
 

 

  
Abstract—The main aim of this paper is to present a possible 

application of two-degree-of-freedom (2DOF) control design to 
systems with real parametric uncertainty. The control synthesis is 
based on algebraic tools and the robust stability analysis utilizes 
mainly the value set concept in combination with the zero exclusion 
condition. The set of illustrative simulation examples includes the 
control of first and third order controlled plants with interval 
parameters. 
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I. INTRODUCTION 
HE control loops which have separated feedback and 
feedforward parts of the controller are usually called as 

systems with two degrees of freedom (2DOF) and they have 
considerable advantages against traditional configuration [1] – 
[3]. Their possible applications include also the systems 
affected by uncertainties (some robustness problems are 
solved e.g. in [4] – [9]). 

The main aim of the paper is to present the possibilities of 
application of 2DOF controllers to systems with parametric 
uncertainty which are supposed to have known structure but 
their parameters can lie within given bounds. The control 
design approach is based on algebraic ideas invented in [10] 
and [11] and subsequently studied e.g. in [12] – [16]. This 
synthesis technique is combined with robust stability analysis 
based on the value set concept and the zero exclusion 
condition [17]. The theoretical foundations are followed by 
computational and simulation examples with first and third 
order controlled interval plants. This work is a follow-up of 
the papers [18], [19] with extension of 2DOF control to plants 
with parametric uncertainty. The paper is the extended version 
of the conference contribution [20]. 
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The paper is organized as follows. In section 2, the systems 
with parametric uncertainty and their description are briefly 
presented. The section 3 then provides the fundamentals on 
robust stability analysis with special accent to the value set 
concept in combination with the zero exclusion condition. An 
algebraic approach to 2DOF control design is summarized in 
section 4. Further, several simulation examples for first and 
third order controlled plants are presented in the extensive 
section 5. And finally, section 6 offers some conclusion remarks. 

II. SYSTEMS WITH PARAMETRIC UNCERTAINTY 
Systems with parametric uncertainty represent effective and 

popular way of considering the uncertainty in the 
mathematical model of a real plant [17], [21]. Their usage 
supposes known structure (order) but imprecise knowledge of 
real physical parameters, which are usually bounded by 
intervals with minimal and maximal possible values. They can 
be described by a transfer function: 

 
( , )( , )
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b s qG s q
a s q

=  (1) 

 
where ( , )b s q  and ( , )a s q  denote polynomials in s with 
coefficients depending on q, which is a vector of real 
uncertain parameters. Typically, this vector is confined by 
some uncertainty bounding set which is generally a ball in 
some appropriate norm. The most common case supposes L∞  
norm which implies that a ball in this norm is a box. The 
combination of the uncertain system (e.g. transfer function 
(1)) with an uncertainty bounding set gives so-called family of 
systems [17]. 

A special and frequently used case of system with 
parametric uncertainty is the interval plant. Its parameters can 
vary independently on each other within given bounds, i.e.: 
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where , , ,i i i ib b a a− + − +  represent lower and upper limits for 
parameters of numerator and denominator, respectively. 
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III. ROBUST STABILITY ANALYSIS 
Stability is the crucial requirement in all control 

applications. Subsequently, one speaks about robust stability 
if not only one fixed closed-loop system but also whole family 
of closed-loop control systems is ensured to be stable. 

Since the stability of linear systems can be investigated by 
means of stability of its characteristic polynomials, the primary 
object of interest from the robust stability viewpoint is the 
uncertain continuous-time closed-loop characteristic polynomial: 

 

0
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n
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i
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p s q q sρ
=

= ∑  (3) 

 
where ( )i qρ  are coefficient functions. Then, the family of 
closed-loop characteristic polynomials can be denoted as: 

 
{ }( , ) :P p q q Q= ⋅ ∈  (4) 

 
Generally, the family of polynomials (4) is robustly stable if 

and only if ( , )p s q  is stable for all q Q∈ , i.e. all roots of 
( , )p s q  must be located in the strict left half of the complex 

plane for all q Q∈ . Thus, the sufficient instrument for robust 
stability analysis seems to be just the computation of all roots 
of ( , )p s q  for q Q∈ . This is right, but the direct calculation 
of roots can be impractical due to potentially enormously long 
computation times. The idea is applicable only for the most 
primitive cases and so the more efficient techniques had to be 
studied [22], [23]. 

The choice of technique for investigation of robust stability 
depends primarily on the structure of the uncertainty, in other 
words on the way how the uncertain parameters q enter into 
the coefficients of the uncertain polynomial (3). According to 
this, it can be distinguished among several basic structures of 
uncertainty with increasing generality, i.e. independent 
(interval) uncertainty structure, affine linear uncertainty 
structure, multilinear uncertainty structure, and nonlinear 
uncertainty structure (polynomial, general). The higher level 
of relation among coefficients means the more complex robust 
stability analysis. The classical feedback connection of 
interval plant (2) and a fixed controller leads to the closed-
loop characteristic polynomial with affine linear uncertainty 
structure. An interested reader can find further information 
e.g. in [17], [21], [23]. 

As it has been already mentioned, the structure of 
uncertainty is a key factor for determination of the suitable 
choice of tool for its robust stability analysis. However, there 
is a very universal graphical approach applicable for all, even 
the most complicated, cases. It is known as the value set 
concept in combination with the zero exclusion condition [17]. 

Suppose a family of polynomials (4). The value set at 
frequency ω ∈ R  is given by [17]: 

 
{ }( , ) ( , ) :p j Q p j q q Qω ω= ∈  (5) 

In other words, ( , )p j Qω  is the image of Q under ( , )p jω ⋅ . 
Practical construction of the value sets then means to 
substitute s for jω , fix ω  and let the vector of uncertain 
parameters q range over the set Q.  

The zero exclusion condition for Hurwitz stability of family 
of continuous-time polynomials (4) says [17]: Assume 
invariant degree of polynomials in the family, pathwise 
connected uncertainty bounding set Q, continuous coefficient 
functions ( )i qρ  for 0,1, 2, ,i n= …  and at least one stable 

member 0( , )p s q . Then the family P is robustly stable if and 
only if the complex plane origin is excluded from the value set 

( , )p j Qω  at all frequencies 0ω ≥ , that is P is robustly stable 
if and only if: 

 
0 ( , ) 0p j Qω ω∉ ∀ ≥  (6) 

 
More details can be found especially in [17] or e.g. in [21]. 

A gallery of value sets for various uncertainty structures can 
be found e.g. in [23]. 

IV. 2DOF CONTROL DESIGN VIA ALGEBRAIC TOOLS 
The 2DOF closed-loop control system with separated 

feedback and feedforward parts of the controller is depicted in 
fig. 1. The transfer functions ( )G s , ( )bC s , and ( )fC s  
represent controlled plant, feedback part of the controller, and 
feedforward part of the controller, respectively and the signals 
w(s), n(s), and v(s) are reference, load disturbance, and 
disturbance signal. 

 

 
Fig. 1 two-degree-of-freedom control loop 

 
The control synthesis itself is based on the algebraic ideas 

of Vidyasagar [10] and Kučera [11]. Subsequently, the 
specific tuning rules has been developed and analyzed e.g. in 
[12] – [16]. 

Besides, the controller tuning rules for the case of first 
order controlled plant under assumption of either purely 
reference tracking problem or reference tracking and load 
disturbance rejection together have been already elaborated 
e.g. in [18], [19] and so this paper will only summarize the 
most important results and then it will apply them to the 
systems with parametric uncertainty. 

Primarily, the control design technique supposes the 
description of linear systems in fig. 1 by means of the ring of 
proper and stable rational functions (RPS). The conversion 
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from the ring of polynomials to RPS can be performed very 
simply according to: 
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The parameter 0m >  will be later used as a controller tuning 
knob. 

The algebraic analysis [18], [19] leads to the first and most 
important Diophantine equation: 

 
( ) ( ) ( ) ( ) 1A s P s B s Q s+ =  (8) 
 

with a general solution 0( ) ( ) ( ) ( )P s P s B s T s= + , 

0( ) ( ) ( ) ( )Q s Q s A s T s= − , where T(s) is an arbitrary member of 
RPS and the pair 0 ( )P s , 0 ( )Q s  represents particular solution of 
(8). This principle is known as Youla – Kučera 
parameterization of all stabilizing controllers. Thus, all 
possible solutions of the Diophantine equation give all 
stabilizing feedback controllers. Since the feedback part of the 
controller is responsible not only for stabilization but also for 
disturbance rejection, the convenient controller from the set of 
all stabilizing ones can be chosen on the basis of divisibility 
conditions. 

Subsequently, the requirement of the reference tracking is 
“hidden” in the second Diophantine equation: 

 
( ) ( ) ( ) ( ) 1wF s Z s B s R s+ =  (9) 
 
In papers [18], [19], it was derived that the assumption of 

first order plant 
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step-wise reference with ( )( )wF s s s m= +  and no 
disturbances leads to the controllers: 
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where 
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Moreover, if the step-wise load disturbance signal is 

considered, the controllers change to: 
 

1 0 1 0( ) ( )( ) ; ( )
( ) ( )b f

Q s q s q R s r s rC s C s
P s s P s s

+ += = = =
� � � �  (13) 

 
where 

 
2 2

0
1 0 1 0 0 0

0 0 0 0

2 ; ; ;m a m m mq q r r r r m
b b b b
−= = = = = =� � � �  (14) 

 
Note that the controller parameters depend (generally in a 

nonlinear way) on the tuning parameter 0m > . Its choice can 
influence robust stability as well as performance of the control 
loop. A possible method of parameter selection for 1DOF 
configuration based on the requested size of first overshoot of 
control output is presented e.g. in [14] – [16]. Nevertheless, 
this contribution will not use any exact technique for the 
choice of m in simulations. 

The tuning rules for the higher order controlled systems 
would be more complicated and they are not explicitly shown 
here. Certainly, they can be derived according to general 
principle outlined here and provided in more detail e.g. in 
[18], [19]. 

V. SIMULATION EXAMPLES 
The algebraic theory of 2DOF control design and 

foundations of robust stability analysis described in the 
previous sections are going to be verified by means of 
simulation examples within this part. The aim is to compute 
2DOF controller for step-wise reference tracking and 
potentially also step-wise load disturbance rejection which is 
able to robustly stabilize given system with parametric 
uncertainty. 

A. First Order Plant 
In the first instance, the simple first order plant with 

uncertain gain and time constant is considered as a controlled 
object: 

 
[ ]

[ ]
5; 15

( , , )
1 1; 3 1

KG s K T
Ts s

= =
+ +

 (15) 

 
The fixed nominal plant used for the controller design itself 

can be easily determined by means of the average values of 
the uncertain parameters: 

 
0

0

10 5( )
2 1 0.5N

bG s
s s s a

= = =
+ + +

 (16) 

 
First, two P controllers (11) with parameters (12) were 

calculated for 2DOF configuration using tuning parameter 
1m = : 

 
( ) 0.1; ( ) 0.2b fC s C s= =  (17) 
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It means that the controllers were designed only for 
(nominal) stabilization and reference tracking but not for 
disturbance rejection. Moreover, the robust stability can be 
easily verified via the family of closed-loop characteristic 
polynomials: 

 
( )

[ ] [ ]
[ ] [ ]

0 0( , , ) 1

1; 3 1 5; 15 0.1

1; 3 1.5; 2.5

CLp s K T Ts p Kq

s

s

= + + =

= + + ⋅ =

= +

 (18) 

 
Robust stability of the first order polynomial (18) is evident 

thanks to the positivity of both interval coefficients. 
The simulations in fig. 2 show the output signals of the 225 

“representative” systems (RS) from the interval family (15). 
Both interval parameters were divided into 14 subintervals of 
the same size and thus the obtained 15 values and 2 
parameters lead to 215 225=  systems for simulation. In 
addition, the red curve represents the output signal for the 
nominal system (16). Furthermore, it was assumed the step 
reference signal changing from 1 to 2 in one third of 
simulation time and the step load disturbance -0.05 which 
influences the input to the controlled plant during the last third 
of simulation. 

 

 
Fig. 2 control of RS from interval system (15) by 2DOF controller 

(17) – output signals 
 
As can be seen, the family of systems (15) is really robustly 

stabilized by the 2DOF controller (17), but the permanent 
control error is observed due to the perturbations in controlled 
plant gain and also when the load disturbance is injected. So, 
the practical application of this controller is very limited as it 
is suitable only for the ideal nominal case without 
perturbations and without disturbances. 

Moreover, fig. 3 shows the set of control signals (outputs of 
the controller) which corresponds to the set of output signals 
from fig. 2. 

 
Fig. 3 control of RS from interval system (15) by 2DOF controller 

(17) – control signals 
 
Now, it have been calculated two PI controllers (13) with 

parameters (14) for tuning parameter 0.05m = : 
 

0.08 0.0005 0.01 0.0005( ) ; ( )b f
s sC s C s

s s
− + += =  (19) 

 
which lead to the family of closed-loop characteristic 
polynomials: 

 
( ) ( )

[ ] [ ] [ ]
1 0

2

( , , ) 1

1; 3 0.2; 0.6 0.0025; 0.0075
CLp s K T Ts s K q s q

s s

= + + + =

= + − +

� �  (20) 

 
This family is robustly unstable due to the potentially 

negative first power coefficient, which is demonstrated also 
on the set of output signals for the RS and corresponding 
control signals (see fig. 4 and fig. 5) obtained according to the 
previous simulation. 

 

 
Fig. 4 control of RS from interval system (15) by 2DOF controller 

(19) – output signals 
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Fig. 5 control of RS from interval system (15) by 2DOF controller 

(19) – control signals 
 
Finally, the whole experiment with PI controllers is 

repeated, but now for tuning parameter 1m =  with the 
following results: 

 
0.3 0.2 0.2 0.2( ) ; ( )b f

s sC s C s
s s
+ += =  (21) 

 
[ ] [ ] [ ]2( , , ) 1; 3 2.5; 5.5 1; 3CLp s K T s s= + +  (22) 

 
The interval polynomial (22) and thus also the whole 2DOF 

control loop is robustly stable, control error tends to zero and 
load disturbance is rejected which is confirmed by fig. 6 with 
set of output signals for RS and fig. 7 with set of control 
signals. 

 

 
Fig. 6 control of RS from interval system (15) by 2DOF controller 

(21) – output signals 
 

 
Fig. 7 control of RS from interval system (15) by 2DOF controller 

(21) – control signals 
 

B. Third Order Plant 
In the second example, the third order interval plant is 

assumed to be controlled: 
 

[ ] [ ] [ ]
[ ] [ ] [ ] [ ]

2

3 2

0.8;1.2 0.8; 1.2 0.8;1.2
( , , )

0.8; 1.2 0.8; 1.2 0.8;1.2 0.8; 1.2i i

s s
G s b a

s s s
+ +

=
+ + +

 (23) 

 
The fixed nominal system is: 
 

2

3 2

1( )
1N

s sG s
s s s

+ +=
+ + +

 (24) 

 
First, the tuning parameter 0.6m =  leads to 2DOF 

controller (for step-wise load disturbance rejection): 
 

3 2

3 2

3 2

3 2

1.4227 0.3001 1.08 0.0467( )
1.1773 1.4999

0.216 0.3888 0.2333 0.0467( )
1.1773 1.4999

b

f

s s sC s
s s s

s s sC s
s s s

+ − +=
+ +

+ + +=
+ +

 (25) 

 
The family of closed-loop characteristic polynomials has 

the sixth order and affine linear structure of uncertainty. So, 
the analysis of its robust stability is not as trivial as in the 
previous section anymore. The value sets plotted for the range 
of frequencies 0 : 0.01:3ω =  according to the principle 
described in section 3 and with the practical assistance of the 
Polynomial Toolbox for Matlab [24] are shown in fig. 8 and 
their zoomed version for better view in the neighborhood of 
the origin of the complex plane is provided in fig. 9. The 
family is robustly unstable because the zero is included in the 
value sets. This fact is demonstrated also on the set of output 
signals given in fig. 10 (now the size of load disturbance is -
0.5 and the amount of RS for simulations is 72 128= ). The set 
of control signals is presented by fig. 11. 
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Fig. 8 the value sets – plant (23) and controller (25) 

 

 
Fig. 9 the value sets – plant (23) and controller (25) – zoomed 

version 
 

 
Fig. 10 control of RS from interval system (23) by 2DOF controller 

(25) – output signals 
 

 
Fig. 11 control of RS from interval system (23) by 2DOF controller 

(25) – control signals 
 
Finally, choice of the tuning parameter 0.9m =  results in 

2DOF controller: 
 

3 2

3 2

3 2

3 2

4.2699 6.1685 2.43 0.5314( )
0.1301 0.5815

0.729 1.9683 1.7715 0.5314( )
0.1301 0.5815

b

f

s s sC s
s s s

s s sC s
s s s

+ + +=
+ +

+ + +=
+ +

 (26) 

 
The value sets of corresponding family of closed-loop 

characteristic polynomials are visualized for 0 : 0.01:5ω =  in 
fig. 12. Its zoomed version is then in fig. 13. Since the family 
contains a stable member and the complex plane origin is 
excluded from the value sets, it is robustly stable. The sets of 
simulated output signals and control signals are depicted in 
figs. 14 and 15, respectively. 

 

 
Fig. 12 the value sets – plant (23) and controller (26) 
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Fig. 13 the value sets – plant (23) and controller (26) – zoomed 

version 
 

 
Fig. 14 Control of RS from interval system (23) by 2DOF controller 

(26) – output signals 
 

 
Fig. 15 Control of RS from interval system (23) by 2DOF controller 

(26) – control signals 
 

VI. CONCLUSION 
The paper has been focused on application of continuous-

time 2DOF control algorithms designed in RPS to systems with 
parametric uncertainty. The synthesis method itself is 
accompanied by the graphical approach to robust stability 
analysis based on the value set concept and the zero exclusion 
condition. Furthermore, the paper has presented several 
computational and simulation examples. 
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