
 
 

  
Abstract—In this paper, we introduce the Stokes equations with a 
new boundary condition. In this context, we show the existence and 
uniqueness of the solution of the weak formulation associated with 
the proposed problem. To solve this problem, we use the 
discretization by mixed finite element method. In addition, two types 
of a posteriori error indicator are introduced and are shown to give 
global error estimates that are equivalent to the true discretization 
error. Computational results suggest that both error estimators seem 
to be able to correctly indicate the structure of the error. 
 

   Keywords—Stokes equations; baC , Boundary condition; Mixed 

finite element method; Residual error estimator; Adina system. 
 

I. INTRODUCTION 

 
HIS paper describes a numerical solution of Stokes 
equations in an open bounded connected Ω to 2 IR  and 

which we must add the boundary condition. 
To date, most works have considered the standard boundary 
conditions: Dirichlet, Neumann [1, 2, 4, 5, 14, 21] and the 
mixed Direchlet-Neumman boundary condition [ 2, 4, 14, 15, 
21 ]. In this paper, we propose a new boundary condition, 
noted Ca,b, which generalizes the standard ones. In addition, 
we prove that the weak formulation of the proposed modeling 
has a unique solution. To calculate this latter, we use the 
mixed finite element method. 
In this modeling flow of porous media, it is essential to use a 
discretization method which satisfies the physics of the 
problem, i.e. conserve mass locally and preserve continuity of 
flux. 
   The Raviart-Thomas Mixed Finite Element (MFE) method 
of lowest order satisfies these properties. 
Moreover, both the pressure and the velocity are approximated 
with the same order of convergence [4, 6]. The discretization 
of the velocity is based on the properties of Raviart-Thomas. 
Other works have been introduced by Brezzi, Fortin, Marini, 
Dougla and Robert [4, 5, 7]. This method was widely used for 
the prediction of the behavior of fluid in the hydrocarbons 
tank. 
     A posteriori error analysis in problems related to fluid 
dynamics is a subject that has received a lot of attention during 
the last decades. In the conforming case there are several ways 
to define error estimators by using the residual equation. In 

 
 
 

particular, for the Stokes problem, M. Ainsworth, J. Oden [9], 
R.E. Bank, B.D. Welfert [10], C. Carstensen, S.A. Funken 
[11],  D.Kay, D. Silvester [12] and R. Verfurth [13], 
introduced several error estimators and provided that they are 
equivalent to the energy norm of the errors. Other works for 
the stationary Navier-Stokes problem had been introduced in 
[14, 17, 18, 20, 16]. For this paper two types of a posteriori 
error indicator are introduced and are shown to give global 
error estimates that are equivalent to the true discretisation 
error. 
    The plan of the paper is as follows. Section 2 presents the 
model problem used in this paper. The weak formulation is 
presented in section 3. In section 4, we show the existence and 
uniqueness of the solution. The discretization by mixed finite 
elements is described in section 5. Section 6 introduces two 
types of a posteriori error bounds of the computed solution. In 
section 7, numerical experiments within the framework of this 
publication were carried out. 

II. GOVERNING EQUATIONS 

We will consider the model of viscous incompressible flow in 
an idealized, bounded, connected domain in 2 IR . 

    2 Ω=∇+∇−  infpu


                                               (2.1) 
Ω=∇    0. inu                                                                (2.2) 

The boundary value problem which is posed on two 
dimensional domains Ω, is defined as: 

Ω∂=Γ=−∇+ :   )(:, ontnpIubuaC ba



 .               (2.3) 

We also assume that Ω has a polygonal boundary Γ , so n  

that is the usual outward pointing normal. The vector field u , 
is the velocity of the flow the functional  f



 in the space  

[ ]22 )(ΩL  and  the pressure p in the space )(2 ΩL  ,  ∇  is the 

gradient, .∇   is the divergence and 2∇  is the Laplacien 

operator, a  and b  nonzero function defined  on  Γ verify: 
There are two strictly positive constants 

1α and 
1β  such that: 

21 )(

)(
: βα ≤≤Γ∈∀

xb
xax   .                                           (2.4)    

Remark 2.1 If  a  and b are two strictly positive constants 

such that t ba   then 
baC ,

 is the Dirichlet boundary 

condition  and  if ba   then the 
baC ,

 is the Neumann 

boundary condition.  For this, a  is called the Dirichlet 

coefficient and b  is the Neumann coefficient.    
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III. THE WEAK FORMULATION 

We define the spaces: 
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The standard weak formulation of the Stokes flow problem 
(2.1)-(2.2)-(2.3) is the following: 
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  Let the bilinear forms A and B 
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The underlying weak formulation (3.4) may be restated as:  
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IV. THE EXISTENCE AND UNIQUENESS OF THE SOLUTION 

In this section we will study the existence and uniqueness of 
the solution of problem (3.8). For this, we need the following 
results:  

Theorem 4.1 There are two strictly positive constants 1c  and 

2c such that: 
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Proof: The mapping   )()(: 21

0 Γ→Ω LHγ , such that  

Γ= /)(0 vv γ  is continuous [2], then there exists c > 0 such 

that: 
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On the other hand. According to 5.55 in [1], there exists a 
constant 0ρ  such that: 

( )2

,0

2

,0

2

,0 ΓΩΩ
+∇= vvv  ρ  

 
then 
 

( )
   .)

1
;1max()1(          

)1(          

2

,0
1

2

,0

2

,0

2

,0

2

,0

2

,1







 +∇+≤

+∇+≤

+∇=

∫ΓΩ

ΓΩ

ΩΩΩ

γ
α

ρ

ρ

dvv
b
av

vv

vvv







 

then 
ΩΩ

≤
,,11 n

vvc  , 

 where 2

1

1
1 )

1
;1max()1(

−









+=

α
ρc . 

Theorem 4.2 : ( )
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H  is a real Hilbert space. 
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Theorem 4.3 The bilinear form B satisfies the inf-sup 
condition: there exists a constant 

0β  such that: 
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We define the “big” symmetric bilinear form 

 [ ]   ).,(),(),(),();,( pvBquBvuAqvpuC 

++=              (4.5)  

                   
  And the corresponding function ),(),( vLqvF 

=   choosing 

the successive test vectors  )0,(v  and  ),0( q


 shows that the 

Stokes problem (3.8) can be rewritten in the form: 
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( ) such that  )(2
0
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      The bilinear form A is positive continuous and −Ω)(1H  

elliptic  and the bilinear form B is continuous and satisfies the 
inf-sup condition. Then the problem (3.8) is well-posed [1, 2, 
4, 21] and C and A are bilinear forms satisfies the following 
propositions. 
   
 Proposition 4.4 ([1. 21]) 
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where γ  is a positive constant depends only on the shape of 

the domain Ω. 
   
 Proposition 4.5 
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we gather (4.9) and (4.10) to get (4.8). 
 
    The bilinear form A is symmetric and continuous and semi 

positive definite on )(
1 ΩH  in this case we say the problem 

(3.8) is a type of saddle-point problem. The results (4.1)-(4.4) 
ensure the existence and uniqueness of the solution of the 
problem (3.8) (see the theorem 6. 2 in [1]). In the following 
section we will solve this problem by mixed finite element 
method. 

V.  MIXED FINITE ELEMENT APPROXIMATION 

Let ,0 ; hhT  be a family of rectangulations of Ω . For any 

,hTT ∈  Tω  is of rectangles sharing at least one edge with 

element T, Tω~  is the set of rectangles sharing at least one 

vertex with T. Also, for an element edge E, Eω denotes the 

union of rectangles sharing E, while Eω~  is the set of 

rectangles sharing at least one vertex whit E. 
Next, T∂  is the set of the four edges of T. We denote 
by )(Tε and TN the set of its edges and vertices, respectively. 

 We let  )(T
hTTh εε ∈∪=  denotes the set of all edges split 

into interior and boundary edges. 

                                ΓΩ ∪= ,, hhh εεε  

Where  
{ }Ω⊂∈=Ω EhEh :, εε  and { }Γ⊂∈=Γ EhEh :, εε  

We denote by Th  the diameter of a simplex T, by Eh the 

diameter of a face E of T, and we set { }.: 
h
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    A discrete weak formulation (3.8) is defined using finite 
dimensional spaces )(X 11
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We introduce a set of pressure basis functions  { }
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and set  

∑
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Where un and pn are the numbers of velocity and pressure 

basis functions, respectively. 
We find that the discrete formulation (5.1) can be expressed as 
a system of linear equations  
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

 
obtained by substituting the solution vectors 

unIRU ∈  and pnIRp ∈  into (5.2) and (5.3) is the mixed 

finite element solution. The system (5.4)-(5.7) is henceforth 
referred to as the discrete stokes problem. We use the iterative 
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methods Minimum Residual Method (MINRES) for solving 
the symmetric system. 

VI. A POSTERIORI ERROR ESTIMATOR 

    In this section, we propose two types of a posteriori error 
indicator. The first one is the residual error estimator and the 
second one is the local Poisson problem estimator. Which are 
shown to give global error estimates that are equivalent to the 
true error.           

A.  A Residual error estimator.  
The bubble functions on the reference element 
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With these bubble functions, ceruse et al ([19], lemma 4.1] 
established the following lemma. 
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Where kc   and kC are tow constants which only depend on the 

element aspect ratio and the polynomial degrees 0k  and 1k . 

Here, 0k and 1k  are fixed and kc   and kC   can be associated 

with generic constants c and C In addition, Ev
 
which is only 

defined on the edge E also denotes its natural extension to the 

element T. From the inequalities (6.4) and (6.5) we established 
the following lemma: 
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Lemma 6.3. Clement interpolation estimate: 
Given ),(v 1 Ω∈ H

 let 1
hX ∈hv be the quasi-interpolant of 

v defined by averaging as in [20].
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The global residual error estimator is given by: 
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Theorem 6.6. For any mixed finite element approximation 
(not necessarily inf-sup stable) defined on rectangular grids hT , 

the residual estimator  
Rη  satisfies: 
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Note that the constant C in the local lower bound is 
independent of the domain. 
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Using (6.7) and (6.8), then gives:

 

[ ] { }

{ }
 

(6.13)    

 '),();,(

2

1

2

,0

2

,0

2

,0

2

2

1

2

,0

2

,









++×









+≤

∑ ∑

∑

∈
∂∈

∈

h

h

TT
EETE ETTTTT

TT
TTJ

RhRRh

qvCqveC



 ε

 
Finally, using (4.7), gives: 
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This establishes the upper bound. Turning to the local lower 
bound. First, for the element residual part, we have: 
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Finally, combining (6.15), (6.16), (6.20) and (6.22) establishes 
the local lower bound. 

Remark 6.7. Theorem 6.6 also holds for stable (and 
unstable) mixed approximations defined on a triangular 

subdivision if we take the obvious interpretation of .Tω  The 

Proof is identical except for the need to define appropriate 
element and edge bubble functions. 
 

B.  The local Poisson problem estimator 
   
   The local Poisson problem estimator: 
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Combining (6.29), (6.31) and (6.32), establishes the upper 
bound in the equivalence relation. 
For  the lower , we need to use (4.8), (6.26) and (6.27): 
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Now, since v is zero at the four vertices of  T, a scaling 
argument and the usual trace theorem, see e.g. [14, 
Lemma 1.5], shows that v   satisfies 
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Combining these two inequalities with (6.34) 
immediately gives the lower bound in the equivalence 
relation. 
 
Theorem 6.9. For any mixed finite element 
approximation (not necessarily inf-sup stable) defined 
on rectangular grids hT , the residual estimator Pη  

satisfies: 
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Note that the constant C in the local lower bound is 
independent of the domain. 

VII. NUMERICAL SIMULATION 

      In this section we propose two test problems, the first is a 
classic problem used in fluid dynamics, known as driven cavity 
flow [14, 17]. For this latter, we compute the solution and the 
two errors estimators Rη  and Pη . The second is a test 

problem with an exact solution is solved in order to compare 
the affectivity of two error estimation strategies. The latter 
approach is frequently used and is generally considered by 
practitioners to be one the best error estimation strategies in 
terms of its simplicity and reliability, especially when used as a 
refinement indicator in a self-adaptive refinement setting. 
Example 1.  It is a model of the flow in a square cavity 

] [ ] [1,01,0 ×=Ω with the lid moving from left to right. Let 

the computational model: 
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       See that the our baC ,  boundary condition is satisfied, just 

take, just take a and b two real number strictly positive such 
that ba  , ( ) 1

2 on   0 );1( Γ−= xat


 and ( )0 ;0 =t


 on 

the other three boundary of the square domain.                                              
    The streamlines are computed from the velocity solution by 
solving the Poisson equation numerically subject to a zero 
Dirichlet boundary condition. 
 

  
 

Figure 1. Uniform streamline plot by MFE (left) associated with a 
64-64 square grid, Q2-Q1 approximation, and uniform streamline 
plot (right) computed with ADINA System. 

 
 

        
 
Figure 2. Velocity vectors solution by MFE (left) associated with a 
64-64 square grid, Q2-Q1 approximation and Velocity vectors 
solution (right) computed with ADINA System. 

 

 
Figure 3.  Pressure plot for the flow with a 6464×  square grid.   
 
   

 
Figure 4. Estimator TP,η (left) and estimator TR,η (right) for the 

test problem with 3232 × square grid and 
500

1=ν . 

Table1. Estimated errors Rη  and Pη  for the test problem. 

 
Grid 

Rη  Pη  

88×  1.4433e+000 7.1916e - 001 

1616 ×  7.7582e -001 4.2234e - 001 

3232 ×  3.9279e -001 2.1872e - 001 

6464 ×  1.9692e -001 1.1023e - 001 

 
   The computational results (Figure 4, Table 1) suggest that all 
two estimators seem to beable to correctly indicate the 
structure of the error, but what is the most close to the exact 
error? We will answer this question in the following test. 
 
Example 2.  It’s a test problem with an exact solution is 
solved in order to compare the affectivity of two error 
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estimation strategies: the residual estimator Rη  and the 

Poisson estimators Pη . The latter approach is frequently used 

and is generally considered by practitioners to be one the best 
error estimation strategies in terms of its simplicity and 
reliability, especially when used as a refinement indicator in a 
self-adaptive refinement setting. This analytic test problem is 
associated with the following solution of the Stokes equation 
system: 

  
320xyux = ; 44 520 yxuy −= ;                 (7.1) 

+−= 32 2060 yyxp constant. 

It is a simple model of colliding flow, and a typical solution of 
streamline is illustrated in Figure 4. To solve this problem 
numerically, the finite element interpolant of the velocity in 
(7.1) is specified everywhere on ∂Ω. The Dirichlet boundary 
condition for the stream function calculation is the interpolant 
of the exact stream function: .5),( 54 xxyyx −=ψ     

It is clear that the 
baC ,

condition is satisfied with ba   and  

( ) .on   )520( ;20 443 Γ−= ayxaxyt


 

The flow problem is solved on a square domain  
] [ ] [1,11,1 −×−  using a nested sequence of uniformly refined 

square grids.                                              
 

 
 
Figure 5. Uniform streamline plot by MFE associated with a 

6464×  square grid. 

 
Figure 6.  Pressure plot for the flow with a 6464×  square grid. 
 
To interpret the results that are presented some notation will be 
needed: 

ΩΩ
−+−=

.0. hJh PPuue                                         (7.2) 

ThTJhT PPuue
.0.

−+−=
                                       (7.3) 

ThTJhT PPuue
.0.

−+−=
                                       (7.4) 

 
    The figure 5 shows the uniform streamline, figure 6 shows the 
pressure plot and figure 7 shows the estimated error 

TP,η  

associated with 64 × 64 square grid. 
 

 
 
Figure 7.  Estimated error  

TP,η associated with 6464 ×  square grid.        

 
 
Table 2 Comparison of error estimator affectivity  
 
 

 
 

Grid e  

 

R
e
η

 
 

p
e
η

 

 
88×  1.4433e+00 3.1206e- 01 1.1916e + 00 

1616 ×  7.7582e-01 3.0597e -01 1.0234e + 01 

3232 ×  3.9279e 01 2.9134e -01 9.2872e - 01 

6464 ×  1.9692e-01 2.9082e -01 9.1723e - 01 

 
Looking at Table 2, we see that the global error e is decreasing 

and 
p

e
η

 is very close to 1,  
R

e
η

is very close to 
3

1 ,  

then the Poisson problem estimator 
p

η  provides the most 

accurate estimate of  the global error and the local estimates 

Tp,
η  is quantitatively close to the exact error and the 

estimates 
R

η  is about three times larger than exact error. 

 
Depending on Theorems 6.6 and 6.9, we see that the local 
error estimator 

T
η )

,
or   

,
(

TRTPT
ηηη =  satisfied 
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∑ ∈Ω =≤
hTT TCe 2 and  ηηη                          (7.5) 

{ } .   
2

1

'

2

',0

2

', 







+≤ ∑

∈ hTT
TTJT eC εη                            (7.6 

Here, the generic constant ΩC  is independent of the mesh size 

and the exact solution but may depend on the domain and the 

element aspect ration. Then the estimators Tη  is likely to be 

effective if it is used to drive an adaptive refinement process.  
In general, if an error estimator is to be efficient then the 
constant on the right hand side of (7.6) should be bounded. An 

estimate of this constant )max .(
hTT

T
e

ge T

ω

η
∈ is provided in 

Table 3, where we also estimate this constant for the exact 

error ).max .(
hTT

T
e
ege T

ω
∈  

Table 3 Comparison of affectivity indices 
 

 
 

grid 

       
e

 

T
e

Te

ω
hTTmax ∈

 

T
e

TR

ω

η .

hTTmax ∈
 

T
e

TP

ω

η .

hTTmax ∈
 

88×  1.4433e+000 5.8923e-001 2.1659e+000 6:2529e - 001 

1616 ×  7.7582e -001 6.1997e -001 2.2577e +000 5:5183e - 001 

3232 ×  3.9279e -001 5.9143e-001 2.2743e +000 5:3152e - 001 

6464 ×  1.9692e -001 5.3092e -001 2.2162e +000 6:3092e - 001 

 

From the Table 3, 

T
e

TR

ω

η .

hTTmax ∈  and 

T
e

TP

ω

η .

hTTmax ∈ , seem to be 

bounded. In addition 

T
e

TP

ω

η .

hTTmax ∈  is closed to 

T
e

Te

ω
hTTmax ∈ . 

 

 

Figure 8. Exact Te (left), estimator TR.η (middle) and estimator 

TP.η (right) for the problem with 3232 × square grid. 

The local affectivity indices 

T
e

T

ω

η
 will be bounded above and 

below across the whole domain, so that elements with large 
errors can be singled out for local mesh refinement. This is 
assessed in Figure 8. Looking at the distribution of these 
indices it is clear that the our two estimators give a very 

different picture. Once again, TP.η is closely aligned with the 

exact error but TR.η is not. 

 

Figure 9.  Exact affectivity 

T
e

Te

ω

 (left), estimator affectivity

T
e

Tp

ω

η .
 

(middle) and estimator affectivity

T
e

TR

ω

η .
 (right) with a 32 × 32 square grid 

and .500
1=ν  

VII. CONCLUSION  

 
     We were interested in this work in the numeric solution for 
two dimensional partial differential equations modeling (or 
arising from) model steady incompressible fluid flow. It 
includes algorithms for discretization by mixed finite element 
methods and a posteriori error estimation of the computed 
solutions. Two types of a posteriori error indicator are 
introduced and are shown to give global error estimates that 
are equivalent to the true discretization error. The 
computational results suggest that all two estimators seem to 
be able to correctly indicate the structure of the error. 
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