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Abstract – There are several thermo-physical inverse 
problems discussed in the article, whose solution is based on 
non-stationery temperature field projection in the series. These 
series are obtained by means of separation of variables, which 
differs from a classic method of separation of variables and is 
especially convenient for solving various inverse thermo-
physical problems. Abraham Temkin (1919 – 2007) was the 
first to apply this method for separation of variables. He has 
also created several methods for solving inverse problems. 
Those methods are not studied enough and are unknown to a 
wider circle of experts. Some of those methods are discussed 
in this article. Determination of heat transfer rule between a 
solid and its surroundings or environment is one of the inverse 
thermo-physical problems. Heat transfer rule can be 
determined much easier if average temperature of a solid and 
its rate of change are known. There is a way how average 
temperature of a solid can be found is described. When 
discussing inverse thermal conductivity problems, temperature 
measurements at the simplest possible temperature field 
mathematically in laboratory conditions are used as input data 
Therefore, a one-dimensional symmetric temperature field is 
described. One shows in the article that a point exists in such a 
temperature field that does not practically depend on time and 
where temperature is equal to average temperature of the 
solid. 
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I.  Introduction  
The first publication that we know and which laid the 
foundation for unconventional separation of variables is [1]. In 
that paper it is proved that a function that is defined by a 
convolution integral 

( ) ( ) ( ) ( )∫ −+=
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a

dtatf ττξτϕ ,             (1) 

can be expanded in a following series  
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where ( )( )akξ  is k-th derivative of function ( )tξ  at point a, 
( )( ) ( )aa ξξ =0  and  

( )( ) ( )( )∫ +−− =
t

a

kk dt ττϕϕ 1 , k=1,2,3,… .            (3) 

The aforesaid paper illustrates that the series (2) converges if 
all derivatives ( )( )akξ  and all integrals ( )( )tk−ϕ  are limited. 
A. Temkin called that series (2) as a generalized Taylor series 
due to the fact that if the function  

( ) ( )att −= δϕ ,     (4) 

where δ is the Dirac delta function, then 
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!
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k
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k
k −

=−−ϕ ,    (5) 

and in such a case the series (2) is an extension of function f(t) 
in the Taylor series.  

As solution of a heat transfer equation is expressed by a 
convolution integral, if initial distribution of temperature is 
homogenous and time-dependent boundary conditions are set 
on the boundary, it is obvious that attempt to apply the 
discussed series for solving a heat transfer equation is useful. 
Obtained solutions [2] are in the form convenient for one to 
apply them for solving inverse heat transfer problems. Later 
on A.Temkin had many publications devoted to those issues, 
whose results are summarized in a monograph [2] published in 
1973. It should be noted that computing opportunities were 
quite limited at the time when those methods were created; 
therefore the methods have not been verified sufficiently.  
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II. Application of a generalized 
Taylor series for solution of a heat 

transfer equation 
A solution of heat transfer equation put down by means of a 
generalized Taylor series in a voluntary curved area is given in 
[2]. For the purpose of simplicity, we shall consider only the 
simplest segments where every point depends only on one co-
ordinate of an area – a plate, a cylinder, and a sphere. If 
speaking on inverse heat transfer problems, solids of such 
particular kind are used for determination of thermo-physical 
properties of material. A symmetric temperature field in those 
solids is described by an equation 
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where t is temperature, τ is time, x is the co-ordinate, k=1 is 
the plate, k=2 is the cylinder, k=3 is the sphere, a – 
temperature conductivity coefficient. 

If convective heat exchange occurs with the environment 
having time-dependent temperature ( )τet  on the surface, then 
following equality is valid on the border 

( ) ( ) ( )( )ττα
τ
τλ ,, bttbt

e −=
∂

∂ ,   (7) 

where λ stands for heat transfer coefficient, α is heat exchange 
coefficient, b  is a half of thickness in case of a plate or radius 
in case of a cylinder or a sphere.  

Initial conditions are 

( ) 00, txt = .     (8) 

When considering solution of problem (6) - (8), transition to 

dimensionless values is more convenient:  
b
xN =  is 

dimensionless co-ordinate [ ]1;1−∈N  in case of a plate and 

[ ]1;0∈N  in case of a sphere and a cylinder, 
2b

aF τ
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= . Problem (6) - (8) in dimensionless form shall 

be written down as follows 
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According to [2], solution of the problem (9) – (11) is of the 
following form,  
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(12) 

where 
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Function ( )FNT ,1 satisfies equation (9) and boundary 
conditions (10), whereas function ( )FNT ,2  satisfies equation 
(9) and those boundary conditions  
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This result is obtained in two ways in the [2], id est, by 
inserting (13) and (14) in the equation (9) and equalling the 
coefficients to derivatives of the same order  ( ) ( )FT n

e  and 
also  from the conventional model.  

Here it should be noted that solution of the problem (9) is also 
expressed in the form of (12) – (14) under boundary 
conditions of different type. Functions ( )NPn  depend on a 
type of boundary conditions and geometry of an area. Those 
are either polynomials or functions where a polynomial is 
included as addend. In this account those functions are called 
quasi polynomials in the [2].  

For initial condition (11) be met, the following is set in 
formula (14) 

( ) ( )NPFNP nn −=, .                                                             
(16) 

There is proved in the [2] that ( ) 0,lim 2 =
∞→

FNT
F

, thus at 

large values F addend ( )FNT ,2  can be not taken into account 
in formula (12). The following inequality shows that [2] 

( ) F
n

n e
k

FNP µ−





<

2
1, ,                                                     

(17) 

where μ>0.  

It is proved in the [2] that P2n(N)>0, P2n+1(N)≤0 and that 
following inequality is valid 
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(18) 
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Therefore if B>1 and all derivatives ( ) ( )FT n
e  are limited, then 

(13) converges. Besides the more intense heat exchange 
between the solid and the ambience, the faster the series 
converges. 

There is method for determination of an asymmetric 
temperature field discussed in the [2].  

III. Determination of temperature 
conductivity coefficient  

Temperature conductivity coefficient is determined in 
laboratory conditions, by measuring temperature inside a 
simple-shaped solid while it is warmed up (cooled down more 
rarely). Heat transfer process is described by an equation (6), 
where x∈[0,b]. Temperature is measured at two inner points 
x1 and x2, x1 < x2. There is a case possible when x2=b.  
Supposing that x2=b and transferring to dimensionless values 
as showed before, but keeping real temperature in equation 
(9), we get that heat transfer process can be described by 
equation (9) and boundary conditions 

( ) ( ) ( ) 0,0,,1 1 =
∂

∂
=

N
FtFtFt ,          (19) 

where t1(F) is temperature measured on the boundary x=b. 
Solution of problem (9), (19) at sufficiently high F values is 
written down as follows [2]  
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Co-ordinate functions Pn(N) are given in the [2]: 
if k=1, then 
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When transferring from dimensionless time F to real time τ in 
formula (20), we get 
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Temperature at N1=x1/b, N1∈[0,1] is measured. Thus, taking 
final number of addends in formula (21) and denoting b2/a=y, 
we obtain 

( ) ( ) ( ) ( ) ( )∑
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1
1111 0,τττ ,  (22) 

because P0(N)=1 for all k=1,2,3 [2]. In this way we get that y 
is a polynomial root. If M=1, then it follows from (22) that 
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If temperature is measured in the centre (N1=0), then if k=1, it 
results from (23) that 
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and if k=2, then 
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Formulas (23) – (25) are found in the [2] by means of an 
approach described in this article. The [3] provided formulas 
(24) and (25), where they are obtained in a different way. 

It is clear that a more precise result is anticipated if several 
addends are taken in the sum (22). If M=2, then it follows 
from (22) that 

( ) ( ) ( ) ( ) ( ) ( ) 0,1111
2

112 =−+′+″ ττττ NttytNPytNP . (26) 

Equation (26) is a quadratic equation, thus it has two roots 
wherefrom only one is valid. There is justified in the [4] that if 

( ) 01 >′ τt  and ( ) 01 <″ τt  that is not hard to be ensured 
experimentally, multiplication of the roots from equation (26) 
is negative. Hence a question as regards a valid root fall away, 
because y must be definitely positive.  

If temperature is measured in the centre (N1 =0) and k=1, then 
(26) results in [2], [4] 
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When M=3, N1=0 and k=1, then the following occurs [4]: 
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In the [4] we referred to a large number of calculations made, 
by using mathematical software, which illustrated that 
equation (28) had one real and two complex roots at most 
various boundary conditions t1(τ). The [4] compares accuracy 
of formulas (24), (27), and (28) for determination of 
temperature conductivity coefficient with temperature field 
being chosen as input data, which is obtained at a given 
temperature conductivity coefficient, by solving a heat transfer 
equation numerically by means of mathematical software. It is 
concluded that formula (27) and (28) is significantly more 
precise than formula (24) and that accuracy of all discussed 
formulas improves if time is increased while temperatures 
used in calculations are recorded.  

IV. Calculation of boundary 
conditions as per temperature 

measurements inside a solid 
Surface temperature of a solid can be determined by technical 
means (thermal imaging camera), but it requires a surface be 
open and accessible. If it is not the case, thermal imaging 
camera cannot be applied. Temperature measurements inside a 
solid by means of a thermocouple, and determination of 
surface temperature of a solid by using those measurements 
would be a solution. Such approach is recommended in the 
[2].  

Let us consider simple-shaped solids only where heat transfer 
process may be described by equation (6) and x∈[0,b]. it 
should be noted that this approach may be also applied to 
solids of complex shapes. Thermal-physical properties of 
material that is heat transfer coefficient λ and temperature 
conductivity coefficient a are known. Let us suppose that 
temperature is measured at an inner point of area x1=b1, b1<b. 
Then in area x∈[0;b1] equation (6) with the following 
boundary conditions is valid 

( ) ( )ττ 11, tbt = ,    (29) 

where t1(τ) is the measured temperature. Temperature field in 
the area x∈[0;b1] can be calculated unequivocally. 
Temperature t(b,τ) must be found. The area x∈[b1,b] is a plate 
(k=1), an empty cylinder (k=2) or an empty sphere (k=3) with 
thickness b-b1. If we could determine temperature field in this 
area, temperature t(b,τ) would be also known. So that 
temperature field in this area would be determined 
unequivocally, boundary conditions must be set on both 
boundaries of the area. But it is impossible to set boundary 
condition at x=b, because it is a calculated value. It is known 
according to [5] that temperature field in solids of such type is 
calculated unequivocally if boundary conditions of two 
different types are set on the boundary x=b1 while boundary 
conditions on the boundary x=b are not set. In the [2] 
boundary conditions of such kind are called boundary 

conditions of the fourth type named after Likov. As 
temperature field in the area [0,b1] is calculated, then heat 

flow is also calculated at x=b1, namely, ( ) ( )
x

btq
∂

∂
=

τλτ , . 

Therefore in the area [b1,b] equation (6) with boundary 
conditions (29) is valid, and  

( ) ( )ττλ q
x

bt
=

∂
∂ , ,     (30) 

where q(τ) is got from solution of problem (6), (29). When 
problem (6), (29), and (30) is transferred to dimensionless 
form, we get equation (9), where N=x/b1, N∈[1,b/b1], and 
boundary conditions are 

( ) ( )FTFT 1,1 =      (31) 

( ) ( )FU
N

FT
=

∂
∂ ,1      (32) 

In the last formula U(F) is acquired from solution  of problem 
(9), (31). Solution of problem (9), (31), and (32) in the case of 
high  F values is searched in the following form [6]: 
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where co-ordinate functions Pn(N,1) and Pn(N,2) are 
determined, by inserting (33) in equation (9) and requesting 
compliance with the boundary conditions. The solution of 
described problem if k=2 can be written down as a recurrent 
formula   
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ξξξ
η
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Interesting to note that in the [2] solution of problem (9), (31), 
and (32) is not obtained in the form (34), (35). Author of the 
[2] followed the following scheme. Solution of problem (9), 
(31) at high F values and N∈[0,1] have the form 
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Thus,  

( ) ( ) ( ) ( )∑
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1 1
n

n
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Ultimately both series are merged in one ultimately in formula 
(33), whose each addend is multiplication of temperature 
T1(F) derivatives and corresponding co-ordinate functions. 
Hence, solution of problem (9), (31), and (33) is found in the 
form (36). It is proved in the [2] that solution of problem (9), 
(31) if N∈[0,1], and (9), (31), and (32) if N>1 is (36), as well 
as co-ordinate functions Pn(N) are the same in both problems 
unless U(F) in boundary condition (32) is set by formula (37).     
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Eventually temperature on the area boundary is calculated 
according to formula 

( ) ( ) ( )∑
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V. Determination of temperature 
conductivity coefficient for thin 

materials 
If material is thin, for instance, window glass, film, etc., 
thermocouple cannot be placed inside such material. In such a 
case the studied material can be placed between two materials 
with known thermal-physical properties and thermocouples 
can be placed in these materials as showed in figure 1. In such 
a scheme thermocouple co-ordinates are x1, x2, x3, and x4. 
Temperature conductivity coefficient a1 and heat transfer 
coefficient λ1 are established. The studied material is located 
between x=0 and x=b.  

In order to determine temperature conductivity coefficient a of 
the studied material, the following scheme is proposed in the 
[2]: 

1. Heat flow q(x2,τ) at point x=x2 is established 
according to temperature measurements at points 
x=x1 un x=x2. 

2. When t(x2,τ) and q(x2,τ) are known, t(0,τ) and 
q(0,τ) are calculated as it is shown in the previous 
paragraph. 

3. Having applied temperature measurements at 
points x=x3 and x=x4, t(b,τ) and q(b,τ) are 
calculated similarly. 

4. Ratio q(b,τ)/q(0,τ) can be calculated - that is a 
value obtained experimentally.  

5. According to known t(0,τ) and t(b,τ), temperature 
field at range x∈[0,b] is found, and ratio 
q(b,τ)/q(0,τ) is calculated therefrom. This ratio 
depends on wanted temperature conductivity 
coefficient a. 

6. Having equalled results obtained pursuant to point 
4 and 5 above, temperature conductivity 
coefficient a is established. 

One should note that it is important so that t(-l,τ) would not be 
equal to t(l+b,τ). 

 
The discussed scheme is implemented in [7], by using 
temperature field in the area x∈[-l,l+b] as input data that is 
calculated by means of mathematical software 
MATHEMATICA, and by solving the problem numerically. 
The [7] includes a conclusion that the scheme described in the 
[2] runs, but restrictions as regards thickness b of studied 
material exist. If b is decreased, then problem becomes ill 
conditioned and it is impossible to establish temperature 
conductivity coefficient. It manifests itself in such a way that 
time range [τ1,τ2] does not exist at too small b values where a 
is constant. Physically it means that if thickness of the studied 
material is too little, then this material does not practically 
affect readings of thermocouple if compared to the case if the 
studied material would not exist at all. 

VI. DETERMINATION OF HEAT 
EXCHANGE LAW USING  MEAN 

ISOTHERM 
Mean dimensionless temperature of a solid depends on 
dimensionless time F and is calculated pursuant to formula [5] 

( ) ( )∫ −=
1

0

1, dNNFNTkFT k
v           (39) 

If dependence of mean real temperature on time tv(τ) is 
known,   then heat flow on the border x=b can be determined 
in accordance with formula [2] 

( )
τ

ρτ
d
dt

k
bcq v= ,            (40) 

where c is the specific heat, and ρ  is density of material. As 
heat flow on the boundary q(τ) is the left side of boundary 
conditions (7), then after obtaining q(τ), ambient temperature 
( )τet , and temperature on the boundary t(b,τ), heat exchange 

coefficient α can be established from the boundary conditions 
(7).  Here it should be noted that ( )τet  can always be 
measured, t(b,τ) can be also measured in most cases. If t(b,τ) 
cannot be measured though, the [2] provides an approach how 
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it can be calculated as per temperature measurements taken at 
an inner point x1<b of a solid. 

In the [2] co-ordinate Nv is called a mean isotherm at which 
the following equality is true  

( ) ( )FTFNT vv =, .           (41) 

It follows from the last equation that Nv depends on both 
dimensionless time F , k and B. It is obvious that equation (41) 
has at least one root Nv∈(0,1), because at least one root of 
equation 

( ) ( )∫∫ =− −−
1

0

1
1

0

1 0dNNNfdNNfN k
v

k          (42) 

is located in the range (0,1) if f(N) is continuous. The [2] 
illustrates that if Te(F) tends to a constant quantity 
asymptotically when F→∞, solution Nv  of equation (41) does 
not depend practically on F and B, and can be considered as a 
constant. In order to calculate this constant, solution of the 
problem (9) – (11) in the following form is used in the [2]  

( ) ( ) ( ) ( )∑
∞

=

=
0

,,,
n

n
n
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which is valid for sufficiently high F values when influence of 
initial conditions can be not taken into account, Pn(N,B,k)) are 
co-ordinate functions mentioned in the [2]. For example, if 
k=1, [2] then  
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B
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21+= . 

Similar formulas [2] are valid if k=2 or k=3, which are not 
given here due to concision. Taking the first two addends from 
the series (43) and inserting them into the equation (41), we 
obtain that 
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On the basis of properties of the series (43) provided in the 
[2], such substitution of the series by the first two addends is 
adequate only when F value is high and Te(F) tends to a 
constant value asymptotically when F→∞. By taking three 
addends in the series (43), it is stated in the [2] that Nv co-
ordinate depends on B, but this dependence is weak, and 
namely, if B changes from 0 to infinity, then Nv changes from  
0.577 to 0.559 if k=1; Nv changes from 0.707 to 0.682 if k=2; 
and from 0.775 to 0.742 if k=3. Considering properties of the 
series (43) [2], as well as experience of practical calculations 
[4] and [7], the first three addends of the series (43) 
approximate precise solution of problem (9) – (11) for all F 
values except F values close to zero comparatively well. It 
means that the co-ordinate of the point where a temperature 
during entire heat transfer process is equal to mean 
temperature at a given moment of time is little dependent on 
type of boundary conditions and time as well. This suggests 
that if inserting thermocouple at a point with given co-
ordinates, we will be able to read temperature with 
thermocouple not only at a particular point, but also mean 
temperature in a whole solid as these temperatures will 
approximately coincide. However, we cannot allege that the 
aforesaid presumption is correct as it is based on series 
approximation with the first three addends. Therefore, we 
specify the mathematical model in two ways. The first way:  5 
addends are used in formula (43). The second way: formula 
(43) is not used and instead of that the problem (9)–(11) is 
solved numerically by means of software, by using a 
corresponding built-in function; then equation (41) is solved 
by using these data. 

If boundary conditions of the first type are set on the boundary 

( ) ( )FTFT e=,1 ,           (45) 

then solution of the problem (9), (11), (45) can be put down as 
follows [2] 

( ) ( )( ) ( )∑
∞

=

=
0

,
n

n
n

e NPFTFNT ,          (46) 

but equation (41) can be re-written in the following way 

( )( ) ( ) ( ) ( )∑∑
∞

=

∞

=

=
00

)(
n

n
n

e
n

n
n

e kQFTNPFT ,         (47) 

where 

( ) ( )dNNPNkkQ n
k

n ∫ −=
1

0

1 .          (48) 
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If k=1, then )(NPn is the coordinate functions given before in 
this article, and  

( ) ( ) ( ) ,
15
21,

3
11,11 210 =−== QQQ  

( ) ( )
2835
621,

315
171 43 =−= QQ . 

We have done many calculations at various boundary 
conditions, by using formula (47) with five addends for 
determination of Nv, as well as by using numerical solution of 
the problem (9), (11), (45) at various Te(F). Table 1 
summarizes some results if k=1. 

Table 1 

Nv minimum and maximum value if F∈[100,1000] 

Boundary conditions 
Te(F) 

[Nv1,Nv2] with 
formula (15) 

[Nv1,Nv2] 
numerically 

1-cos(0.01F) [0.576914, 
0.57745] 

[0.576912, 
0.577462] 

sin(0.01F) [0.577251, 
0.577800] 

[0.577251, 
0.577768] 

sin(0.01F)+cos(0.01F) [0.576473, 
0.577651] 

[0.576475, 
0.578284] 

1-exp(-0.01F) 0.57734 0.577344 
 

It follows from the table that the point where a temperature 
during entire heat transfer process is equal to mean 
temperature at a given moment of time does not practically 
depend on time and boundary conditions and is approximately 
equal to 0.577. Of course, all the above said cannot be 
considered as a proof to the fact that there is no boundary 
conditions were Nv could differ from those illustrated here. In 
the case of any doubt, this calculation can be repeated for 
particular boundary conditions.   

 

 

Conclusions 
The examined solution of heat transfer equation and inverse 
problems associated therewith are less known to a wide range 
of experts. Practical calculations given in [4], [6], [7] 
illustrates that theoretical concepts summarized in the [2] are 
applicable for solving inverse heat transfer problems. The 
calculations indicate that there is a point at symmetric non-
stationery temperature field, whose coordinate almost does not 
depend on time and where temperature is equal to average 
temperature of a solid at every moment of time. By using 
temperature measurements at that point during non-stationery 
heat transfer process one can calculate heat transfer coefficient 
in a simpler manner. A large part of the problems discussed 
herein have been already presented at conferences [8], [9]. 
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