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Sliding Singularities of Bounded Invertible Planar
Piecewise Isometric Dynamics

Byungik Kahng, Miguel Cuadros and Jonathan Sullivan

Abstract— It is known that the singularities of bounded invertible
piecewise isometric dynamical systems in Euclidean plane can be
classified as, removable, sliding and shuffling singularities, based
upon their geometrical aspects. Moreover, it is known that the
Devaney-chaos of the bounded invertible piecewise isometric systems
can be generated only from the sliding singularities, while the other
singularities remain innocuous. For this reason, we concentrate our
efforts on the investigation of the sliding singularity. We begin
with re-establishing the distinction between the sliding and shuffling
singularities in simpler terms. And then, we calculate the sliding
ratios explicitly for a class of invertible planar piecewise isometric
systems.

Keywords— Devaney-chaos, Piecewise continuous dynamical sys-
tem, Piecewise isometric dynamical system, Singularity.

I. INTRODUCTION

THE study of piecewise isometric dynamical systems,
which had once been regarded as an “emerging area” [8],

has now established itself as an important branch of math-
ematics. The applications of piecewise isometric dynamics
include, digital signal processing [1], [2], [3], [4], [5], [6],
[7], [24], [25], [29], billiards and dual billiards [10], [30],
kicked oscillators [26], [27], [28], automatic control systems
with singular disturbance [11], [12], [13], [19], just to name
a few.

The key component, in fact the only key component, of
a piecewise isometric system is its singularity. The piece-
wise isometric dynamics often generates esthetically beautiful
complex orbit structure as visualized in Figure I.1. This is
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The first part of this paper is an extended and retitled version of Slid-
ing, Shuffling and Self Shuffling Singularities of Bounded Invertible Planar
Piecewise Isometric Dynamical Systems (69501-184), which was presented
in the 7th International Conference on Applied Mathematics, Simulation and
Modeling, Cambridge, Massachusetts, U.S.A., January 30 – February 1, 2013
[23]. The second part, the numerical computation part, is a new addition that
had not been presented in the afore-mentioned conference or anywhere else.

Fig. I.1. Selected Examples of the Singular Sets and the Exceptional Sets of
a Class of Bounded Invertible Planar Piecewise Isometric Dynamical Systems

exclusively due to the singularity. Aside from the singularity,
a piecewise isometric dynamical system is nothing but a trivial
repetition of rotation, inversion or translation. In other words,
the piecewise isometric dynamics reveal the contribution of
the singularity, which is abundant in nature, without being
interfered by other sources of complex behavior such as
nonlinearity. This consideration makes the piecewise isometric
dynamics the best vehicle to study and understand the singu-
larity.

The purpose of the present research is to complete the
characterization and the classification of the singularities
of bounded invertible planar piecewise isometric dynamical
systems, which had been initiated by the author through
[22]. [22] classified the singularities of bounded invertible
planar piecewise isometric systems as removable, sliding, and
shuffling singularities, based upon their geometrical traits.
The importance of this classification is best exmplified by
the connection between the geometrical traits of the sin-
gularities and the dynamical properties of the system. As
described in [20] and [21], as well as in [22], removable
and shuffling singularities do not contribute toward Devaney-
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chaos, and thus the sliding singularities must be present when-
ever the dynamics is Devaney-chaotic. However, [22] came
short of providing the complete distinction between sliding
and shuffling singularities in simple terms, consequently, the
afore-mentioned classification did not lead to the complete
trichotomy. [22] got around the difficulty using the term,
“non-shuffling sliding singularity,” or “essential singularity,”
whenever the need arose.

This paper addresses this issue by proposing and proving a
practical distinction between the sliding and shuffling singular-
ities in simple terms. The key is to investigate and characterize
the “self shuffling behavior,” which will be elaborated in
Theorem III.1.

Moreover, the “practical distinction” mentioned in the pre-
vious paragraph allows us to study the properties of the sliding
singularities through a simple interval exchange dynamics, at
least for a certain class of piecewise isometric systems. As a
first step toward this line of research, we calculate the sliding
ratios of a number of invertible planar piecewise isometries.
These results are presented in Section IV and Section V.

II. DEFINITIONS AND PREPARATIONS

P IECEWISE isometric dynamical systems can be defined
in a number of ways. This paper follows the definitions

and the terminologies of the author’s earlier article, [22].

Definition II.1 (Piecewise Isometry). Let {P1, · · · , Pn} be
a collection of mutually disjoint connected open regions in
R2 with piecewise smooth boundary, and let M =

⋃n
i=1 P̄i.

A multiple-valued map f : M → R2 is called a piecewise
isometry subordinate to {P1, · · · , Pn}, if there exist isome-
tries fi : P̄i → R2, i ∈ {1, · · · , n} such that f(x) = {fi(x) :
x ∈ P̄i}. Here, each Pi and fi are called an atom and an
isometric component of f , respectively. We say f is bounded,
if each Pi is bounded. We say f is a polygon exchange, if
each Pi is polygonal. We say f is a piecewise rotation, if each
fi : P̄i → R2 is a rotation. Finally, we say f is invertible, if
f(Pi) ∩ f(Pj) = ∅ whenever i 6= j.

Because {P1, · · · , Pn} is mutually disjoint family of open
sets, we must have f(x) = fi(x) if x ∈ Pi. Consequently,
f(x) can be multiple-valued only if x belong to a common
boundary edge of some atoms Pi and Pj , that is, x ∈ ∂Pi ∩
∂Pj . Under the iteration of f , we can define the singularity
structure of f as follows.

Definition II.2 (Singular Set and Exceptional Set). Let
{P1, · · · , Pn}, {f1, · · · , fn} and M be as in Definition II.1.
Suppose that f : M →M is an invertible piecewise isometry
subordinate to {P1, · · · , Pn}, with the isometric components
{f1, · · · , fn}. Let

Σ+ = {x ∈M : f is multiple-valued at x},
Σ− = {x ∈M : f−1 is multiple-valued at x}.

We call the set, Σ =
⋃∞
k=0

(
fk(Σ+) ∪ f−k(Σ−)

)
, the singu-

lar set of f . We call its closure Σ̄, the exceptional set.

Figure I.1 illustrates some example of the singularity struc-
ture of bounded invertible planar piecewise isometric systems.

The black parts of the figures represent the exceptional sets.
The singular sets are countable unions of curve segments, and
thus has the 2-dimensional measure 0.

We need a couple more preparations before presenting the
classification of the singularities.

Definition II.3 (Cutting Singularity). Suppose that
{P1, · · · , Pn}, {f1, · · · , fn}, M and f are as in Definition
II.2. We say f has the cutting singularity on a curve
(segment) Sij = ∂Pi ∩ ∂Pj , if µ1 (fi(Sij) ∩ fj(Sij)) = 0,
where µ1 stands for the length. We say a curve (segment)
S ⊂ Σ+ is a cutting singularity of f , if it is a union of
finitely many such Sij’s.

Definition II.4 (Isometric Continuation). Suppose that
{P1, · · · , Pn}, {f1, · · · , fn}, M and f are as in Definition
II.2. Suppose further that f has the cutting singularity on
Sij = ∂Pi ∩ ∂Pj . Let ≡ be the equivalence relation in
M , which we will call the patch-up identification, given as
follows.

p ≡ q ⇐⇒



either (1) p = q;

or (2) p = fi(x) and q = fj(x),

for some x ∈ Sij ;
or (3) p = fj(x) and q = fi(x),

for some x ∈ Sij .

Let us call the quotient map f̃ : M̃ → M̃ of f : M → M in
the quotient space M̃ = M/ ≡, the isometric continuation
of f .

Some singularities disappear as we take the patch-up iden-
tification and the isometric continuation. Such singularity is
referred to removable. In general, an isometric continuation
merely postpones the inevitable singularity. Repeated applica-
tions of the isometric continuation allow us to postpone the
singularity finitely many times, but not indefinitely. Nonethe-
less, the idea of such postponement plays the key role in the
proof of our main theorem, Theorem III.1.

In general, a non-removable singularity belongs to either
one or both of the following classes. See [22] for detail.

Definition II.5 (Sliding Singularity). Suppose that
{P1, · · · , Pn}, {f1, · · · , fn}, M and f are as in Definition
II.2. We say f has the sliding singularity on a segment
Sij = ∂Pi ∩ ∂Pj , if f̃k ◦ fi(Sij) partly aligns with
f̃ l ◦ fj(Sij), for some isometric continuations f̃k and f̃ l,
where k, l ∈ {0, 1, 2, · · · }. That is, f̃k◦fi(Sij)∩ f̃ l◦fj(Sij) is
a curve segment with positive arc-length, but f̃k ◦fi 6= f̃ l ◦fj
on Sij ⊂ M̃ .

Definition II.6 (Shuffling Singularity). Suppose that
{P1, · · · , Pn}, {f1, · · · , fn}, M and f are as in Definition
II.2. We say f has the shuffling singularity on a segment
S1 ⊂ ∂Pi1 ∩ ∂Pj1 , if there are a finite number of segments
Sk ⊂ ∂Pik ∩ ∂Pjk , k ∈ {1, 2, · · · , r} and a positive integer
m ∈ Z+ that satisfy the following conditions.

(1) For every Sk, k ∈ {1, · · · , r}, there exists a certain Sl,
l ∈ {1, · · · , r} such that f̃m ◦ fik(Sk) = f̃m ◦ fjl(Sl), upon
taking appropriate branches of the isometric continuation f̃m.
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Fig. II.1. Before Iteration. Fig. II.2. After Iteration.

Fig. II.3. cos θ = 1.25. Fig. II.4. cos θ = cos(π/3) = 1/2.

(2) µ1(Sk ∩Sl) = 0, if k 6= l. That is, the intersection Sk ∩Sl
has length 0.

(3) Each Sk is the maximal segment with respect to the
inclusion that satisfies (1) and (2).

Figure II.1 and Figure II.2 depict one of the simplest
examples of the sliding singularity. They visualize the sliding
of the arrows as the slanted boundary edges get patched-up and
identified. The resulting singularity structure is illustrated in
Figure II.3. The intricate singularity does not always develop,
as exemplified by Figure II.4. In some case, the singularity
disappears, as depicted by Figure II.5 and Figure II.6, and
thus the singularity structure does not develop at all.

The shuffling singularities, on the other hand, are visualized
by Figure II.7 and Figure II.8. In this case, the singularity
structure (Figure II.9 and Figure II.10) is notably different
from that of the sliding singularity (Figure II.3).

III. MAIN RESULT

ONE of the most important features of the classification
of the singularities discussed in the previous section

is that the shuffling singularities are non-chaotic [22]. That
is, the shuffling singularities do not generate the sensitive
dependence upon the initial condition. In other words, if
a bounded invertible planar piecewise isometric dynamical
system is Devaney-chaotic in an appropriate invariant set, then

P1 P2

f HP1Lf HP2L

Fig. II.5. M = P̄1 ∪ P̄2. Fig. II.6. M̃ . After Patch-up.

P1 P2 P3 P4

Fig. II.7. M = P̄1 ∪ P̄2 ∪ P̄3 ∪ P̄4. Before Iteration.

f HP3L f HP1L f HP4L f HP2L

Fig. II.8. M = f(P̄1) ∪ f(P̄2) ∪ f(P̄3) ∪ f(P̄4). After Iteration.

Fig. II.9. Σ50 =
⋃50

k=0(fk(Σ+) ∪ f−k(Σ−)). After 50 Iterations.

Fig. II.10. Σ150 =
⋃150

k=0(fk(Σ+) ∪ f−k(Σ−)). After 150 Iterations.

there must exist some non-shuffling sliding singularity that
generates the sensitive dependence upon the initial condition.

In practice, however, the “non-shuffling sliding singularity”
is very difficult to deal with. Its main problem is the lack of
clear distinction between the sliding and shuffling singularities.
That is, there can be singularities that are both sliding and
shuffling, which we call, self-shuffling. When dealing with
Devaney-chaos, one must exclude such singularities, because
all shuffling singularities are non-chaotic [22]. The main result
of this paper is a simple criterion that tests whether a given
sliding singularity is indeed non-shuffling.

Theorem III.1 (Self Shuffling Test). Let {P1, · · · , Pn}, M ,
f and Sij be as in Definition II.5. Furthermore, suppose that
f is a bounded piecewise isometry given by either a uniform
rotation, that is, all fi’s have the same rotational component
and differ only by translations. Then the sliding singularity
Sij is non-shuffling if

µ1

(
f̃k ◦ fi(Sij) ∩ f̃k ◦ fj(Sij)

)
µ1(Sij)

/∈ Q. (III.1)

That is, Sij is non-shuffling, if the ratio between the length
of overlap and the original length, which we call the sliding
ratio, is irrational.

The technical part of the proof of Theorem III.1 depends
heavily upon some results of [22]. For easier reading, we re-
state the most critical parts here as follows.

Definition III.2 (Conjugate Points [22]). Let {P1, · · · , Pn},
{f1, · · · , fn}, M and f be as in Definition II.2. Also, let S1 ⊂
∂Pi1 ∩ ∂Pj1 , · · · , Sr ⊂ ∂Pir ∩ ∂Pjr and m ∈ N be as in
Definition II.6. We say xk ∈ Pik and xl ∈ Pil are conjugate of
each other if xl is positioned in the same geometrical location
from Sl as xk is from Sk, as illustrated in Figure III.1. The
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Fig. III.1. Conjugate Points.

f m+1HxkL

f m+1HylL

f m+1HckL

f m+1HclL

Fig. III.2. Shuffling Singularity Theorem.

µ1(xkyk) = µ1(xlyl) = µ1(fm+1(xk)fm+1(yl)).

conjugacy relation between yk and yl are defined similarly.

Theorem III.3 (Shuffling Singularity Theorem [22]). Let
{P1, · · · , Pn}, {f1, · · · , fn}, M and f be as in Definition II.2.
Let S1 ⊂ ∂Pi1 ∩ ∂Pj1 , · · · , Sr ⊂ ∂Pir ∩ ∂Pjr and m ∈ N
be as in Definition II.6. Let xk and yk, k ∈ {1, · · · , r} be
as in Definition III.2. Suppose further that each xk and yk
are separated up to m + 1 iterations only by Sk. That is,
the line segment xkyk crosses

⋃m
l=0 f

−l(Σ+) (Definition II.2)
only once, and the crossing point, ck, belong to Sk. Then, for
every k ∈ {1, · · · , r}, there exists a unique l ∈ {1, · · · , r}
that satisfies the following conditions.

(1) f̃m◦fik(ck) = f̃m◦fjl(cl). That is, the two points merge to
the same point after m+1 iterations, upon taking appropriate
branches.

(2) The curve segment fm+1(xk)fm+1(yl) is a line segment
that runs through the (common) point f̃m ◦ fik(ck) = f̃m ◦
fjl(cl).

(3) µ1 (xkyk) = µ1

(
fm+1(xk)fm+1(yl)

)
. That is, the length

of the line segment is preserved.

See Figure III.1 and Figure III.2.

Proof. See [22].

Fig. III.3. Sij = S1
ij ∪ S2

ij ∪ · · · ∪ Sn
ij . For Rational Sliding Ratio.

Fig. III.4. f̃k ◦ fi(Sij) and f̃k ◦ fj(Sij). For Rational Sliding Ratio.

The Proof of Theorem III.1. Because f is given by a uniform
rotation, any orbit of any segment of Sij must have the same
slope. Therefore, if some segments of f̃k ◦ fi(Sij) and f̃ l ◦
fj(Sij) align each other, we must have k = l. Examples in
Section IV illustrates this phenomenon. Also, see Section V
for an example of a non-uniform rotation, leading up to k 6= l.

When the fraction in the condition (III.1) is irrational, then
the finite subdivision depicted in Figure III.3 and Figure III.4
is impossible. More specifically, a point in Sij is shifted by an
irrational amount as the iterate of Sij overlaps itself. Because
the repetition of an irrational shifting is aperiodic, the orbit
of the repetition will include an infinitely many points. This
contradicts Theorem III.3, which implies that the shuffling
singularity generates only finitely many such points (conjugate
points of Definition III.2). See [22] for more detail on the
conjugate points of the shuffling singularity. See also, [20] and
[21] for the role of the conjugacy toward Devaney-chaos.

The practical use of the condition (III.1) of Theorem III.1
will be discussed in the following two subsections.

IV. APPLICATIONS OF THEOREM III.1

EVEN though the condition (III.1) of Theorem III.1 does
help completing the classification of the singularities

of a class of bounded invertible planar piecewise isometric
dynamical systems, it is not always easy to apply the condition
(III.1) directly and calculate the sliding ratio. In some cases,
however, it is possible to calculate the sliding ratio explicitly.
One of the simplest non-trivial case is the iterative dynamics of
Symmetric Uniform Piecewise Elliptic Rotation maps (SUPER
maps) [14], [15], [16], [17], [18], which were developed from
modeling digital signal processing and also kicked oscillation.
The orbit structure and the singularity structure of this class
of dynamics are exemplified in Figure IV.1.

The general definition of a SUPER map is as follows.

Fθ :

(
x
y

)
7→
(

0 −1
1 2 cos θ

)(
x
y

)
+

(
1

− cos θ + σ

)
, (IV.1)

where 0 < θ < π/2, and σ = 0, 1 or −1 such that

0 ≤ x+ 2y cos θ − cos θ + σ ≤ 1. (IV.2)

It is easy to see that the condition (IV.2) ensures that Fθ :
[0, 1]2 → [0, 1]2, and the map is double-valued at (x, y) when
and only when x + 2y cos θ − cos θ = 0 or 1, thus creating
the cutting-singularity. See, for instance, [14] for more detail.
In fact, it is possible to consider the rotation angle beyond
0 < θ < π/2, but the singularity structure for those cases turn
out to be identical to those of 0 < θ < π/2 case due to the
symmetry and periodicity of cosine function. For this reason,
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Fig. IV.1. Selected Examples of the Singularity Structure of Symmetric
Uniform Piecewise Elliptic Rotation Maps

we generally consider only 0 < θ < π/2 case. See [14], if for
more detail is needed.

Although a SUPER map is not exactly a piecewise isometry,
it can be regarded as one by tilting the unit square in an appro-
priate angle as in Figure II.1 – Figure II.4 [14]. Furthermore,
upon taking the standard boundary-identification to lift up the
unit square [0, 1]2 to the 2-torus T2, the cutting-singularity
of a SUPER map becomes a sliding singularity. Figure II.1
and Figure II.2 illustrate the sliding behavior of a SUPER
map under an appropriate tilting. It is not difficult to see that
the afore-mentioned tilting and the 2-torus representation of
a SUPER map corresponds to the isometric continuation. The
detail is left to the readers. Also, see [14] for more detail.

The sliding ratio of a SUPER map can be calculated by
comparing the relative positions of the arrows in Figure II.1
and Figure II.2. Here, the k value of the condition (III.1) is
1. Because the starting points of the arrows are the lower left
hand side corner and the upper left hand side corner of Figure
II.1, they correspond to (0, 0) and (0, 1) in the unit square,
respectively. From the straightforward matrix computation,
we can easily see that the difference of the y-coordinates of
Fθ(0, 0) and that of Fθ(0, 1) is (2 cos θ − cos θ) − (− cos θ)
(mod 1), or 2 cos θ (mod 1).

In general, the sliding ratio, 2 cos θ (mod 1) is an irrational
number. Therefore, as a result of Theorem III.1, the sliding
singularity is not self-shuffling.

It becomes a rational number when and only when θ =
π/3. Incidentally, this case is the only possible case when
the singularity disappears, as depicted in Figure II.4. In other
words, our main result, Theorem III.1 perfectly fits the known
results, as far as the dynamics of SUPER maps are concerned.

The sliding ratios of SUPER maps are not the only numer-
ical evidence that supports the validity of Theorem III.1. The
condition (III.1) can be applied to another well known class

c1

c2

Fig. IV.2. R2 = P̄1 ∪ P̄2.

Fig. IV.3. A Part of Σ̄ for θ = π/8.

of piecewise isometries, which are commonly known Goetz
maps. Figure IV.2 and Figure IV.3 illustrate the dynamics and
the singularity structure of an example of an invertible Goetz
map.

The class of Goetz maps that we are particularly interested
in is those defined by

f(x, y) =

{
f1(x, y), if y ≥ 0,
f2(x, y), if y ≤ 0,

(IV.3)

where {
f1(x, y) = Rθ(x− p1, y − q1) + (p1, q1),

f2(x, y) = Rθ(x− p2, y − q2) + (p2, q2),{
(p1, q1) = (− sin(θ/2), cos(θ/2)),

(p2, q2) = (sin(θ/2),− cos(θ/2)),

and Rθ is the rotation by the angle θ about (0, 0) such that
0 < θ < π/2. Again, the restriction, 0 < θ < π/2 is there to
eliminate the redundancy. Note that map f is defined by the
equality (IV.3) is multiple valued on the x-axis, or {(x, y) ∈
R2 : y = 0}, of R2, thus creating the singularity. The nature
of this singularity is sliding, as illustrated in Figure IV.2. In
fact, Figure IV.2 and Figure IV.3 illustrate the dynamics and
the singularity structure of the Goetz map defined as above
for θ = π/8.

Although the Goetz maps defined as above are not bounded,
we can still calculate the sliding ratio through the straightfor-
ward matrix computation to the condition condition (III.1). We
get, ||f1(0, 0)− f2(0, 0)|| (mod 1), which can be simplified to
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Fig. IV.4. A Part of Σ̄ for θ = π/3.

X0

Xm Xp

X

Fig. V.1. P̄i’s.

X0

Xm Xp

Y

Fig. V.2. fi(Pi)’s. Fig. V.3. Σ̄.

4 sin(θ/2) (mod 1). Again, the only way to get the rational
sliding ratio is to set θ = π/3, and that is the only possible case
for which the singularity disappears altogether. Figure IV.4
illustrates this phenomenon. The grid is formed as the orbit of
the x-axis, but it does not contain any essential singularity.

V. FURTHER DISCUSSION

ALTHOUGH our main theorem, Theorem III.1 was stated
under the restriction of “uniform rotation”, it appears that

some kind of extension is possible, at least for a certain type
of systems. Figure V.1 – Figure V.3 illustrate the dynamics
and the singularity structure of a bounded invertible piecewise
isometric system given by two rotations in an isosceles triangle
with the top angle θ = π/5. The centers of the rotations are
depicted as the dots in the light gray and dark gray triangles in
Figure V.1 (before-picture) and Figure V.2 (after-picture). The
light gray triangle is rotated by −4π/5 while the dark gray
triangle is rotated by 4π/5, with respect to their respective
centers of the rotations. This map is similar to the class of
Goetz maps introduced in the previous section, in that the
piecewise isometry is generated by two rotations. In this case,
however, the rotation angles are different and the piecewise
isometry is bounded. This map was studied first by Arek Goetz
in [9], but the figures in this article came from [22]. See, also,
[31] for further development of this map.

The computation of the sliding ratio for this case depends
heavily on the isometric continuation process discussed in
[22]. For easier reading, we will review the process briefly
here. See [22] for more detail.

X0

Xm Xp

X
Y

Y1

Fig. V.4. Patch-up #1. Fig. V.5. Patch-up #1.

X0

Xm Xp

Y

Y1
Y3

Y2

Fig. V.6. Patch-up #2. Fig. V.7. Patch-up #2.

X0

Xm Xp

Y

Y1

Y

Y4

Fig. V.8. Patch-up #3. Fig. V.9. Patch-up #3.

X0

Xm Xp

Y

Y1

Y

Y5

Y6

Y4

Fig. V.10. Sliding. Fig. V.11. Sliding.
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Fig. V.12. Patch-up Preparation.

Fig. V.13. Patch-up Complete.

Figure V.4 – Figure V.9 depict the patch up identification
and the isometric continuation of the orbit of the light tri-
angle up to three iterations. First, by patching up the edges
X0Y of Figure V.4 and XpXm, we identify the dark gray
triangular regions 4(X0Y Y1) and 4(XpXmY ). This patch-
up identification and the ensuing isometric continuation are
visualized in Figure V.12 and Figure V.13. Figure V.12 depicts
the intermediate process of bending the domain to identify
the edges X0Y and XpXm of Figure V.4. When the patch-
up is complete, 4(X0Y Y1) covers 4(X0Y Y1) from below,
as Figure V.13 shows. As a consequence, the discontinuity
temporarily disappears, and our piecewise isometry becomes
continuous in M̃ of Figure V.13.

Figure V.6 and Figure V.7 depict the repetition of the same
process, starting from the triangular region, 4(XpY1X0),
which is essentially a rotated copy of 4(X0XmXp) of Figure
V.1. At the third iteration, the process must stop because the
singular edge came out of ∂M and aligned itself with another

singular edge, as Figure V.8 and Figure V.9 indicate. Finally,
Figure V.10 and Figure V.11 illustrate the amount of sliding.
For more detailed description of each step, see [22].

As justified by Figure V.4 – Figure V.11, we can conduct
a straightforward matrix computation to find out the sliding
ratio,

Ratio = µ1(Y1Y )/µ1(Y Xp).

Using a computer algebra system, we can conduct the
matrix computations to calculate the sliding ratio precisely.
It turns out that the ratio is, (

√
5 − 1)/2. The same value as

2 cos(π/5) − 1 and 2 cos(2π/5), which are the sliding ratios
of the SUPER maps of the rotation angles θ = π/5 and
θ = 2π/5, respectively.

VI. CONCLUSION

THE main result of this paper is Theorem III.1, which
presents a condition far more practical than those of

Definition II.5 and Definition II.6. And then, we verified
its usefulness through some explicit calculations for selected
examples of well known piecewise isometric systems.

The computations we did in Section IV revealed little but the
usefulness of the practical condition (III.1) of Theorem III.1
over the conditions of Definition II.5 and Definition II.6. The
work we put in to understand the dynamics of the triangle map
in Section V, on the other hand, appears to suggest something
extra. It appears that Theorem III.1 can be extended beyond the
uniform rotation condition. For the moment, we do not have
clear idea how to proceed in further developing Theorem III.1.
However, the authors cautiously conjecture that the majority
(if not all) of Theorem III.1 will hold also for dual rotation
or more complicated classes of piecewise isometric dynamical
systems. For now, we leave this topic as a problem for a future
research.
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