to be used in 
everyday applications, like introducing special camera aperture 
[25] or coded camera exposures [23] that can aid the software 
editing of blur in photographs, modifying the medical 
instruments so that they incorporate these algorithms in order 
to give clearer results. 
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