
 

 

  
Abstract—The principal aim of this paper is to describe an 

elegant, efficient and simple to use approach to investigation of 
robust stability for discrete-time polynomials with various 
uncertainty structures. The key idea is based on generalization of the 
value set concept and the zero exclusion condition under robust D-
stability framework. The set of examples for polynomials with single 
parameter uncertainty, interval polynomials, affine linear uncertainty 
structure and also more complicated uncertainty structures given in 
the paper provides not only the robust stability analyses but also the 
simple Matlab codes as an inspiration for practical implementation of 
performed tests. 
 
Keywords—Discrete-Time Systems, Parametric Uncertainty, 

Robust Stability, Value Set Concept, Zero Exclusion Condition.  

I. INTRODUCTION 
ITHOUT a shadow of a doubt, stability represents the 
most important property of the control loops and its 

ensurance is the critical task for all applications. When one 
considers an uncertain system (see e.g. [1] – [6] for related 
robustness problems), the attention is aimed to so-called 
robust stability, i.e. the stability must be guaranteed for all 
possible systems from a priori assumed family. 

Robust stability of interval polynomials has been deeply 
studied topic during the last decades [7] – [11]. The situation 
is much easier for the continuous-time cases as the famous 
Kharitonov theorem can be directly applied [12]. Since the 
Kharitonov-like extremal results are not generally available 
for discrete-time systems, an array of useful alternative 
approaches have been proposed by various researchers – see 
e.g. [7] – [11]. Nevertheless, many of the developed methods 
require some restrictions and pre-conditions and so they suffer 
from the lack of generality. Moreover, the majority of more 
general results are, in author’s opinion, relatively complicated 
to use. The situation is even more difficult for polynomials 
with not only interval (independent) but more complex 
uncertainty structures. 
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This paper presents very universal graphical approach to 
robust stability analysis of systems with parametric 
uncertainty adopted mainly from [13]. As it can be applied for 
general stability regions, its utilization for discrete-time 
interval polynomials is advantageous and very easily 
performable. The principal idea is based on the value set 
concept and general version of the zero exclusion condition 
considered under robust D-stability framework. 

This work extends the contribution [14] where robust stability 
of discrete-time interval polynomials was investigated with the 
help of the Polynomial Toolbox for Matlab. This paper deals 
with the topic more generally and furthermore, it presents the 
simple Matlab “mini-programs” for robust stability analysis of 
discrete-time families of polynomials with various uncertainty 
structures. Interested reader can find the similar programs but 
mainly for continuous-time systems in [15], [16]. The paper is 
the extended version of the conference contribution [17]. 

The paper is organized as follows. In Section 2, the solved 
problem is formulated. The Section 3 then briefly describes 
the embellishment of the value set concept and the zero 
exclusion condition for robust D-stability framework. Further, 
a number of simulation examples including the visualizations 
of value sets and the simple Matlab codes for their plotting are 
presented in the extensive Section 4. And finally, Section 5 
offers some conclusion remarks. 

II. PROBLEM FORMULATION 
The issue of stability of systems can be considered as the 

problem of stability of their characteristic polynomials. The 
discrete-time uncertain polynomial can be written in the form: 

 

0
( , ) ( )

n
i

i
i

p z q q zρ
=

= ∑  (1) 

 
where z is the complex variable, q is the vector of uncertainty 
and iρ  are coefficient functions. 

Then, the family of polynomials is defined by [13]: 
 

{ }( , ) :P p q q Q= ⋅ ∈  (2) 
 

where Q is the uncertainty bounding set (represented by a 
multidimensional box in this contribution). 
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Generally, the family of polynomials (2) is robustly stable if 
and only if ( , )p z q  is stable for all q Q∈ , i.e. all roots of 

( , )p z q  must lie within the unit circle. Since the direct 
calculation of roots can be impractical due to potentially 
enormously long computation times, the more efficient 
techniques had to be studied [18]. 

Among an array of existing methods which have been 
developed and described e.g. in [7] – [11], the graphical 
approach based on combination of the value set concept and 
the zero exclusion condition [13] seems to be very elegant, 
universal and powerful tool. 

III. ZERO EXCLUSION CONDITION FOR ROBUST D-STABILITY 
The basic continuous-time version of the value set concept 

and the zero exclusion condition can be found e.g. in [13], 
[19]. This work employs its improved version, described 
hereafter, which is extended and generalized to so-called 
robust D-stability framework [13]. The main idea remains the 
same, but it allows investigating robust stability for an 
arbitrary stability region D, e.g. for a unit circle in case of 
discrete-time polynomials with parametric uncertainty. 

Suppose a family of polynomials (2). The value set at any 
evaluation point x ∈C  is determined by: 

 
{ }( , ) ( , ) :p x Q p x q q Q= ∈  (3) 

 
In other words, ( , )p x Q  is the image of Q under ( , )p x ⋅ . For 
instance, in discrete-time case substitute z for a point at the 
unit circle in a family { }( , ) :P p z q q Q= ∈  and let the vector 
of uncertain parameters q range over the set Q. 

The zero exclusion condition formulated in [13] says: Let D 
be an open subset of the complex plane and assume that (2) is 
a family of polynomials with invariant degree, uncertainty 
bounding set Q which is pathwise connected. Moreover, 
suppose that the coefficient functions ( )i qρ  are continuous 
and that (2) has at least one D-stable member 0( , )p q⋅ . Then 
(2) is robustly D-stable if and only if: 

 
0 ( , )p x Q∉  (4) 

 
for all x D∈∂ , where D∂  denotes the boundary of D. 

IV. ILLUSTRATIVE EXAMPLES 
This section is intended to demonstrate the graphical tests 

of robust stability by means of simple Matlab codes which 
practically implement the value set concept and the zero 
exclusion condition for families of discrete-time polynomials 
with various uncertainty structures. 

A. Single Parameter Uncertainty 
First, consider the family of discrete-time polynomials with 

single parameter uncertainty: 
 

( ) ( )3 2( , ) 3 1 2 1 ;

0.8; 1.2

p z q z q z q z q

q

= + + + + +

∈
 (5) 

 
In order to be robustly stable, the necessary condition is that 

the polynomial must have a stable member. For example, 
1q =  leads to the polynomial: 

 
3 2( ,1) 3 3 2 1p z z z z= + + +  (6) 

 
which is stable (it has the roots 1 0.7181r = − ; 

2,3 0.141 0.6r j= − ± ). 
The value sets of the family (5) can be plotted by using the 

Matlab code: 
 

%discrete-time polynomial with single parameter uncertainty 
%robustly stable case 
clear all 
hold all 
for c=0:0.01:1 %generalized frequency range 
   count=1; %auxiliary counter 
   for q=0.8:0.01:1.2 %sampling of uncertain coefficient 
      z=exp(j*c*2*pi); %unit circle 
      p(count)=3*z^3+(1+2*q)*z^2+(1+q)*z+q;… 
      % the polynomial 
      count=count+1; %counter increment 
   end 
   x=real(p); %real part 
   y=imag(p); %imaginary part 
   plot(x,y,'.') 
end 
hold off 

 
The obtained straight line value sets are shown in fig. 1, 

where the value set for each frequency contains 41 points. 
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Fig. 1 value sets for the family (5) with single parameter uncertainty 

– robustly stable case 
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From the robust stability point of view, the most important 
fact following from the fig. 1 is that the origin of the complex 
plane (zero point) is excluded from the value sets. Besides, the 
family (5) has a stable member (as it has been verified 
already). Thus, in concordance with the condition given in 
Section 3, the family (5) can be concluded as (Schur) robustly 
stable one. 

Now, assume the similar family as in the previous case but 
with wider range of possible variation of uncertain parameter 
q. 

 
( ) ( )3 2( , ) 3 1 2 1 ;

0.4; 1.6

p z q z q z q z q

q

= + + + + +

∈
 (7) 

 
It has been already shown that the family has a stable 

member e.g. for 1q = . The value sets are visualized in fig. 2. 
They can be obtained using the same code as fig. 1 with just 
appropriate modification of uncertain coefficient sampling 
(q=0.4:0.01:1.6). It means that each plotted value set has 121 
points. 
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Fig. 2 value sets for the family (7) with single parameter uncertainty 

– robustly unstable case 
 
The value sets from fig. 2 include the complex plane origin 

which means that the family (7) is not robustly stable, i.e. 
stability of the family is not guaranteed for all possible values 
of q. 

The last example from this section will demonstrate the 
importance of testing the existence of a stable member. 
Suppose the single parameter family: 

 
( ) ( )3 2( , ) 3 2 2 2 ;

1; 2

p z q z q z q z q

q

= + + + + + +

∈
 (8) 

 
Using the analogical code as in the previous cases, one can 

obtain the value sets depicted in fig. 3. 
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Fig. 3 value sets for the family (8) with single parameter uncertainty 

– robustly UNSTABLE case 
 
At first glance, the family seems to be robustly stable since 

the zero point is excluded from the value sets. However, 
simple stability test of arbitrary family member, e.g. for 

1.5q = : 
 

3 2( ,1.5) 6 3.5 3.5;p z z z z= + + +  (9) 
 

reveals that it is not stable (roots 1 5.4777r = − ; 

2,3 0.2612 0.7555r j= − ± ). The problem is that the family has 
all of its members unstable, so even if the stability boundary is 
not crossed during the zero exclusion test, the family is 
definitely not robustly stable. 

B. Interval Uncertainty 
Now, more parameters can be uncertain, however the 

polynomial coefficients must vary independently. For 
instance, consider the fifth order discrete-time interval 
polynomial taken from [14] and subsequently from [15], [16]: 

 
[ ] [ ] [ ] [ ] [ ]

[ ]

2 3 4
1

5

( , ) 1, 2 3, 4 5, 6 7,8 9,10

11,12

p z q z z z z

z

= + + + + +  (10) 

 
A possible Matlab code for plotting the value sets of this 

polynomial based on the brute-force parameter gridding can 
look like [15], [16]: 

 
%discrete-time interval polynomial 
%parameter gridding 
%stable case 
clear all 
hold all 
for c=0:0.01:1 %generalized frequency range 
  count=1; %auxiliary counter 
  for q0=1:0.5:2 %sampling of uncertain coefficients 
    for q1=3:0.5:4 
      for q2=5:0.5:6 
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        for q3=7:0.5:8 
          for q4=9:0.5:10 
            for q5=11:0.5:12 
              z=exp(j*c*2*pi); %unit circle 
              p(count)=q0+q1*z+q2*z^2+q3*z^3+ q4*z^4+… 
              q5*z^5; % the polynomial 
              count=count+1; %counter increment 
            end 
          end 
        end 
      end 
    end 
  end 
  x=real(p); %real part 
  y=imag(p); %imaginary part 
  plot(x,y,'.') 
end 
hold off 

 
The resulting plot is shown in fig. 4. 
 

 
Fig. 4 value sets for the family (10) – “parameter gridding” approach 

– robustly stable case 
 
Note, that the value set for each frequency consists of 

63 729=  points (3 “sampled” values for each of 6 uncertain 
coefficients). 

As can be seen, the origin of the complex plane is excluded 
from the value sets. Moreover, the family (10) definitely has a 
stable member which can be easily verified by choosing any 
fixed polynomial from the family and checking its stability. 
So, the family is robustly stable. 

Alternatively, the same graphical test can be performed by 
the Matlab routine based on construction of generators and 
plotting their convex hull for each generalized frequency, i.e.: 

 
%discrete-time interval polynomial 
%convex hull of 64 generators 
%stable case 
clear all 

hold all 
for c=0.000001:0.01:1 %generalized frequency range 
  count=1; %auxiliary counter 
  for q1=0:1 %uncertain parameters for 2^6=64… 
  %generators 
    for q2=0:1 
      for q3=0:1 
        for q4=0:1 
          for q5=0:1 
            for q6=0:1 
              z=exp(j*c*2*pi); %unit circle 
              p0=1+3*z+5*z^2+7*z^3+9*z^4+11*z^5;… 
              %nominal polynomial 
              p1=1; %auxiliary polynomials 
              p2=z; 
              p3=z^2; 
              p4=z^3; 
              p5=z^4; 
              p6=z^5; 
              p(count)=p0+q1*p1+q2*p2+q3*p3+ q4*p4+… 
              q5*p5+q6*p6;… 
              %uncertain polynomial structure 
              count=count+1; %counter increment 
            end 
          end 
        end 
      end 
    end 
  end 
  x=real(p); %real part 
  y=imag(p); %imaginary part 
  k=convhull(x,y); %convex hull 
  plot(x(k),y(k)) 
end 
hold off 

 

 
Fig. 5 value sets for the family (10) – “convex hull” approach – 

robustly stable case 
 
The fig. 5 shows the graphical output of this mini-program. 

Compared to fig. 4, the second plot is simpler and it generally 
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requires less calculation of the value set points. Nevertheless, 
the figs. 4 and 5 represent the same robust stability analysis 
obviously with the same result. That is the family (10) is 
robustly stable. 

Now, assume that the upper bound of the interval 
coefficient by 4z  from the polynomial (10) is markedly 
extended while the rest of the polynomial remains the same, 
i.e. [14]: 

 
[ ] [ ] [ ] [ ] [ ]

[ ]

2 3 4
2

5

( , ) 1, 2 3, 4 5, 6 7,8 9,19

11,12

p z q z z z z

z

= + + + + +  (11) 

 
The trivial modifications of the both Matlab codes from the 

previous example (change of “q4=9:0.5:10” to “q4=9:0.5:19” 
in “parameter gridding” approach and change of “q5=0:1” to 
“q5=0:10” in “convex hull” approach) lead to the value sets 
depicted in figs. 6 and 7. 

 

 
Fig. 6 value sets for the family (11) – “parameter gridding” approach 

– robustly unstable case 
 

 
Fig. 7 value sets for the family (11) – “convex hull” approach – 

robustly unstable case 
 
 

As can be seen from both fig. 6 and fig. 7, the complex 
plane origin is included in the value sets. Thus, the family (11) 
is not robustly stable. 

C. Affine Linear Uncertainty Structure 
Next, the family with so-called affine linear uncertainty 

structure [13], [19] will be investigated. Mutually dependent 
coefficients in this structure are affine linear functions, i.e. the 
uncertain parameters can be only in the first power and must 
not be multiplied mutually. For example, the family with 
affine linear uncertainty structure is considered in the form: 

 
( ) ( )

( ) ( )

3 2
1 2 3 1 2

1 3 1 2 3

( , ) 3 2 5 2 4

3 3 2 2 3 1 ;

0.3 for 1, 2, 3i

p z q q q q z q q z

q q z q q q

q i

= + − + + − + +

+ + + − + +

≤ =

 (12) 

 
The simple Matlab programs for plotting the corresponding 

value sets are similar to the codes presented in the interval 
uncertainty section. First, the depiction based on the brute-
force parameter gridding can by obtained by using: 

 
%discrete-time polynomial - affine linear uncertainty structure 
%parameter gridding 
%stable case 
clear all 
hold all 
for c=0:0.01:1 %generalized frequency range 
  count=1; %auxiliary counter 
  for q1=-0.3:0.05:0.3 %sampling of uncertain parameters 
    for q2=-0.3:0.05:0.3 
      for q3=-0.3:0.05:0.3 
        z=exp(j*c*2*pi); %unit circle 
        p(count)=(3*q1+2*q2-q3+5)*z^3+(2*q1-q2+4)*z^2+... 
        (q1+3*q3+3)*z+(2*q1-2*q2+3*q3+1); % the polynomial 
        count=count+1; %counter increment 
      end 
    end 
  end 
  x=real(p); %real part 
  y=imag(p); %imaginary part 
  plot(x,y,'.') 
end 
hold off 

 
The resulting plot is shown in fig. 8. Now, the visualized 

value set for each frequency consists of 313 2197=  points (13 
“sampled” values for each of 3 uncertain coefficients). 

The origin of the complex plane is not included in the value 
sets and the family (12) contains a stable member (e.g. for 

1 2 3 0q q q= = =  which means 3 2( ,0) 5 4 3 1p z z z z= + + + ). 
Thus, the family is robustly stable. 
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Fig. 8 value sets for the family (12) – “parameter gridding” approach 

– robustly stable case 
 
 
Then, the modification of the Matlab code based on 

construction of generators and their convex hulls can look 
like: 

 
%discrete-time polynomial - affine linear uncertainty structure 
%convex hull of 8 generators 
%stable case 
clear all 
hold all 
for c=0.00001:0.01:1 %generalized frequency range 
  count=1; %auxiliary counter 
  for q1=-0.3:0.6:0.3 %uncertain parameters for 2^3=8... 
  %generators 
    for q2=-0.3:0.6:0.3 
      for q3=-0.3:0.6:0.3 
        z=exp(j*c*2*pi); %unit circle 
        p(count)=(3*q1+2*q2-q3+5)*z^3+(2*q1-q2+4)*z^2+... 
        (q1+3*q3+3)*z+(2*q1-2*q2+3*q3+1); % the polynomial 
        count=count+1; %counter increment 
      end 
    end 
  end 
  x=real(p); %real part 
  y=imag(p); %imaginary part 
  k=convhull(x,y); %convex hull 
  plot(x(k),y(k)) 
end 
hold off 

 
The fig. 9 shows the final value sets (which are the same as 

in fig. 8). 
 

 
Fig. 9 value sets for the family (12) – “convex hull” approach – 

robustly stable case 
 
 
The wider bounds in the same polynomial with affine linear 

uncertainty structure (12): 
 

( ) ( )
( ) ( )

3 2
1 2 3 1 2

1 3 1 2 3

( , ) 3 2 5 2 4

3 3 2 2 3 1 ;

0.5 for 1, 2, 3i

p z q q q q z q q z

q q z q q q

q i

= + − + + − + +

+ + + − + +

≤ =

 (13) 

 
and appropriate modifications of presented Matlab mini-
programs result in the value sets which are shown in figs. 10 
and 11. 

 

 
Fig. 10 value sets for the family (13) – “parameter gridding” 

approach – robustly unstable case 
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Fig. 11 value sets for the family (13) – “convex hull” approach – 

robustly unstable case 
 
Obviously, the zero point is included in the value sets and 

thus the family (13) is robustly unstable. 

D. More Complicated Uncertainty Structures 
The more complicated relation among uncertain 

coefficients the more complex shape of the value sets [13], 
[19]. The multilinear and more general uncertainty structures 
have the value sets which are not convex anymore, but the 
investigation itself does not change technically. This part 
presents the example of family with such complicated 
uncertainty structure. More specifically, the family with 
polynomial uncertainty structure is supposed: 

 
( ) ( )

( ) ( )
4 2 3 2 2 2

1 2 1 1 2

3 3 2 2
1 2 1 2

( , ) 5 4 3

2 3 2 3 1 ;

0.7 for 1, 2i

p z q z q q z q q q z

q q z q q

q i

= + − + + + + +

+ + + +

≤ =

 (14) 

 
In this case of non-convex value sets, only the brute-force 

parameter gridding approach is utilized. The relevant Matlab 
code can look like: 

 
%discrete-time polynomial - polynomial uncertainty structure 
%parameter gridding 
%stable case 
clear all 
hold all 
for c=0:0.01:1 %generalized frequency range 
  count=1; %auxiliary counter 
  for q1=-0.7:0.01:0.7 %sampling of uncertain parameters 
    for q2=-0.7:0.01:0.7 
      z=exp(j*c*2*pi); %unit circle 
      p(count)= 5*z^4+(q1-q2^2+4)*z^3+... 
      (q1^2+q1*q2^2+3)*z^2+(2*q1^3+3*q2^3+2)*z+... 
      (3*q1^2*q2^2+1); % the polynomial 
      count=count+1; %counter increment 
    end 
  end 

  x=real(p); %real part 
  y=imag(p); %imaginary part 
  plot(x,y,'.') 
end 
hold off 

 
The obtained non-convex value sets are depicted in fig. 12. 
 

 
Fig. 12 value sets for the family (14) – robustly unstable case 

 
Thanks to the position of the value sets and the complex 

plane origin and thanks to the fact that the family has a stable 
member one can say the family with polynomial uncertainty 
structure (14) is robustly stable. 

V. CONCLUSION 
This paper has been focused on relatively simple but 

powerful and very general graphical approach to investigation 
of robust stability for discrete-time polynomials with various 
uncertainty structures. The short programs, presented within 
the scope of the illustrative examples, could serve as an 
inspiration tool for practical execution of the stability tests in 
Matlab environment. 

REFERENCES   
[1] S. A. E. M. Ardjoun, M. Abid, A. G. Aissaoui, A. Naceri, “A robust 

fuzzy sliding mode control applied to the double fed induction machine” 
International Journal of Circuits, Systems and Signal Processing, vol. 5, 
no. 4, pp. 315-321, 2011. 

[2] F. Gazdoš, P. Dostál, and J. Marholt, “Robust Control of Unstable 
Systems: Algebraic Approach Using Sensitivity Functions” 
International Journal of Mathematical Models and Methods in Applied 
Sciences, vol. 5, no. 7, pp. 1189-1196, 2011. 

[3] T. Emami, and J. M. Watkins, “Robust Performance Characterization of 
PID Controllers in the Frequency Domain” WSEAS Transactions on 
Systems and Control, vol. 4, no. 5, pp. 232-242, 2009. 

[4] J. Ezzine, F. Tedesco, “H∞ Approach Control for Regulation of Active 
Car Suspension” International Journal of Mathematical Models and 
Methods in Applied Sciences, vol. 3, no. 3, pp. 309-316, 2009. 

[5] R. Matušů, “Calculation of all stabilizing PI and PID controllers” 
International Journal of Mathematics and Computers in Simulation, vol. 
5, no. 3, pp. 224-231, 2011. 

[6] R. Matušů, R. Prokop, K. Matejičková, and M. Bakošová, “Robust 
stabilization of interval plants using Kronecker summation method” 
WSEAS Transactions on Systems, vol. 9, no. 9, pp. 917-926, 2010. 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 101



 

 

[7] F. J. Kraus, B. D. O. Anderson, and M. Mansour, “Robust Schur 
polynomial stability and Kharitonov’s theorem” International Journal of 
Control, vol. 47, no. 5, pp. 1213-1225, 1988. 

[8] M. Mansour, F. J. Kraus, and B. D. O. Anderson, “Strong Kharitonov 
theorem for discrete systems” in Proceedings of the 27th Conference on 
Decision and Control, Austin, Texas, USA, 1988. 

[9] B. R. Barmish, “An Extreme Point Result for Robust Stability of 
Discrete-Time Interval Polynomials” in Proceedings of the 28th 
Conference on Decision and Control, Tampa, Florida, USA, 1989. 

[10] F. Kraus, M. Mansour, and E. I. Jury, “Robust Schur Stability of Interval 
Polynomials” IEEE Transactions on Automatic Control, vol. 37, no. 1, 
pp. 141-143, 1992. 

[11] L. Jetto, and V. Orsini, “Some remarks on the Schur stability of interval 
polynomials” in Proceedings of the 16th Mediterranean Conference on 
Control and Automation, Ajaccio, France, 2008. 

[12] V. L. Kharitonov, “Asymptotic stability of an equilibrium position of a 
family of systems of linear differential equations” Differentsial'nye 
Uravneniya, vol. 14, pp. 2086-2088, 1978. 

[13] B. R. Barmish, New Tools for Robustness of Linear Systems. New York, 
USA: Macmillan, 1994. 

[14] R. Matušů, “A Graphical Approach to Robust Stability Analysis of 
Discrete-Time Systems with Parametric Uncertainty” in Proceedings of 
the 21st International DAAAM Symposium, Zadar, Croatia, 2010. 

[15] R. Matušů, and R. Prokop, “Graphical Analysis of Robust Stability for 
Polynomials with Uncertain Coefficients in Matlab Environment” in 
Proceeding of the 16th WSEAS International Conference on Systems, 
Kos, Greece, 2012. 

[16] R. Matušů, and R. Prokop, “Robust Stability Analysis for Systems with 
Real Parametric Uncertainty: Implementation of Graphical Tests in 
Matlab” International Journal of Circuits, Systems and Signal 
Processing, vol. 7, no. 1, pp. 26-33, 2013. 

[17] R. Matušů, and R. Prokop, “Graphical Approach to Robust Stability 
Analysis for Discrete-Time Interval Polynomials” in Proceeding of the 
15th WSEAS International Conference on Mathematical and 
Computational Methods in Science and Engineering, Kuala Lumpur, 
Malaysia, 2013. 

[18] D. Henrion, Course on polynomial methods for robust control, 
Universidad de Los Andes, Merida, Venezuela, Available from URL: 
http://www.laas.fr/~henrion/courses/polyrobust/. 

[19] R. Matušů, and R. Prokop, “Graphical analysis of robust stability for 
systems with parametric uncertainty: an overview” Transactions of the 
Institute of Measurement and Control, vol. 33, no. 2, pp. 274-290, 2011. 

 
 
 
Radek Matušů was born in Zlín, Czech Republic in 1978. He is a Researcher 
at Faculty of Applied Informatics of Tomas Bata University in Zlín, Czech 
Republic. He graduated from Faculty of Technology of the same university 
with an MSc in Automation and Control Engineering in 2002 and he received 
a PhD in Technical Cybernetics from Faculty of Applied Informatics in 2007. 
He worked as a Lecturer from 2004 to 2006. The main fields of his 
professional interest include robust systems and application of algebraic 
methods to control design. 
 
 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 102




