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A mixed finite element method with new
boundary condition

J. EL-MEKKAOUI AND A.ELKHALFI

Abstract—In this paper, we introduce the Stokes equations with a
new boundary condition. In this context, we show the existence and
uniqueness of the solution of the weak formulation associated with
the proposed problem. To solve this problem, we use the
discretization by mixed finite element method. In addition, two types
of a posteriori error indicator are introduced and are shown to give
global error estimates that are equivalent to the true discretization
error. Computational results suggest that both error estimators seem
to be able to correctly indicate the structure of the error.
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I. INTRODUCTION

HIS paper describes a numerical solution of Stokes

equations in an open bounded connected Q to IR? and
which we must add the boundary condition.
To date, most works have considered the standard boundary
conditions: Dirichlet, Neumann [1, 2, 4, 5, 14, 21] and the
mixed Direchlet-Neumman boundary condition [ 2, 4, 14, 15,
21 ]. In this paper, we propose a new boundary condition,
noted Ca,b, which generalizes the standard ones. In addition,
we prove that the weak formulation of the proposed modeling
has a unique solution. To calculate this latter, we use the
mixed finite element method.
In this modeling flow of porous media, it is essential to use a
discretization method which satisfies the physics of the
problem, i.e. conserve mass locally and preserve continuity of
flux.

The Raviart-Thomas Mixed Finite Element (MFE) method

of lowest order satisfies these properties.
Moreover, both the pressure and the velocity are approximated
with the same order of convergence [4, 6]. The discretization
of the velocity is based on the properties of Raviart-Thomas.
Other works have been introduced by Brezzi, Fortin, Marini,
Dougla and Robert [4, 5, 7]. This method was widely used for
the prediction of the behavior of fluid in the hydrocarbons
tank.

A posteriori error analysis in problems related to fluid
dynamics is a subject that has received a lot of attention during
the last decades. In the conforming case there are several ways
to define error estimators by using the residual equation. In
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particular, for the Stokes problem, M. Ainsworth, J. Oden [9],
R.E. Bank, B.D. Welfert [10], C. Carstensen, S.A. Funken
[11], D.Kay, D. Silvester [12] and R. Verfurth [13],
introduced several error estimators and provided that they are
equivalent to the energy norm of the errors. Other works for
the stationary Navier-Stokes problem had been introduced in
[14, 17, 18, 20, 16]. For this paper two types of a posteriori
error indicator are introduced and are shown to give global
error estimates that are equivalent to the true discretisation
error.

The plan of the paper is as follows. Section 2 presents the
model problem used in this paper. The weak formulation is
presented in section 3. In section 4, we show the existence and
uniqueness of the solution. The discretization by mixed finite
elements is described in section 5. Section 6 introduces two
types of a posteriori error bounds of the computed solution. In
section 7, numerical experiments within the framework of this
publication were carried out.

Il. GOVERNING EQUATIONS
We will consider the model of viscous incompressible flow in

an idealized, bounded, connected domain in IR?2.
—V2hi+Vp=1 in Q (2.1)
Vi=0in Q (22)

The boundary value problem which is posed on two
dimensional domains Q, is defined as:

C,,:at+b(Vi—pl)i=ton I :=0Q-

. (2.3)
We also assume that Q has a polygonal boundary 1, so fi
that is the usual outward pointing normal. The vector field U,
is the velocity of the flow the functional f in the space
[L2 ()] and the pressure p in the space 2 (c2) , V isthe
gradient, V. is the divergence and w2 is the Laplacien
operator, @ and b nonzero function defined on 1 verify:

There are two strictly positive constants . and s, such that:

- aM) <p, (2.4)

b(x)
Remark 2.1 If a and bare two strictly positive constants
such that t a>=>Db then C., is the Dirichlet boundary
condition and if a <<b then the c_, Iis the Neumann

boundary condition. For this, a is called the Dirichlet
coefficient and b is the Neumann coefficient.

vxel o,
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I1l. THE WEAK FORMULATION
We define the spaces:

hl(Q)z{ u:Q —>IR; u,a—u,a—ue LZ(Q)},
oxX oy

H(Q) = [h* ()] 2

L3(2) = {a < L*(: [,qdo=0 |

The standard weak formulation of the Stokes flow problem

(2.1)-(2.2)-(2.3) is the following:

Find U e H'(Q) and p € L3 (Q) such that

oo a__ I 1.
IQVU.VV+I]_EU.V—IQ pV.v_J'Qf.v+J']_Bt.v (3.4)
—jQ qv.i =0,

for all Ve H'(Q)and g e L3().
Let the bilinear forms A and B
a
G.V) = TRAY] “av, 3.5
A(u,v)_'[QVu.VV+_Lbu.v (3.5)
B(V,q) = —_[QqV.V (3.6)
Given the functional L
(3.7

L(V) = J’Q fv +J’r%f.\7 ,
The underlying weak formulation (3.4) may be restated as:
Find 0 e H'(Q) and p € L3(Q) such that
AU, V) +B(p,v)=0
{B(q.ﬁ) =0,
for all Ve H'(Q)and g e L5(Q).

(3.8)

IV. THE EXISTENCE AND UNIQUENESS OF THE SOLUTION

In this section we will study the existence and uniqueness of
the solution of problem (3.8). For this, we need the following
results:

Theorem 4.1 There are two strictly positive constants C, and
C, such that:

VveH 1(9) : C1||\7||l,(2 < ||\7||J,Q <G, ”\7”1,9
Where

(4.1)

1 2 2 1
Wl = ([, v : 99« [y9 ) = (1992, + 19I5,
and
1
_ N _ _ a__\2
V], o == (A, ¥))z = (IQ VV 1 VV +J-FBV.VJ
Proof: The mapping », : H*(€2) — L?(I"), such that
Yo (V) =V /T is continuous [2], then there exists ¢ > 0 such
that:
”\7”0 r = 01”\7”le0|’ alveH l(Q)
Using this result and the result (2.4) gives,
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913, = [, vV : vvda - [ _2vvd,

oQ p

<[VVloq + Al

<@+ pic? V.,
On the other hand. According to 5.55 in [1], there exists a
constant o > O such that:

V20 = 2 (IMV]E, + V]2, )
then
V12 o = 199056 + V05
< o+ (w2, + V2,
1 _ a _ _
< (p+1) max(; a—l) (Vvsg + Ir—vydyj

then ¢,[[v] , <9,
1
where ¢ _ [(p+1) max(L; l)J ’
221

Theorem4.2: (H(<2),||. ||, ., ) is a real Hilbert space.

Proof: (H 1(Q),||_||m) is a real Hilbert space [2, 21] and

I. Hm and H . HJ ,are equivalents norms, then

(H'(),|. ||J o) is a real Hilbert space.

Theorem 4.3 The bilinear form B satisfies the inf-sup
condition: there exists a constant
3 = 0 such that:

sup MZ Bld|,,, forallgeLi(Q)
veH (Q) HVHJ,Q

Proof : We have [1, 2, 21]

34 > 0 such that:

sup B(V,q)
Vo

VeH§(Q)

= Aldl,

Since H!(Q) = H'(©)and 1V, & =], 1N H3() then

‘I,Q

sup B(.q) sup B(V,q)
JeH(Q) HVHJQ VeHg(Q) HVHJ,Q
B _'!
= sup BLD o pq)

VeH}(Q) ‘\7‘1'9

We define the “big” symmetric bilinear form

cl@, p); ¥, a)] = A@. V) + B(@, q) + B, p). (4.5)

And the corresponding function F(V,q)=L(V), choosing

the successive test vectors (V,0) and (0,q) shows that the
Stokes problem (3.8) can be rewritten in the form:
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find (4, p)e H1(Q)x L% (Q) such that

clw@, p): . 0)]=F@, a)
for all (v,q)e H*(Q) x L2(€).

(4.6)

The bilinear form A is positive continuous and H1(q) —

elliptic and the bilinear form B is continuous and satisfies the
inf-sup condition. Then the problem (3.8) is well-posed [1, 2,
4, 21] and C and A are bilinear forms satisfies the following
propositions.

Proposition 4.4 ([1. 21])

Forall (W, 5) e H1(Q) x L3 (©2), we have
c[w ;@ o]

@ [l ¢+ lollo

where y is a positive constant depends only on the shape of
the domain Q.

sup

(V.q)eHL(Q)x12 Z7(”W”J,Q +||5||o,g) (4.7)
) € X 0

Proposition 4.5
Forall (wW,s) e H l(Q) x L(Z) (), we have

3@ 95 o +[lelly.q

where d(s,q) =,s.q forall s,qe LZ(Q).

sup

l —
7, 9)eH(Q)x - Z(”W”J,Q * ”5”0,9) (4.8)

Proof. Let (w,s) e H1(Q)x L3 (<),
We will take (v, q) = (W,0) in the first and
(v,q) = (0, s) in the second, we obtain

A(W, V) +d(s, q)

o =W (4.9)
(V,Q)EHng)xL%(Q) ||\7||J’Q +||q||0’Q ||\N||JQ
wp DD g @

(V.9)eHL(@)x15(9) ”V”J,Q +||f1||o,g
we gather (4.9) and (4.10) to get (4.8).

The bilinear form A is symmetric and continuous and semi

positive definite on Hl(Q) in this case we say the problem

(3.8) is a type of saddle-point problem. The results (4.1)-(4.4)
ensure the existence and uniqueness of the solution of the
problem (3.8) (see the theorem 6. 2 in [1]). In the following
section we will solve this problem by mixed finite element
method.

V. MIXED FINITE ELEMENT APPROXIMATION
Let Th ;h >0, be a family of rectangulations of Q. For any
T eTh, or s of rectangles sharing at least one edge with
element T, E*I' is the set of rectangles sharing at least one

vertex with T. Also, for an element edge E, @ denotes the
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union of rectangles sharing E, Whilea~)E is the set of

rectangles sharing at least one vertex whit E.
Next, OT is the set of the four edges of T. We denote
by £(T) and Nt the set of its edges and vertices, respectively.

We let &, = &(T) denotes the set of all edges split
into interior and boundary edges.
gh = gh,Q ) gh,r
Where
shQ={Eesh:EcQ}and ghr={Eesh:ECF}
We denote by hT the diameter of a simplex T, by hg the

diameter of a face E of T, and we set h = Max{h_l_ T e Th}

A discrete weak formulation (3.8) is defined using finite
dimensional spaces x: — H(q) and mr < L2(Q) as!

h

find i, e X% and Pp €M such that:

Alty 9, )+ B oy ) = L) G
B(Vh'ph ): 0
_ 1 h
Forall v, e Xj andq, e M "
We use a set of vector-valued basis functions {gﬁi }izl Ny’
so that
Ny
L= 2
We introduce a set of pressure basis functions {l/lk }k—l n
Ly p
and set
Np
P = 2 P v >3
h K21 k7 'k 3)

Where N, and n,are the numbers of velocity and pressure

basis functions, respectively.
We find that the discrete formulation (5.1) can be expressed as
a system of linear equations

& SIe)-0) &

B, O \P 0

With
Ag =[3j j1:3j j = IV :Vj +I@Q§‘7’i-§7’j (5.5)
Bg =Iby j1iby j =~y V-6j (5.6)
F=I: i =lo T + o 1o, (5.7)

fori; j=1..,ny andkzl,...,np. And the function pair
(4,, p,) oObtained by substituting the solution vectors

UelIR™ and peIR™ into (5.2) and (5.3) is the mixed

finite element solution. The system (5.4)-(5.7) is henceforth
referred to as the discrete stokes problem. We use the iterative
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methods Minimum Residual Method (MINRES) for solving
the symmetric system.

VI.

In this section, we propose two types of a posteriori error
indicator. The first one is the residual error estimator and the
second one is the local Poisson problem estimator. Which are
shown to give global error estimates that are equivalent to the
true error.

A POSTERIORI ERROR ESTIMATOR

A. A Residual error estimator.
The bubble functions on the reference element
T =(0,1) x (0,1) are defined as follows:

b- =2'x@1-x)y(d—y)

be = 22x@A—x)A—-vy)

bz 7 = 2°y(L—y)x

bz 7 = 22y(L—x)x

b.;f =2y(1-y)d—x)

Here b is the reference element bubble function,
andb- =, 1=1:4 are reference edge bubble functions. For

ET’
any T eT,, the element bubble functions is b, =b- o F;
and the element edge bubble functionisbg ; =b: - o F,
where g the affine map form T toT. For an interior
Dois  defined
=Dbg;,i=1:2 where E=T, ~T,. Forahboundary

edge E e g ., piecewise, so  that

by
edge E € ¢, 1, bg = bg ;, where T is the rectangle such that

E<oT.
With these bubble functions, ceruse et al ([19], lemma 4.1]
established the following lemma.

Lemma 6.1. Let T be an arbitrary rectangle in T, and
Eedl. For any V; eB (T)andVp € B (E), the
following inequalities hold.

Cull¥r Loy <[00 | =il CED
Vb, = Cohr (6.2)
Vel <|Veb2| = CulVel,. (6.3)
9ebellor = Cuné Vel (6.4)
Vebel s <Cihe? Vel . (6.5)

WhereC, and C, are tow constants which only depend on the
element aspect ratio and the polynomial degrees ko and kl.
Here, kyand K, are fixed and C, and C, can be associated

with generic constants ¢ and C In addition, \7E which is only
defined on the edge E also denotes its natural extension to the
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element T. From the inequalities (6.4) and (6.5) we established
the following lemma:

Lemmab.2. Let T be arectangle and E € 6T N &, .. for
any v. e P_(E), the following inequalities hold.

[Vebe|,, <Cihe? (6.6)

VEHO,E

Proof. Since Vb, = Oin the other three edges of rectangle
T, it can be extended to the whole of Q by setting Vb, = 0
in Q—T, then

HvaE Hl,T = HvaEHl,Q and HvaE HJ,T = HvaE HJ,Q ’
Using the inequalities (6.4), (6.5) and (4.1) , gives

HvaE HJ,T = HvaE HJ,Q

= C|Vebe|, o

=Cy ‘ ‘VE be Hl.T

1

= e, (Webe 2, +Vebe 7, P
1
= Czck( he + hEl)z HVE HO,E
11
<c,C (D% +1)2h 2|V |, .
1
= ChEZHVEHo,E
With D is the diameter of Q and ¢ = ¢,c, ( D? +1)§_

Lemma 6.3. Clement interpolation estimate:

Given Ve H'(Q), let v, e X be the quasi-interpolant of

v defined by averaging as in [20]. Forany T <T,,and any
E < oT, We have:

IV =V,[,+ <Ch [V (6.7)

1.ar
1

IV =V, e <Chgv (6.8)

We let (i, p) denote the solution of (3.8) and let denote

(G,, p,) the solution of (5.1) with an approximation on a
rectangular subdivision T, .

1,0

Our aim is to estimate the velocity and the pressure
errors € =0 —, € Hl(g); E=Pp-p, € LZ(Q).
The element contribution 7. of the residual error estimator

ng is given by

77|§,T = hTzuﬁT HE’T + ”RT ”(Z),T + ZEeaT hE HﬁEH
and the components in (6.9) are given by

R, = {f + V24, —vp, /T

2

(6.9)

0,E

R, ={v.a, }/T
) %Uvah—phl];Eegm
Re =
1. a _ _
Bt _(E n (VO — phl)nE,T); Eeenr

With the key contribution coming from the stress jump
associated with an edge E adjoining elements T and S:
Uvah — Pl ‘]: ((Vah — Pnl )/T _(Vah — Pnl )/S)ﬁE,T
The global residual error estimator is given by:
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s = ZTeTh 77F21T '
Our aim is to bound | —d, ||, and ||p— p, ||, with respect
to the norm || . ||J for velocity” . ||X = || . ||J_Q and the quotient
norm for the pressure H . H

w = llog:
Forany T T, ,and E < oT, we define the following two

functions:

i W, = R;b; ; W, =R.b, .
oW, =00nJT.
oIf EcOT ne,, then W, =0in dwy.
e If E €T Nneg,, then W, = 0in the other

edges of rectangle T.
ew, and W, can be extended to the whole of Q by setting

W, =0inQ-T,

W, =0inQ-@ if EcaT nepg,-

W, =0inQ-T if E€dT ng, .

With these two functions we have the following lemmas:
Lemma 6.4. Forany T < T, , we have:

|, fw = [ (va—pl): v, .

Proof. We apply the Green formula, W, = 0in dT and
(2.1), we obtain
[,(va—pl):vw, =[_(Vu— pl)iv,

— [, (v2a—vp)w,

(6.10)

= [ fw
Lemma 6.5.
)If E€dT mneg,,, Wehave:
[ fawe =] (Va—pl): v, (6.11)
i) If E<dT mneg, -, Wehave:
(6.12)

i _ ~ a_ 1_3_
IT f ., :.[T (Va — pl): v, +_|.0T( 5 U —Btj.wE
Proof. i) The same proof of (6.10).

ii)if E€dT neg,,. Using (2.1), gives

[ fwe =[ (-v2a+vp)w,
By applying the Green formula, we obtain
|, fwe =[ (Va—pl):vwe —[_(Vd— pl)iw,
Since W, = 0 in the other three edges of rectangle T and we
have by (2.3), at +b(Vd — pl )i =t in E =T ~aT, then

J'TF.WE_J.(Vu—pI)VWEwLJ‘ ( 1

—u _Et jWE
Theorem 6.6. For any mixed finite element approximation
(not necessarily inf-sup stable) defined on rectangular gridsT, ,

the residual estimator 7n satisfies:
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I&ll, + +lellor = Came

(L

T 'ewr
Note that the constant C in the local lower bound is
independent of the domain.

Proof. We include this for completeness. To establish the
upper bound we let (V,q)e HY{(Q) x L2(Q). and v, e X} be
the clement interpolant of v then

S [CRAN
~cle.an@-v,.]
- cl@. P - v, 0]l a0 -]
=L(V-V,)- A(Urb’\_/._\_/h) —B(V -V, py) — B(U,,q)
h/T

- s{(/;. Ry ) )

T eTh

vV - > \R_,v-V
EcoT ' E h’e

TET {”RT ”O,T ”‘7 ~Vh ||O,T * EG%T ”ﬁE ||O,T ”‘7 ~Vh ”O,E

ol IR lo e |

(zﬂﬂ@{ JVMJl

(zzwwm[zz—wmm
TeT, EcoT TeT, EEBT
]2

jz
Using (6.7) and (6.8), then gives:

szmmW

;

> [Rells

TeT,

{EWT
T ETh

Ty

C[(é,g);(v,q)]sc{

1

Do TLE RIS ALY (NS0
Finally, using (4.7), gives:

1

2

s Hor <[ 3, Dol Il seerveleele |

(6.14)

This establishes the upper bound. Turning to the local lower
bound. First, for the element residual part, we have:
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[ Reawy = [ (T +V7d, —Vp,).
= [ Fw — [ (VT — p,1): Vi
+LT (VT, — p, 1AW, .
Using (6.10), (6.2) and W, = 0in oT , gives:
[ Ry = [ (Ve —al): Vi,
< (Jel,r + ey N5

< C([l; ; +llelo )b [Re .,
In addition, from the inverse inequality (6.1),

[ Ao <) =elf]

2
0,T
Thus,
—~ |12 N2 2
n [Re], . = €Ol + el

Next comes the divergence part,
Relloz = [Vl

= ”V.(U —a, )”o,T

s \/E|U -, |1,T

s \/E”U — Uy, ”J T

<2lel, ,

(6.15)

(6.16)

Finally, we need to estimate the jump term. For an edge
if E€OT ng,,, We have

2| ReWe = zle (Vi, — p,1)A. W,
= L)E VU, —pu 1) 1 VWe

+ > [ (VU —Vp,)We.

i=12
Using (6.11) and W, = 0in dw,, gives:
2fE Re . W, :-LE (VE —&l) : VW, +Z.Li Ry W

i=L2
= (‘é‘l.(aE + HEHO,(UE )‘WE ‘1,(0E + leHﬁTu HOvT. HWE HO,Ti
i1

Using (6.4) and (6.5) , gives

2 2

2], Rew, =Cef, + el )*he? R

_ 1
+ 2 Rell, né|Rell, . (6.18)

Using (6.15), gives
|, Rewe <C(Je

2

J,we

2

0,

11
)2hE2||RE||O’E (6.19)

+ |l
Using (6.3) gives
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2

Pyl

Je RebZ
and thus using (6.19) gives,
— |2 .
he HREHO,E <c(|| +H€H§.WE)- (6.20)
We also need to show that (6.20) holds for boundary edges.
Foran E € 0T ng, -, We have

ge-Wg =

2
= ofRef,..

2

J, g

5 a _ _ I

_[E Reg W, = - [Euh + (Vu, — p,)n —Et:|.WE
a _ 1) . N

- 6T[E h—BtJ.WE+LT((Vuh—phl)n).wE
a _ 1) _ _

- 6T[B h—Btj.wE+J.T((Vuh—phl)):VWE

+ L_ ((vzﬁh - vph))wE
Using (6.12) and (2.4), gives

—[ (Ve —el)): v, — [ %é.wE
+ IT R, .W,
= (|é|1,T + ||g||0,T )|WE |1,T + ﬂ1||é||o,a'r ”WE ||0,aT

+ R el

= C(”é”J,T + ”g”O,T )”WE ”J T + ”ﬁT ||O,T ”WE ”O,T '

Using (6.4) and (6.6) , gives

|, Re W

— 7£ >
J.Rewe =c (e, +[elohe? |Rel|, .
. T
+[|Re |, , he |Ref], .

Using (6.15), gives
ERE .
JoRewe =c (s, +lleli )2 he?|Re |, . (6.2D)
Using (6.3)

2

[ Rete =|Rebe = o[ .

0.E

and this using (6.21), gives

2

e [Re[}, < Ul + el (6.22)

0.E

Finally, combining (6.15), (6.16), (6.20) and (6.22) establishes
the local lower bound.

Remark 6.7. Theorem 6.6 also holds for stable (and
unstable) mixed approximations defined on a triangular

subdivision if we take the obvious interpretation of ;. The

Proof is identical except for the need to define appropriate
element and edge bubble functions.

B. The local Poisson problem estimator

The local Poisson problem estimator:
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e = | an.T
TeTy,

Where

mer =Bl +leenlos (6.23)

Let

Q; =L*(T) and V; = H*(T) (6.24)
(6.25)

. _ . — a_. _
A (Epr V) = J.'r VEp: 1 VV + _LT BeP.T v

€, €V, satisfies the uncoupled Poisson problems

A (Epr V) = (Ry ,V)r — D (ReV)e (6.26)
Eee(T)

foranyv eV;.

And

(SP,T ,q)=(V.G,,q)/T forallq € Q, (6.27)

Theorem 6.8 The estimator 77, ; is equivalent to the 77, ;

estimator: Crpr <7gr <C1py.
Proof. For the upper bound, we first let w, = R b, (b, is
an element interior bubble).
From (6.26),
(Ry Wy )y = [ V&L, 1 VW,
= ‘éP,T ‘l,T ‘WT ‘l,T.

Using (6.2), we get

1
Rr.vieyy = o |Re], (s, +leos, )7 29
In addition, from the inverse inequalities (6.1),

HﬁT HET < C.(R, W, ), and using (6.28), to get
n?R [}, = leer S, +leeall, )2 (629)

Next, we letw_ = R_b. (b, is an edge bubble
function).
If EcoT M Enr using (6.26), (6.4), (6.6) and (6.29),
gives
(Re, We)e =— A (8pr, We ) + (R, We )y

<ol Wl x +|Re ], , 1o

1
£, )
oT

< clwel, , (Joerf

JT +H8P’T
1
2 2 >
voni (e, +leer s )2 Ieln
2 2 1
i = . 2
= ChE2 REHO,E (HeP'THJ,T + HgP:THo,T )

If

seethat a and b defined justin T, then we can
posed a =0inQ-T.

Ecol nénq,
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Using (6.26), (6.4), (6.5) and (6.29), gives
(ﬁE 'WE)E = (VéP,T 'VWE )T + (ﬁT ’WE)T

W

< ‘ép‘T‘ W

EHO,T

1
— 2 ~
Ello.E P.T P.TlloT

Finally,forany T €T, and any E € 0T, we have

+[Re]l,.
1,T‘ E‘l,T T oT

2

_1
< Chg? +
J.T

1
2

(Rewe)e =cnctRef, (e l?, +lewsl, ) ©30)
From the inverse inequalities (6.3),
HﬁEHzE < C.(R.,W,), and using (6.31), gives
he |Re |}, <c(eer, +leesl?, ) (6.32)
By (6.27), we have also
HRT HO,T = HV'Uh Ho,T

= HSPvT HO,T

— 2 2 %
<([eer[5, +lewr Iy ) 639

Combining (6.29), (6.31) and (6.32), establishes the upper
bound in the equivalence relation.
For the lower , we need to use (4.8), (6.26) and (6.27):

1
_ 2 2 )
Tex =\[€ex ;5 +leex]or

<\[Eorl, ; +ler o

AT (§P,T !\7) +d (EPVT ’q)

<2 T
1Vl + +lalo

(V,@)eVr xL3 (T)

(ﬁT 'V)T - Z(ﬁE 'V)E + (RT 'q)T
EcaT
191, - +llallo
oo 1l + 2 [Rel, 190 + 1R Il

91+ +llall,+

<2

(V.9)eVr xL§ (T)

[R:|
<2

(V,9)eVy xLF (T)

(6.34)

Now, sinceV is zero at the four vertices of T, a scaling
argument and the usual trace theorem, see e.g. [14,
Lemma 1.5], shows thatV satisfies

[Vllye =cChepl,, (6.35)
[Vll,, < Che[V],, (6.36)
Combining these two inequalities with (6.34)

immediately gives the lower bound in the equivalence
relation.

Theorem 6.9. For any mixed finite element
approximation (not necessarily inf-sup stable) defined
on rectangular grids T,, the residual estimator 7,

satisfies:
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8], o +lello o < Camre

and

NI

S el + el

e 1 SC[ }J .
T'car

Note that the constant C in the local lower bound is
independent of the domain.

VIL.

In this section we propose two test problems, the first is a
classic problem used in fluid dynamics, known as driven cavity
flow [14, 17]. For this latter, we compute the solution and the
two errors estimators 77, and 7,. The second is a test

problem with an exact solution is solved in order to compare
the affectivity of two error estimation strategies. The latter
approach is frequently used and is generally considered by
practitioners to be one the best error estimation strategies in
terms of its simplicity and reliability, especially when used as a
refinement indicator in a self-adaptive refinement setting.

Example 1. It is a model of the flow in a square cavity
© = Jo[ = Jo,a[ With the lid moving from left to right. Let

the computational model:
{U —(1-x20)sur T, ={y=1; 1< x <1}

i =(0,0)on the other tree edges.
take, just take a and b two real number strictly positive such
thata >=>b.f = (a(l— x?);0) on T, and f =(0;0) on
the other three boundary of the square domain.

The streamlines are computed from the velocity solution by
solving the Poisson equation numerically subject to a zero

Dirichlet boundary condition.

NUMERICAL SIMULATION

See that the our Ca,b boundary condition is satisfied, just

Figure 1. Uniform streamline plot by MFE (left) associated with a
64-64 square grid, Q2-Q1 approximation, and uniform streamline
plot (right) computed with ADINA System.
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1]}

M 01 82 1 07 04 06 18
Figure 2. Velocity vectors solution by MFE (left) associated with a
64-64 square grid, Q2-Q1 approximation and Velocity vectors
solution (right) computed with ADINA System.

Figure 3.

Figure 4. Estimator T7p 1 (Ieft) and estimator 77 + (right) for the
test problem with 32 x 32 square grid and ,, _ %00 .

Tablel. Estimated errors 77, and 77, for the test problem.

Grid U e

8x8 1.4433e+000 7.1916e - 001
16x16 7.7582¢e -001 4.2234e - 001
32x32 3.9279% -001 2.1872e - 001
64 x 64 1.9692¢ -001 1.1023e - 001

The computational results (Figure 4, Table 1) suggest that all
two estimators seem to beable to correctly indicate the
structure of the error, but what is the most close to the exact
error? We will answer this question in the following test.

Example 2. It’s a test problem with an exact solution is
solved in order to compare the affectivity of two error
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estimation strategies: the residual estimator ;. and the

Poisson estimators 77, . The latter approach is frequently used
and is generally considered by practitioners to be one the best
error estimation strategies in terms of its simplicity and
reliability, especially when used as a refinement indicator in a
self-adaptive refinement setting. This analytic test problem is
associated with the following solution of the Stokes equation
system:

u, = 20xy°;u, = 20x" —5y*; (7.1)

p = 60x%y — 20y + constant.

It is a simple model of colliding flow, and a typical solution of
streamline is illustrated in Figure 4. To solve this problem
numerically, the finite element interpolant of the velocity in
(7.1) is specified everywhere on 6Q. The Dirichlet boundary
condition for the stream function calculation is the interpolant
of the exact stream function: y (x, y) =5xy” — x°.

Itis clear that the c_, condition is satisfied witha >> b and
t= (20axy3; (20x* — 5y4)a) onT.

The flow problem is solved on a square domain
J-11[ = J-1.a[ using a nested sequence of uniformly refined

square grids.

Streamlines: uniform

Figure 5. Uniform streamline plot by MFE associated with a
64 x 64 square grid.

pressure field

Figure 6. Pressure plot for the flow with a 64 x 64 square grid.

To interpret the results that are presented some notation will be
needed:
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e=Jlo—a.[,,+[P—Pin (72)
er = /[T =G, +[P—Pulor (73)
(7.4)

er = /g —dull,+ +[P —PFillo~

The figure 5 shows the uniform streamline, figure 6 shows the
pressure plot and figure 7 shows the estimated error ,;

associated with 64 x 64 square grid.

Estimated energy error

0.8

0.6

0.4

0.2

o

0.2

0.4

0.6

0.8

08 06 04 02 0 02 04 06 08

Figure 7. Estimated error e+ associated with 64 x 64 square grid.

Table 2 Comparison of error estimator affectivity

€ €
Grid e %R % o
8x8 | 14433e+00 3.1206¢- 01 1.1916e + 00
16x16 | 7.7582°-01 3.0597¢ 01 1.0234e + 01
32x32 | 3.9279 01 2.9134¢ 01 9.2872¢ - 01
64x64 | 1969201 2.9082¢ 01 9.1723¢ - 01

Looking at Table 2, we see that the global error e is decreasing

and € is very close to 1, e/ is very close to }/
n 3
p "R

then the Poisson problem estimator np provides the most

accurate estimate of the global error and the local estimates
ﬂp T is quantitatively close to the exact error and the

estimates Ta is about three times larger than exact error.

Depending on Theorems 6.6 and 6.9, we see that the local

error estimator - satisfied
ny (g =7p ¢ OF g 1)
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e<C,77 and7y = /ZTeTh n? (7.5)
1
2 (7.6

e = 3 {lell . +leli. )

—~
Here, the generic constant C,, is independent of the mesh size
and the exact solution but may depend on the domain and the
element aspect ration. Then the estimators 77, is likely to be
effective if it is used to drive an adaptive refinement process.
In general, if an error estimator is to be efficient then the
constant on the right hand side of (7.6) should be bounded. An

a

estimate of this constant (€.g maXqr, is provided in

wr
Table 3, where we also estimate this constant for the exact

e
error (6.9 MaX ;. ——).
ewr
Table 3 Comparison of affectivity indices

s RT p1
e M TeT, M e, M et

grid Cor Cor Cor

4433e+ 8923e- 165%e+ 2529 -
8x8 1.4433e+000 | 5.8923e-001 2.1659e+000 6:2529¢ - 001
16x16 7.7582¢ -001 | 6.1997e -001 2.2577e +000 5:5183e - 001
32 x 32 3.9279% -001 | 5.9143e-001 2.2743e +000 5:3152¢ - 001
64 x 64 1.9692e -001 | 5.3092e -001 2.2162e +000 6:3092¢ - 001

IRT p1
From the Table 3, maXper, T and maXren, T, Seemto be
for Sor

.- n . e
bounded. In addition max_; = is closed to max;_ ——.
or or

R + 4o o %
e e i . \.-

Figure 8. Exact e (left), estimator 7zt (middle) and estimator

np 1 (right) for the problem with 32 x 32 square grid.
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The local affectivity indices T will be bounded above and

e
oT

below across the whole domain, so that elements with large
errors can be singled out for local mesh refinement. This is
assessed in Figure 8. Looking at the distribution of these
indices it is clear that the our two estimators give a very

different picture. Once again, ,, is closely aligned with the

exact error but ;. is not.

0o 06 2.5,
PR} I 0.5
04 | 04
03 03

07 032
£

n
Figure 9. Exact affectivity = (left), estimator .an‘fectivityp—'T

bor bor

n
(middle) and estimator affectivityﬂ (right) with a 32 x 32 square grid

Cor
ad v =200

VII. CONCLUSION

We were interested in this work in the numeric solution for
two dimensional partial differential equations modeling (or
arising from) model steady incompressible fluid flow. It
includes algorithms for discretization by mixed finite element
methods and a posteriori error estimation of the computed
solutions. Two types of a posteriori error indicator are
introduced and are shown to give global error estimates that
are equivalent to the true discretization error. The
computational results suggest that all two estimators seem to
be able to correctly indicate the structure of the error.
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