
 

 

  
Abstract—In this paper, we examine the performance of classical 

portfolio strategies in the BRIC's stock markets using a Markov 
approximation of the portfolio returns. In particular, we try to 
evaluate whether these markets can be a valid investment for non 
satiable and risk averse investors. First, we examine the main 
statistical characteristics of the returns in each market. Secondly, we 
provide a methodology to approximate the portfolios sample paths 
when the returns follow a Markov process. Finally, we examine the 
profitability of the classic investment strategies in each of the four 
BRICs markets individually and in all markets jointly, under the 
assumption the returns are approximated by a non parametric Markov 
chain.  In particular, we compare the ex-post sample paths of the 
wealth obtained optimizing a mean-variance performance with and 
without assuming the Markovian hypothesis. 
 
 

Keywords—Markov processes, optimization problems, 
portfolio selection, financial markets, Sharpe performance. 

I. INTRODUCTION 
N the recent years, the BRIC's markets performance, i.e. 
Brazil, Russia, India and China (see O'Neill in [14]), have 

exceeded the Europe and the U.S. performance, both during 
the pre-2007 boom and during the crisis. These countries, in 
fact, on the one hand had suffered less the effects of the crisis 
and on the other hand, a much more rapid recovery, compared 
to advanced countries. Clearly, it is undeniable that emerging 
markets had a significant economic slowdown in recent years, 
 

This paper has been supported by the Italian funds ex MURST 60% 2014 
and MIUR PRIN MISURA Project, 2013–2015. The research was also 
supported through the Czech Science Foundation (GACR) under project 13-
13142S and SP2013/3, an SGS research project of VSB-TU Ostrava, and 
furthermore by the European Social Fund in the framework of 
CZ.1.07/2.3.00/20.0296 (second author) and CZ.1.07/2.3.00/30.0016 (first 
and fourth author). 

F. Petronio is with the Department of Finance, VŠB-Technical University 
of Ostrava, Sokolská třída 33, 70121 Ostrava, Czech Republic, (e-mail: 
filomena.petronio@vsb.cz). 

S. Ortobelli is with the Department of Mathematics, Statistics, Informatics 
and Applications, University of Bergamo, Via Dei Caniana 2, 24127 (BG), 
Italy (corresponding author: +39-035-205-2564;  e-mail: 
sergio.ortobelli@unibg.it). 

L. Tamborini, is a private research analyst (e-mail: 
tamboposta@gmail.com). 

T. Lando is with the Department of Finance, VŠB-Technical University of 
Ostrava, Sokolská třída 33, 70121 Ostrava, Czech Republic, (e-mail: 
tommaso.lando@.vsb.cz). 

 

due to less demand from its trading partners in Europe and 
North America. However, it is a less dramatic decline than 
what happened in Europe and the United States (see [13]). In 
fact, even during the global financial crisis, the default rate in 
developing countries has always been lower than that of the 
Eurozone and the United States (see [21]). Moreover, the 
BRICs GDP (in nominal terms) grows despite their economic 
dimension still rather small (see [13]). This is due in part to 
the recent appreciation of their currencies, in part because, 
during the crisis, the BRICs have continued to grow very 
quickly, while the advanced countries had growth rates far 
below their average. In this context, the IMF, in a Staff 
Discussion Notes (see Samar et al. in [18]) asserts that also the 
BRIC's currencies may have interesting developments despite 
their volatility (especially for Brazil and Russia where the 
value of their currencies is largely determined by the 
commodity price). 

The strong growth registered by the BRIC markets in recent 
years and their surprising independence from the developed 
economies, especially during the financial crisis, have created 
many opportunities for the investors. In this paper, we 
examine the BRIC's stock financial markets and we evaluate 
their portfolio performance comparing the ex-post wealth 
obtained optimizing the Sharpe ratio with and without 
considering the returns Markovian behavior. In particular, we 
first analyze, from a statistical point of view, all the returns of 
the active stocks in the BRICs markets during the period 
(2001-2012). Secondly, we propose an ex-post comparison 
between two investment strategies, (based on two different 
non parametric distributional assumptions) assuming to invest 
in each of the four BRICs markets individually and in all 
markets jointly, to compare the level of wealth created in each 
of them. Thus, the first contribution of this paper consists in 
the portfolio and distributional analysis of BRIC's stock 
financial markets before and during the last global financial 
crisis (from 2001 till 2012). The second contribution of this 
paper is the evaluation of the financial impact of using non-
parametric Markov processes in portfolio problems applied to 
BRICs markets. As a matter of fact, while Markov processes 
are probably the most used to approximate the return 
evolution in financial problems (see, among others, Cox et al. 
in [7], Rachev and Mittnik in [15], D'Amico et al. in [9]), only 
in the recent literature homogeneous Markov chains were used 
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to forecast and approximate the future wealth distribution (see 
Angelelli and Ortobelli in [1] and Angelelli et al. in [2], [3] 
and the reference therein) and, never (by our knowledge) in 
the BRICs stock markets. Thus, in this context, we can 
evaluate the impact of approximating the Markovian behavior 
of the BRICs’ stock returns with a proper non-parametric 
Markov chain.  

The paper is organized as follows: in Section 2 we briefly 
examine the main features of BRICs financial markets and the 
empirical evidence of their stock returns. In Section 3 we 
describe the portfolio selection problem and we propose the 
Markovian approximation of the returns. In Section 4 we 
propose the ex-post empirical analysis of the BRICs markets. 
Conclusion are given in Section 5. 

II. BRICS FINANCIAL MARKETS: MAIN FEATURES AND 
EMPIRICAL EVIDENCE 

The Emerging Markets (EMs), and BRICs in particular, 
have many common characteristics and represent a good 
opportunity, often very profitable, of diversification for 
investors. 

In these markets operate both local and foreign investors. In 
both cases, however, the institutional investors are more 
frequent than retail (see Thompson, in [19]) and in most cases, 
their operation is limited to the traditional investment 
operations and does not include the creation of innovative 
financial products. 

The number of European investors operating in the 
Emerging markets is increasing; however, there is a 
significant shortage of investors who regularly invest in these 
markets. Most of them, in fact, so-called cross-over investors, 
also operates in other markets. This characteristic determines 
an "on-off" access of Emerging Markets in the international 
market resulting in the assets prices volatility (see Donald and 
Garry in [11]). 

Moreover, another problem that affects emerging markets is 
known as "shortage phenomenon", i.e. the lack of securities 
issuance (in both equity and bond market especially) (see De 
la Torre and Schmukler in [10] and Thompson in [19]). The 
shortage assets gives some distortion effects, like the so called 
"buy-and-hold investment strategy" that makes illiquid these 
markets. 

On the other hand, the Information Technologies 
development, deregulation and globalization with 
consequently consolidation process (in the banking sector, 
mutual funds and stock exchanges), have made these markets 
highly attractive. 

Currently, concerning the BRICs countries, the main Stock 
Exchanges are: the BM&FBovespa created in Brazil in 2008  
from merge of São Paulo Stock Exchange (Bovespa) and the 
Brazilian Mercantile and Futures Exchange (BM&F); the 
National Stock Exchange (NSE) in India; the Russian Trading 
System (RTS), that currently is one of the largest stock 
markets in the regulated markets of Europe; finally, in China, 
the Shanghai and Shenzhen Stock Exchanges are often jointly 
considered, while Hong Kong Stock Exchange is a separate 

entity. 

A.  Empirical evidences  
For purposes of our study, we first analyze 2690 stocks that 

were traded in the BRICs markets from January 2001 till 
January 2012.  We take the assets from DataStream  

The fact that log returns present a distribution with heavier 
tail than distributions with finite variance is documented in 
several empirical research works (see, among others, Rachev 
and Mittnik  in [15] and Biglova et al. in [4]). Central theories 
in finance and important empirical studies assume that asset 
returns follow a normal distribution. The justification of this 
assumption is often cast in terms of its asymptotic 
approximation. However, this can be only a partial 
justification because the Central Limit Theorem for 
normalized sums of independent and identically distributed 
(i.i.d.) random variables determines the domain of attraction 
of an α  stable distribution, i.e., any return ir  is 
asymptotically approximated as a stable Paretian distribution 

),,( µβσαSri = , where ]2,0(∈α  is the index of stability, 
σ  is the scale parameter, µ  is the location parameter and β  
is the skewness parameter. In particular, in Table 1 we report 
the average statistics of the log returns of each country: mean, 
standard deviation, Fisher skewness and kurtosis, percentage 
of assets for which is rejected the normality hypothesis with 
Jarque-Bera tests, the maximum likelihood stable Paretian 
parameters and the 5%, 25%, 50%, 75%, 95% quantiles. 

It is not surprising that when we consider tests for normality 
such as the Jarque-Bera tests (with a 95% confidence level) 
the null hypothesis of normality for the daily log returns is 
rejected for more the 90% of stocks in each country (see J-B 
95% in Table 1).  

 
 BRAZIL RUSSIA INDIA CHINA 
Mean 0.00084 0.00111 0.00226 0.00108 
St. Dev. 0.03314 0.03405 0.04162 0.03117 
Skewnes
s 0.47034 0.45113 0.52363 0.31489 
Kurtosis 49.1727 35.4753 8.20238 8.61869 
J-B 95% 0.94082 0.92757 0.92865 0.90122 
Alpha 1.21571 1.29066 1.47768 1.44482 
Beta -0.00988 0.04752 0.25209 0.07572 
Sigma 0.00474 0.00845 0.01769 0.01438 
delta -2.2E-05 0.00073 0.00387 0.00065 
Perc 5% -0.0315 -0.0382 -0.0575 -0.047 
Perc 25% -0.00446 -0.0079 -0.0166 -0.0136 
Perc 50% 1.5E-05 6.9E-05 4.2E-05 0.00032 
Perc 75% 0.00478 0.0086 0.0183 0.01459 
Perc 95% 0.03677 0.0447 0.07131 0.05143 

Table 1: Statistics on the ex-ante returns 
Moreover, this result is also confirmed by the very high 

average of kurtosis and by the average of the maximum 
likelihood estimates of the α  stable Paretian parameters. In 
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particular, the very low indexes of stability α  of the stock 
returns (less than 1.3 for the Brazil and Russia and less than 
1.5 for India and China) suggest that most of the returns are 
leptokurtic. In addition, we observe that while 50% average 
quantile is around zero, the absolute value of the 5% and 25% 
average quantiles are respectively lower than the 95% and 
75%, average quantiles. Thus, the returns of all BRICs 
markets generally present a positive asymmetry that is also 
confirmed by the positive skewness and by the stable 
skewness parameter β . This preliminary analysis implicitly 
suggests to use a more flexible distributional model to 
describe the portfolio return evolution. For this reason in the 
following section we propose to approximate the Markovian 
behavior of returns using a proper approximating Markov 
chain that accounts the possible evolution of the future wealth.  

 

III. PORTFOLIO SELECTION MODEL WITH MARKOV PROCESSES 
In this section, we propose a distributional analysis of the 

time evolution of the portolio wealth when the portfolios 
dynamic is described by a homogeneous Markov chain. 
Throughout the paper we consider n  risky assets with gross 
returns1 '

tntt zzz ],,[= 1,11,1 +++  . If we denote by 
'

nxxx ],,[= 1   the vector of the positions taken in the n  
risky assets, then the portfolio return during the period 

1],[ +tt  is given by  

.== 1,
1=

11),( +++ ∑ tii

n

i
t

'
tx zxzxz        (1) 

 

A. The Markov hypothesis 
 
Let the interval )max;min( ),(),( kxkkxk zz  be the range of 

the portfolio gross returns, where kxz ),(  is the k -th past 

observation of the portfolio )(xz . The states are denoted by 

N  gross return )(
)(

i
xz  where }{1,2,..., Ni ∈ . Without loss of 

generality we assume that 1)(
)(

)(
)( > +i

x
i
x zz  for 1.1,...,= −Ni  The 

initial wealth 0W  is given and equal to 1, the wealth at time 
;1,...,= kt  tW  is a random variable with a number of possible 

values increasing exponentially with time t . In order to keep 
the complexity of the computation reasonable, we first divide 

 
1 Generally, we assume the standard definition of gross return between 

time t and time t+1 of asset i, as , 1 ,[ , 1]
, 1

,

= i t i t t
i t

i t

S d
z

S
+ +

+

+ , where ,i tS  is 

the price of the i-th asset at time t and ,[ , 1]i t td +  is the total amount of 
cash dividends paid by the asset between t and t+1. We distinguish 
the definition of gross return from the definition of return, i.e., 

, 1i tz −  (or the alternative definition of log returns , ,= logi t i tr z ). 

the portfolio support )max;min( ),(),( kxkkxk zz  in N  intervals 

);( 1),(),( −ixix aa  where ixa ),(  is decreasing with index i  and it 

is given by: 

.,0,1,=,max
max

min
= ),(

/

),(

),(

),( Niz
z

z
a kxk

Ni

kx
k
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k

ix ⋅

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


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Then, we compute the return associated to each state as 
the geometric average of the extremes of the interval 

),;( 1),(),( −ixix aa  that is, for ,1,2,...,= Ni  

i
x

i
x uzz −1(1)

)(
)(
)( =  where 

N

kx

kx

z
z

u
1/

),(

),(

min
max
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



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



 

Thus, the final wealth tW  does not depend on the specific 
path followed by the process and we denote such property of a 
Markov chain as recombining effect. Thanks to the 
recombining effect of the Markov chain on the wealth ,W  the 
possible values after k  steps of kW  are 1),(1 −+ Nk  and the 
whole set of possible values of the random variables tW   
( kt 1,...,= ) can be stored in a matrix with k columns and 

1)(1 −+ Nk  rows resulting in  2 2( 1) ( )k k N O Nk+ − =  
memory space requirement. The ( ) 11 +− kN  values of the 

wealth  ( )
( ) 111

, ][ +−≤≤= kNl
kl

k wW  after k  periods can be 
computed by the formula: 

( ) ( )( ) ( ) ( ) 11,,1,.11, +−=⋅= kNluzw lkkl
   (2) 

thus, the l-th node at time k of the wealth-tree corresponds to 
wealth ( )klw , . In this analysis we only consider homogeneous 
Markov chains, so transition matrix does not depend on time 
and it can be simply denoted by P. The entries ,i jp  of matrix 

P are estimated using the maximum likelihood estimates 
 ( )

, ( )
ij

i

K
i j Kp π

π=  where ( )ij Kπ  is the number of observations (out 

of K observations) that transit from the i-th state to the j-th 
state and ( )i Kπ  is the number of observations (out of K 
observations) in the i-th state. We refer to D'Amico in [8] for 
the statistical properties of these estimators. 
The procedure to compute the distribution function of the 
future wealth is strictly connected to the recombining feature 
of the wealth-tree. Under these assumptions Iaquinta and 
Ortobelli in [12], have shown how to compute the 
unconditional and conditional (conditional on the initial state 

0s , i.e. )( 0sz ) probability of each node of the future wealth 

tW  for any time t. 
 

B. The portfolio problem 
The classic static portfolio selection problem when no short 
sales are allowed, can be represented as the maximization of a 
functional f:(Ω,ℑ,P)↦ℝ applied to the random portfolio of 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 313



 

 

gross returns 1),( +kxz  subject to the portfolio weights 

belonging to the simplex { }0;1|
1

≥=ℜ∈= ∑ = i
n

i i
n xxxS , 

i.e., )(max )(xSx zf∈ . Typically, the functional f(.) is a 
performance measure or an utility functional. In both cases the 
functional f(.) should be isotonic with a particular ordering of 
preference ≽, that is, if X is preferred to Y (X≽Y), then 
f(X)≥f(Y). The choice of the functional f(.) plays a crucial role 
in the portfolio strategy. Isotonic utility functionals with non 
satiable and risk averse preferences have been used in many 
financial applications (see Angelelli et al. in [2] and [3]). In 
these cases we have f(X)=E(v(X)) where v is an increasing and 
concave utility function. However, as suggested in 
behavioural finance, while all investors prefer more to less 
they could be neither risk averse nor risk lover (see Ortobelli 
et al. in [15] and Rachev et al. in [17]). For this reason it 
makes sense to consider functionals that are monotone, even 
though they are not consistent with an uncertainty/aggressive 
order (see, among others, Rachev et al. in [17]). We call OA 
performance (utility) functional any functional computed 
under the assumption that the gross return of each portfolio 
follows a Markov chain with N  states. In this paper we will 
use and describe only some OA functionals that consider the 
forecasted wealth at time T . That is, investors have to 
periodically (every T  periods) compute the portfolio  Sx ∈  
solution of the problem:  

( ))(max xWf TSx∈
        (1) 

The vector of weights x solution of the problem (3) represents 
the percentage of wealth that should be invested in each asset 
during the period [0,T]. Since the value of the assets change 
during the period [0,T], then even an OA portfolio strategy 
generally implies that the wealth must be recalibrated T times 
during the period [0,T] in order to maintain constant the 
percentages of the wealth invested in each asset. If T is very 
large and we do not recalibrate the portfolio periodically (the 
period should be the same used in the valuation) these 
percentages invested in the assets could be completely 
different at the end of investor's temporal horizon. This point 
has not been explicitly addressed in Angelelli and Ortobelli's 
analysis (see [1]) even if could have a very big impact in 
portfolio choices. 
In portfolio literature more than one hundred static reward-
risk performance measures have been proposed (see Cogneau 
and Hübner in [5] and [6]). Here, we list the Sharpe static 
strategy and the analogous OA performance functional 
isotonic with choices of non satiable investors that will be 
object of the following empirical analysis. For the OA 
portfolio strategy we assume that investors have temporal 
horizon equal to T . 

Sharpe ratio (SR) The classic version of the Sharpe ratio (see 
Sharpe in [16]) values the expected excess return for unity of 
risk (standard deviation) without considering the time 
evolution of the portfolio wealth. Thus maximizing the classic 
version of the Sharpe ratio we implicitly assume that the 
future market trend, at least in the short term, will follow the 
recent past. Essentially, the Sharpe ratio characterizes how 

well the return of an asset compensates the investor for the 
risk taken. The Sharpe ratio is calculated by subtracting a 
benchmark gross return (often the risk-free gross return) from 
the portfolio gross return and dividing the result by the 
standard deviation of the portfolio excess return. Formally: 

brzx

brzxE
zx

−

−
=

'

)'(
)'(SR

σ
                    (4) 

where br  is a benchmark return and 
brzx −'σ  is the standard 

deviation of the portfolio excess return. When the benchmark 
br  is the risk free rate, the Sharpe ratio is isotonic with non-

satiable risk averse preferences. In our next analysis we 
assume that the riskless (or the benchmark asset) is not present 
(i.e., 1=br ).  

OA-Sharpe ratio (OASR). With the OA-Sharpe ratio we 
value the expected excess final wealth for unity of risk, i.e.,  

)()(

))()((
))((OASR

bTT rWxW

bTT
T

rWxWE
xW

−

−
=

σ
   (5) 

where )( bT rW  is the final wealth at time T  we obtain 
investing in the benchmark br . In the Markovian framework 
we should consider the bivariate evolution of the vector 

))()(( bTT rWxW −  to value the standard deviation 

)()( bTT rWxW −σ  of )()( bTT rWxW − . However, in the following 

analyses we assume that the riskless asset (or the benchmark 
asset) is not allowed, thus, the OA-Sharpe Ratio is simply 

given by 
)(

)1)((

xW

T

T

xWE
σ

−
. 

IV. AN EX-POST EMPIRICAL ANALYSIS 
In this section, we compare the ex-post wealth obtained 

optimizing the Sharpe ratio and OA Sharpe ratio in each of the 
four BRICs markets individually and in all markets jointly. In 
particular, for each of the BRIC countries we take into 
account all stocks active during the period 1/1/2001 to 
1/4/20122 and for all stocks we consider the prices in USD. 
Thus, we have created 5 clusters: Brazil, Russia, India, China 
and BRIC.  

In the empirical comparison, we optimize each performance 
measure monthly (every 20 trading days) using one year of 
daily historical observations (250 trading days) to compute the 
performance measures we have to optimize. Thus, at any 
optimization time, every 20 trading days, we use a moving 
window of 250 trading days which are used in the 
optimization process. So, once we obtain the optimal solution 
of the optimization problem at the beginning of the monthly 
investment period, we have to recalibrate daily the wealth in 
order to maintain constant the optimal portfolio composition. 
This means that the investor, day by day, sells those securities 
whose price has increased and buys those securities whose 
 

2In particular, within Chinese market we also consider the Hong Kong 
market. 
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price is lowered; so that the actual allocation reflects the 
optimal portfolio calculated at beginning of period, not only 
the first day, but every day of the investment period. Thus, the 
principal parameter settings used in the optimization process 
are:  
a) the investors have a temporal horizon of 20=T  trading 

days; 
b) the global ex-post investment period is 2622 trading days 

and, as already pointed out, the composition of the 
portfolio will be optimized every 20 days, for a total of 
132 optimizations; 

c) Markov chains have 9=N  states, so that the final wealth 
20W  presents 161 nodes in the Markov tree; 

d) the initial wealth 0W  is equal to 1 at the date 18-Dec-
2001; 

e) two significant constraints were introduced in the 
optimization function: a) the maximum share of the 
portfolio that can be invested in a single title is 20%; b) 
short sales are not allowed, in other words, the percentage 
weight of each security in the portfolio can't be negative 
(i.e.: ]2.0,0[∈ix ). The first constraint aims to achieve a 
well-diversified portfolio and not overly concentrated; 
while, the second constraints excludes the possibility of 
short selling, since the securities sale not owned directly 
is a technique not easily implementable by a private 
investor. 

In addition, we introduce a preliminary "liquidity filter" in 
the optimization process, since BRICs markets present a low 
level of liquidity.  
Therefore, we perform this empirical analysis first to examine 
the ex-post wealth of classic portfolio strategies (Sharpe ratio) 
in the BRICs markets and second to evaluate the impact of the 
return Markovian approximation in portfolio problems (OA 
Sharpe ratio) applied to Emerging Markets. 
For each strategy, we have to compute the optimal portfolio 
composition 132 times and at the k-th optimization 
( )132,,2,1,0( =k ), four main steps are performed to 
compute the ex-post final wealth:  
Step 1 liquidity filter: To overcome the lack of liquidity, we 
introduce a filter that, for each recalibration, allows to exclude 
from the securities basket, those stocks whose volumes are 
below in average to 1 daily contract (minimal requirement) 
and whose price remain constant for more than 15% of the last 
year. This liquidity filter is repeated at each recalibration 
process and takes into account only the 250 observations used 
in the optimization step. Therefore, a stock discarded at a 
given optimization time could be kept in the subsequent 
optimization time. 
Step 2 - pre-selection: Despite the liquidity filter, the number 
of assets in each cluster remained relatively large. Thus, as 
suggested by Angelelli et al in [2] and [3], we reduce the 
complexity of the problem using in the optimization problem 
only the 150 assets with the greatest performance (Sharpe 
Ratio or OA Sharpe ratio).  
Step 3 - optimization: We implement an optimization function 
on 150 pre-selected assets.  The optimization aim to identify 
which of these assets, and what percentage, should compose 

the portfolio that maximizes the performance measure. 
Therefore, we determine the market portfolio )(k

Mx  that 
maximizes the performance ratio ))(( xWρ  (formulas (4) or 
(5)) associated to the strategy (or Sharpe or OA Sharpe)  i.e. 
the "ideal" solution of the following optimization problem:  

ni
xx

x

ts

xW

k
i

k
i

n

i
k

i

k

x k

,,1
0;2.0

,1

..

)((max

)()(
1

)(

)(
)(

=
≥≤

=∑ =

ρ

                          (6) 

Angelelli and Ortobelli in [1] have observed that the 
complexity of the portfolio problem is much higher in view of 
a Markovian evolution of the wealth process. In order to 
overcome this limit we use the Angelelli and Ortobelli's 
heuristic algorithm that could be applied to any complex 
portfolio selection problem that admits more local optima.  
Step 4 - recalibration: We recalibrate daily the portfolio 
maintaining the percentages invested in each asset equal to 
those of the market portfolio )(kx  during the period ],[ 1+kk tt  
(where Ttt kk +=+1 ). Thus, the ex-post final wealth is given 
by:  






= ∏ = ++

T

i
postex
it

k
Mtt kkk

zxWW
1

)(
)(

)( )'(
1

      (7) 

 where )(
)(

postex
itk

z +  is the vector of observed daily gross returns 

between 1−+ itk  and itk + . 
Steps 1, 2, 3 and 4 are repeated for all performance ratios until 
some observations are available.  

The results of this empirical analysis are reported in Table 2 
and Figures 1,2,3,4,5,6,7. 

 Mean St dev Sharpe Skewness Kurtosis Final 
Wealth 

SR 
Brazil 

0.0013 0.012 0.105 1.81 20.94 24.52 

OASR 
Brazil 

0.0018 0.014 0.128 1.98 21.04 91.08 

SR 
Russia 

0.0013 0.018 0.071 17.13 547.35 21.00 

OASR 
Russia 

0.0013 0.020 0.066 14.00 396.34 21.14 

SR 
India 

0.0015 0.014 0.105 -0.46 3.59 35.90 

OASR 
India 

0.0018 0.022 0.084 17.57 605.56 70.92 

SR 
China 

0.0007 0.016 0.043 1.15 45.20 4.39 

OASR 
China 

0.0008 0.015 0.052 0.53 8.84 6.05 

SR 
BRICs 

0.0015 0.017 0.085 6.57 116.90 31.95 

OASR 
BRICs 

0.0018 0.013 0.137 2.75 68.73 85.33 

Table 2: Statistics on the ex-post optimal returns 
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Table 2 reports some statistics (mean, standard deviation, 

Sharpe ratio, skewness, kurtosis and the final wealth at time 
1/4/2012) of the optimal ex-post returns obtained with the two 
portfolio strategies (Sharpe, OA Sharpe). 

 

 
Fig. 1  Sharpe and OA Sharpe ex post wealth obtained using the  

Brazil cluster  
In Figure 1 we report the ex-post wealth obtained 

optimizing the Sharpe and OA Sharpe strategies with Brazil 
cluster. In particular, we observe a growing trend of the 
wealth that involves the entire period of our analysis, and that 
becomes more intense in recent years. However, there is a 
significant divergence in the results obtained with two 
investment strategies, starting from 2003 and amplified over 
time, that clearly outline the superiority of the OA-Sharpe 
strategy. As a matter of fact, this last strategy allows  to reach 
a final wealth equal to 91 times the initial one and offers an 
average annual rate of return of 57 % (see also Fig. 7 and 
Table 2). The Sharpe strategy, instead, leads to a final wealth 
equal to 24.5 times the initial one, allowing to achieve an 
average annual rate of return of 37.7%. 

 

 
Fig. 2 Sharpe and OA Sharpe ex post wealth obtained using the 

Russia cluster  
With regard to the Russian markets, we observe a general 

growing trend during the decade analyzed. However, there is a 

significant decline during the second half of 2008 and the first 
months of 2009. As we can see in Figure 2, other two falls 
occur during the first part of 2010 and the second part of 
2011.  

In this cluster the trend is very similar, considering both 
strategies (Sharpe and OA Sharpe). In fact, we obtain a final 
wealth equal to 21 times the one invested at time t0, using 
both Sharpe and OA-Sharpe maximization. Obviously also the 
average annual rate of return is quite similar (35.6% and 
35.7% respectively). 

 

 
Fig. 3 Sharpe and OA Sharpe ex post wealth obtained using the 

India cluster  
 
Also in the Indian markets we obtain a remarkable 

performances. As we can see in Figure 3, the OA-Sharpe 
strategy performs better after the half part of 2009; before this 
date the two strategies offer similar results: there is an 
increasing trend up to December 2007 and a decreasing phase 
during the subprime crisis from January 2008 to February 
2009. Specifically, in the Indian cluster, the AO-Sharpe 
strategy allowing to reach a final wealth of 70.9 times the 
initial investment and offers an average annual rate of return 
of 53.1%. With Sharpe strategy, however, the investor get a 
final wealth of 35.9 times the initial wealth with an average 
annual rate of return of 43.1% (see also Fig. 7).  

 
Fig. 4 Sharpe and OA Sharpe ex post wealth obtained using the 

China cluster 
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However, Table 2 remarks that there is a strong difference 
in the kurtosis of the two optimal strategies.  Thus, even if the 
Sharpe strategy does not perform very well during the crisis, it 
is less risky and it presents an higher ex-post Sharpe ratio. 

Figure 4 examines the ex-post wealth obtained investing in 
the China cluster. As for the others, we notice a remarkable 
growth till 2007 with both strategies. Then, there is a decline 
with a minimum touched at the beginning of 2009 followed by 
a recovery phase until the end of 2010, and a new slight 
decline till the examined period. 

The ex-post wealth obtained with the two strategies applied 
to the China cluster are quite similar: the OA-Sharpe allows to 
obtain a final wealth equal to 6 times the invested at the initial 
period and offers an average annual rate of return of 19.7%; 
otherwise, with Sharpe strategy the investor gains a wealth of 
4.4 times the initial one, with an average annual rate of return 
of 15.9%. 

Concerning the BRICs cluster, Figure 5 confirms the trend 
observed in all the other single clusters with a growing trend 
before the crisis (2001-2007) a decreasing trend during the 
sub-prime crisis (2008- February 2009) and a slightly 
increasing trend during the credit risk crisis (March 2009-
January 2012). In particular, we observe that both investment 
strategies present similar ex-post wealth until 2004, then; the 
OA-Sharpe trend  is slightly lower than the Sharpe one until 
July 2007; while there is a high improvement of OA-Sharpe 
during the credit risk crisis. Investing in the jointly BRICs 
markets with the OA-Sharpe strategy, the investor reaches a 
wealth equal to 85.3 times the initial one, obtaining an average 
annual rate of return of 56%. Instead the wealth obtained with 
Sharpe strategy is only 31.9 times the initial one with an 
average annual rate of return of  41.4%. 

 

 
Fig. 5 Sharpe and OA Sharpe ex post wealth obtained using the 

BRICs cluster 
 
Figure 6 shows the geographical composition of the optimal 

portfolio invested (in average) in the BRICs cluster using the 
OA-Sharpe strategy. We get very similar percentage 
composition (but obviously with different stocks), when we 
consider the average portfolio composition obtained 
optimizing the classic Sharpe ratio in the BRICs cluster. 

In particular, we observe that the weight of the Chinese 
stocks is predominant; the Indian assets play a secondary role 
however still significant; while the Brazilian assets and 
especially the Russians assets have a marginal weight. 

 

 
Fig. 6 Average portfolio composition in BRICs cluster 

 
In Figure 7 we draw up a list of different clusters, based on 

the average annual returns obtained using the two different 
strategies. We can clearly observe that the OA-Sharpe strategy 
performs better in all clusters considered in terms of ex-post 
wealth. This is more evident especially for Brazil, India and 
BRICs jointly considered. 

 

 
Fig. 7 Average annual returns comparison 

 

V. CONCLUDING REMARKS  
The analysis proposed in this paper essentially confirms the 

growing trends of financial BRIC markets (Brazil, Russia, 
India, China) by the point of view of non satiable risk averse 
investors that optimize their Sharpe ratio. Moreover we also 
observe a strong impact of the Markovian hypothesis in the 
portfolio selection. Thus the proposed analysis emphasize the 
importance to consider the time evolution of the portfolio 
wealth by using a proper approximating  Markov chain.  
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