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Abstract—In this work, the fifth of this study, numerical 

simulations involving supersonic and hypersonic flows on an 

unstructured context are analyzed. The Steger and Warming, the Van 

Leer, the Liou and Steffen Jr., and the Radespiel and Kroll schemes 

are implemented on a finite volume formulation, using unstructured 

spatial discretization. The algorithms are implemented in their first 

order spatial accuracy. To the turbulent simulations, the Van Leer 

and the Radespiel and Kroll algorithms are implemented with the 

Rumsey et al. model. The air inlet problem to the hypersonic inviscid 

simulations, and the re-entry capsule problem to the hypersonic 

viscous simulations are studied. The results have demonstrated that 

the Van Leer algorithm yields the best results in terms of the 

prediction of the shock angle of the oblique shock waves in the air 

inlet problem and the best value of the stagnation pressure at the 

configuration nose in the re-entry capsule configuration. The spatially 

variable time step is the best choice to accelerate the convergence of 

the numerical schemes, as reported by Maciel. In terms of turbulent 

results, the Rumsey et al. model yields good results, proving the good 

capacity of this turbulence model in simulate hypersonic flows. This 

paper is the conclusion of Maciel’s works started in 2011 and treats 

mainly the influence of the turbulence model on the solution quality. 

 

Keywords—Unstructured spatial discretization; Euler and 

Navier-Stokes equations; Steger and Warming algorithm; Van Leer 

algorithm; Liou and Steffen Jr. algorithm; Radespiel and Kroll 

algorithm; Rumsey et al. turbulence model. 

I. INTRODUCTION 

ONVENTIONAL non-upwind algorithms have been used 

extensively to solve a wide variety of problems ([1]). 

Conventional algorithms are somewhat unreliable in the sense 

that for every different problem (and sometimes, every 

different case in the same class of problems) artificial 

dissipation terms must be specially tuned and judicially chosen 

for convergence. Also, complex problems with shocks and 

steep compression and expansion gradients may defy solution 

altogether. 

 Upwind schemes are in general more robust but are also 

more involved in their derivation and application. Some 

upwind schemes that have been applied to the Euler equations 
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are, for example, [2-4, 6]. Some comments about these 

methods are reported below: 

 [2] developed a method that used the remarkable property 

that the nonlinear flux vectors of the inviscid gasdynamic 

equations in conservation law form were homogeneous 

functions of degree one of the vector of conserved variables. 

This property readily permitted the splitting of the flux vectors 

into subvectors by similarity transformations so that each 

subvector had associated with it a specified eigenvalue 

spectrum. As a consequence of flux vector splitting, new 

explicit and implicit dissipative finite-difference schemes were 

developed for first-order hyperbolic systems of equations. 

 [3] suggested an upwind scheme based on the flux vector 

splitting concept. This scheme considered the fact that the 

convective flux vector components could be written as flow 

Mach number polynomial functions, as main characteristic. 

Such polynomials presented the particularity of having the 

minor possible degree and the scheme had to satisfy seven 

basic properties to form such polynomials. This scheme was 

presented to the Euler equations in Cartesian coordinates and 

three-dimensions. 

 [4] proposed a new flux vector splitting scheme. They 

declared that their scheme was simple and its accuracy was 

equivalent and, in some cases, better than the [5] scheme 

accuracy in the solutions of the Euler and the Navier-Stokes 

equations. The scheme was robust and converged solutions 

were obtained so fast as the [5] scheme. The authors proposed 

the approximated definition of an advection Mach number at 

the cell face, using its neighbor cell values via associated 

characteristic velocities. This interface Mach number was so 

used to determine the upwind extrapolation of the convective 

quantities. 

 [6] emphasized that the [4] scheme had its merits of low 

computational complexity and low numerical diffusion as 

compared to other methods. They also mentioned that the 

original method had several deficiencies. The method yielded 

local pressure oscillations in the shock wave proximities, 

adverse mesh and flow alignment problems. In the [6] work, a 

hybrid flux vector splitting scheme, which alternated between 

the [4] scheme and the [3] scheme, in the shock wave regions, 

was proposed, assuring that resolution of strength shocks was 

clear and sharply defined. 

 Algorithms for solving the Euler equations using a perfect 
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gas model on structured grids in two- and three-dimensions 

have become widespread in recent years ([7-8]). However, 

these algorithms have shown difficulties in predicting 

satisfactory results around complex geometries due to mesh 

irregularities. As a result, attention has turned to the 

development of solution algorithms on arbitrary unstructured 

grids. Impressive results have been obtained for a wide range 

of problems ([9-10]). 

 One problem associated with unstructured meshes is the 

increased difficulty in obtaining smooth higher order spatial 

approximations to state data at cell interfaces. Two methods 

have been used to obtain higher order accuracy on 

unstructured meshes. A method used by several researchers for 

cell vertex schemes ([11-12]) was applied to obtain higher 

order accuracy in a procedure analogous to MUSCL 

differencing on a structured mesh. A conventional structured 

mesh limiter can be employed in this scheme to obtain 

approximately monotone results near flow discontinuities. The 

second method, which was proposed by [10], linearly 

reconstructs the cell averaged data and imposes a monotone 

preserving limiter to achieve smooth results near flow 

discontinuities. 

 On an unstructured algorithm context, [13-14] has presented 

a work involving the numerical implementation of four typical 

algorithms of the Computational Fluid Dynamics community. 

The [2-3, 5, 15] algorithms were implemented and applied to 

the solution of aeronautical and of aerospace problems, in two-

dimensions. The Euler equations in conservative form, 

employing a finite volume formulation and an unstructured 

spatial discretization, were solved. The [5] and the [15] 

schemes were flux difference splitting ones and more accurate 

solutions were expected. On the other hand, the [2-3] schemes 

were flux vector splitting ones and more robustness properties 

were expected. The time integration was performed by a 

Runge-Kutta method of five stages. All four schemes were first 

order accurate in space and second order accurate in time. The 

steady state physical problems of the transonic flow along a 

convergent-divergent nozzle and of the supersonic flows along 

a ramp and around a blunt body were studied. The results have 

shown that the [5] scheme has presented the most severe 

pressure fields in the ramp and blunt body problems and the 

most accurate value of the stagnation pressure in the blunt 

body case. On the other hand, the [3] scheme has yielded the 

most accurate value of the shock angle in the ramp problem, 

while the [15] scheme has yielded the best value of the lift 

coefficient in the blunt body problem. 

 Following the studies of 2007, [16-17] has presented a work 

involving the numerical implementation of more three typical 

algorithms of the Computational Fluid Dynamics community. 

The [4, 6, 18] algorithms were implemented and applied to the 

solution of aeronautical and aerospace problems, in two-

dimensions. The Euler equations in conservative form, 

employing a finite volume formulation and an unstructured 

spatial discretization, were solved. The [18] scheme was a flux 

difference splitting one and more accurate solutions were 

expected. On the other hand, the [4, 6] schemes were flux 

vector splitting ones and more robustness properties were 

expected. The time integration was performed by a Runge-

Kutta method of five stages. All three schemes were first order 

accurate in space and second order accurate in time. The 

steady state physical problems of the transonic flow along a 

convergent-divergent nozzle, of the supersonic flows along a 

ramp and around a blunt body, and of the “cold gas” 

hypersonic flow around a double ellipse were studied. The 

results have shown that the [18] scheme presents the most 

severe pressure fields and the most accurate values of the 

stagnation pressure in the blunt body and in the double ellipse 

problems. On the other hand, the [3] scheme yields the best 

wall pressure distribution, in comparison with the experimental 

results, in the nozzle problem, whereas the [4] scheme yields 

the most accurate value of the shock angle in the ramp 

problem. 

 In relation to high resolution unstructured solutions, [19-20] 

has presented a work involving [4, 6] schemes implemented on 

a finite volume context and using an upwind and unstructured 

spatial discretization to solve the Euler equations in the two-

dimensional space. Both schemes were flux vector splitting 

ones. These schemes were implemented in their second order 

accuracy versions employing the linear reconstruction 

procedure of [10] and their results were compared with their 

first order accuracy versions and with theoretical results. Five 

nonlinear flux limiters were studied: Barth and Jespersen 

(minmod like), Van Leer, Van Albada, Super Bee and -

limiter. The time integration used a Runge-Kutta method of 

five stages and was second order accurate. Both algorithms 

were accelerated to the steady state solution using a spatially 

variable time step procedure. This technique has proved 

excellent gains in terms of convergence ratio as reported in 

[21-22]. The algorithms were applied to the solution of the 

steady state physical problem of the supersonic flow along a 

compression corner. The results have shown that the [6] 

scheme using Barth and Jespersen, Van Leer, Van Albada and 

Super Bee nonlinear limiters presented the most accurate 

values to the shock angle of the oblique shock wave generated 

at the compression corner. 

 In 2010, [23-24] has implemented the [3] and [5] 

algorithms, on a finite volume context and employing an 

upwind and unstructured spatial discretization, to solve the 

Euler equations in two-dimensions. The [5] scheme was a flux 

difference splitting type algorithm, whereas the [3] scheme 

was a flux vector splitting type algorithm. Both algorithms 

were implemented in their second order versions, employing 

the [10] linear reconstruction procedure and their results were 

compared with their first order version solutions and 

theoretical results. Five non-linear flux limiters were studied: 

Barth and Jespersen (minmod), Van Leer, Van Albada, Super 

Bee and β-limiter. The Runge-Kutta method of five stages, 

second order accurate, was used to perform time integration. 

The steady state physical problem of the supersonic flow along 

a compression corner was studied. A spatially variable time 
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step procedure was employed to accelerate the convergence of 

the numerical schemes to the steady state solution. Effective 

gains in terms of convergence acceleration were reported in 

[21-22]. The results have demonstrated that the [5] scheme in 

its second order version, using the Van Albada and Super Bee 

limiters, yielded the most accurate solutions. 

 In terms of turbulence studies, [25-26] has developed 

interesting investigation involving the turbulence models of 

[27-28] applied to the steady state problem of the supersonic 

flow along a ramp. The [29-30] algorithms were implemented 

and used to perform the numerical experiments. Both schemes 

were second order accurate in space and time. The [29] 

algorithm was a Lax-Wendroff type one and the time 

integration was performed in conjunction with the spatial 

discretization. The time integration was of predictor/corrector 

type. The [30] scheme was a symmetrical one and the time 

integration was performed according to a Runge-Kutta 

method. The Favre-averaged Navier-Stokes equations were 

solved, according to a finite volume formulation and on a 

structured spatial discretization context, and the [27-28] 

models were employed to describe the turbulence effects in the 

mean flow properties. A spatially variable time step procedure 

was employed to accelerate the convergence of [29-30] in the 

experiments. The results have demonstrated that the [30] 

algorithm predicts a pressure field more severe than that 

obtained by the [29] one, as the turbulent flow is studied, a 

more real situation, to both models. The pressure distribution 

along the ramp obtained by the [29-30] schemes presented the 

expected behavior in the turbulent solution generated by the 

[27] model, whereas the laminar solution simulated a weaker 

shock wave ahead of the ramp. In the case with the [28] model, 

only the solution obtained with the [30] scheme presented the 

expected pressure distribution behavior. In general terms, the 

[30] algorithm has presented the best solutions. 

 [31] has presented a work where the [3] flux vector splitting 

scheme was implemented, on a finite-volume context. The 

two-dimensional Favre-averaged Navier-Stokes equations 

were solved using an upwind discretization on a structured 

mesh. The [32-33] two-equation turbulence models were used 

in order to close the problem. The physical problems under 

studies were the low supersonic flow along a ramp and the 

moderate supersonic flow around a blunt body configuration. 

The implemented scheme used a MUSCL (Monotone 

Upstream-centered Schemes for Conservation Laws) 

procedure to reach second order accuracy in space. The time 

integration used a Runge-Kutta method of five stages and was 

second order accurate. The algorithm was accelerated to the 

steady state solution using a spatially variable time step. This 

technique has proved excellent gains in terms of convergence 

rate as reported in [21-22]. The results have demonstrated that 

the [33] model has yielded more critical pressure fields than 

the ones due to [32]. The shock angle of the oblique shock 

wave in the ramp problem and the stagnation pressure ahead of 

the blunt body configuration are better predicted by the [33] 

turbulence model. 

 [34-35] analyzed numerical simulations involving 

supersonic and hypersonic flows on an unstructured context. 

Based on the experiences performed in the structured and 

unstructured contexts aforementioned, the [3, 6] algorithms 

were implemented on a finite volume formulation, using 

unstructured spatial discretization. The algorithms were 

implemented in their first and second order spatial accuracies. 

The second order spatial accuracy was obtained by a linear 

reconstruction procedure based on the work of [10]. Several 

non-linear limiters were studied, as well two types of linear 

interpolation, based on the works of [18; 36]. Two types of 

viscous calculation to the laminar case were compared. They 

were programmed considering the works of [36-37]. To the 

turbulent simulations, the k-2 two-equation model of [33] 

was employed, considering the good experience observed by 

the present author in the structured case. The ramp problem to 

the inviscid simulations and the re-entry capsule problem to 

the hypersonic simulations were considered. A spatially 

variable time step procedure was implemented aiming to 

obtain fast convergence rates to the two algorithms, as 

reported by [21-22]. Five options of time step were described 

and studied. The results have demonstrated that the [3] 

algorithm has yielded the best solution in terms of the 

prediction of the shock angle of the oblique shock wave in the 

ramp problem and the best value of the stagnation pressure at 

the configuration nose of the re-entry capsule problem. In 

terms of turbulent results, the [33] model has yielded good 

results, proving the good capacity of this turbulence model to 

high hypersonic flows. 

 In [38-39] the numerical simulations involving supersonic 

and hypersonic flows on an unstructured context are analysed, 

giving continuation to the [34-35] studies. The [3, 6] schemes 

were implemented on a finite volume formulation, using 

unstructured spatial discretization. The algorithms were 

implemented in their first and second order spatial accuracies. 

The second order spatial accuracy was obtained by a linear 

reconstruction procedure based on the work of [10]. Several 

non-linear limiters were studied using the linear interpolation 

based on the work of [36]. To the turbulent simulations, the 

[40-42] models were employed. The compression corner 

problem to the supersonic inviscid simulations and the re-entry 

capsule problem to the hypersonic viscous simulations were 

studied. The results have demonstrated that the [3] algorithm 

has yielded the best results in terms of the prediction of the 

shock angle of the oblique shock wave in the compression 

corner problem and the best value of the stagnation pressure at 

the configuration nose in the re-entry capsule configuration. 

The spatially variable time step is the best choice to accelerate 

the convergence of the numerical schemes, as reported by [21-

22]. In terms of turbulent results, the [40] model has yielded 

the best results, proving the good capacity of this turbulence 

model in simulate high hypersonic flows. This paper is the 

conclusion of Maciel’s works started in 2011 and treated 

mainly the influence of the turbulence model on the solution 

quality. 
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 In this work, the fifth of this study, numerical simulations 

involving supersonic and hypersonic flows on an unstructured 

context are analysed. The [2-4, 6] schemes are implemented on 

a finite volume formulation, using unstructured spatial 

discretization. The algorithms are implemented in their first 

order spatial accuracy. To the turbulent simulations, the [43] 

model is employed. The air inlet problem to the hypersonic 

inviscid simulations and the re-entry capsule problem to the 

hypersonic viscous simulations are studied. The results have 

demonstrated that the [3] algorithm has yielded the best results 

in terms of the prediction of the shock angle of the oblique 

shock wave in the air inlet problem and the best value of the 

stagnation pressure at the configuration nose in the re-entry 

capsule configuration. The spatially variable time step is the 

best choice to accelerate the convergence of the numerical 

schemes, as reported by [21-22]. In terms of turbulent results, 

the [43] model yields good results, proving the good capacity 

of this turbulence model in simulate high hypersonic flows. 

This paper is the final study of Maciel’s works started in 2011 

and treats mainly the influence of the turbulence model on the 

solution quality. 

II. NAVIER-STOKES EQUATIONS 

The two-dimensional flow is modeled by the Navier-Stokes 

equations, which express the conservation of mass and energy 

as well as the momentum variation of a viscous, heat 

conducting and compressible media, in the absence of external 

forces. The Euler equations are obtained in the limiting case of 

an infinity Reynolds number or, in other words, neglecting the 

viscous vectors. So, their description is omitted. The integral 

form of the Navier-Stokes equations may be represented by: 

 

     0GdVdSnFFnEEQdVt
VS

yvexve
V

  ,      (1) 

 

where Q is written for a Cartesian system, V is the cell volume, 

nx and ny are components of the unity vector normal to the 

cell boundary, S is the flux area, Ee and Fe are the components 

of the convective, or Euler, flux vector, Ev and Fv are the 

components of the viscous, or diffusive, flux vector and G is 

the source term of the two-equation model. The vectors Q, Ee, 

Fe, Ev and Fv are, incorporating a k- formulation, represented 

by: 
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where the components of the viscous stress tensor are defined 

as: 

 

   ; Reyvxu32xu2t MMxx   

  ;Rexvyut Mxy   

      Reyvxu32yv2t MMyy  .      (3) 

 

The components of the turbulent stress tensor (Reynolds stress 

tensor) are described by the following expressions: 

 

    k32Reyvxu32xu2 TTxx  ; 

  RexvyuTxy  ; 

    k32Reyvxu32yv2 TTyy  .       (4) 

 

Expressions to fx and fy are given bellow: 

 

    ;qvtutf xxyxyxxxxx   

    yyyyyxyxyy qvtutf  ,               (5) 

 

where qx and qy are the Fourier heat flux components and are 

given by: 

 

  ;xePrPrReq iTTLMx   

  yePrPrReq iTTLMy  .            (6) 

 

The diffusion terms related to the k- equation are defined as: 

 

  ;xkRe1 k
*
TMx   

  ykRe1 k
*
TMy  ;                   (7) 

  ;xsRe1 s
*
TMx   

  .ysRe1 s
*
TMy                      (8) 

 

In the above equations,  is the fluid density; u and v are 

Cartesian components of the velocity vector in the x and y 

directions, respectively; e is the total energy per unit volume; p 

is the static pressure; k is the turbulence kinetic energy; s is the 

second turbulent variable, which can be the rate of dissipation 

of the turbulence kinetic energy (k- model) or the flow 

vorticity (k- model). In the present study, s = ω; the t’s are 

viscous stress components; ’s are the Reynolds stress 

components; the q’s are the Fourier heat flux components; Gk 
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takes into account the production and the dissipation terms of 

k; Gs takes into account the production and the dissipation 

terms of ; M and T are the molecular and the turbulent 

viscosities, respectively; PrL and PrT are the laminar and the 

turbulent Prandtl numbers, respectively; k and s are 

turbulence coefficients;  is the ratio of specific heats; Re is 

the laminar Reynolds number, defined by: 

 

MREFREFlVRe  ,                           (9) 

 

where VREF is a reference flow velocity and lREF is a 

configuration reference length. The internal energy of the 

fluid, ei, is defined as: 

 

 22
i vu5.0ρee  .                       (10) 

 

The Navier-Stokes equations are dimensionless in relation to 

the freestream density, , the freestream speed of sound, a, 

and the freestream molecular viscosity, . The system is 

closed by the state equation for a perfect gas: 

 

  ρkvu0.5ρe1)(γp 22  ,             (11) 

 

considering the ideal gas hypothesis. The total enthalpy is 

given by    peH . 

A. Molecular Viscosity 

The molecular viscosity model is based on the empiric 

Sutherland formula: 

 

 TS1bT 21
M  ,                         (12) 

 

where T is the absolute temperature (K), b = 1.458x10
-6

 

Kg/(m.s.K
1/2

) and S = 110.4 K, to the atmospheric air in the 

standard atmospheric conditions (see [44]). 

III. STEGER AND WARMING ALGORITHM 

A. Theory for the one-dimensional case 

If the homogeneous Euler equations are put in characteristic 

form 

 

0xWtW  ,                     (13) 

 

where W is the vector of characteristic variables (defined in 

[45]) and  is the diagonal matrix of eigenvalues, the upwind 

scheme: 
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where u is a scalar property,  ââ5.0â   and 

 ââ5.0â  , can be applied to each of the three 

characteristic variables separately, with the definitions 

 

 mmm 5.0     and    mmm 5.0  ,     (15) 

 

“m” assuming values from 1 to 4 (two-dimensional space), for 

each of the eigenvalues of  
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This defines two diagonal matrices : 
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where 
+
 has only positive eigenvalues, 

-
 only negative 

eigenvalues, and such that 

 
     and      

or              
  mmm    and     mmm .        (18) 

 

The quasi-linear coupled equations are obtained from the 

characteristic form by the transformation matrix P (defined in 

[45]), with the Jacobian A satisfying 

 
1PPA  , resulting in 0xQAtQ  . (19) 

 

Hence an upwind formulation can be obtained with the 

Jacobians 

 
1PPA      and   1PPA   , with: 

  AAA  and   AAA .             (20) 

 

The fluxes associated with these split Jacobians are obtained 

from the remarkable property of homogeneity of the flux 

vector f(Q). f(Q) is a homogeneous function of degree one of 

Q. Hence, f = AQ and the following flux splitting can be 

defined: 

QAf    and QAf   , with:   fff .      (21) 

 

This flux vector splitting, based on Eq. (15), has been 

introduced by [2]. The split fluxes f
+
 and f

-
 are also 

homogeneous functions of degree one in Q. 

B. Arbitrary Meshes 

In practical computations one deal mostly with arbitrary 
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meshes, considering either in a finite volume approach or in a 

curvilinear coordinate system. 

 In both cases, the upwind characterization is based on the 

signs of the eigenvalues of the matrix 

 

yx
)n( BnAnnAK 


.                        (22) 

 

 The fluxes will be decomposed by their components 

 

yx
)n( FnEnnF

~
F
~




                            (23) 

 

and separated into positive and negative parts according to the 

sign of the eigenvalues of K
(n)

 as described above, considering 

the normal direction as a local coordinate direction. 

 For a general eigenvalue splitting, as Eq. (15), the normal 

flux projection, Eq. (23), is decomposed by a [2] flux splitting 

as 
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F
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32n

22

y32

x32
)n(

,  (24) 

 

where the eigenvalues of the matrix K are defined as 

 

n1 vnv 


, anv2 


 and anv3 


,  (25) 

 

with v


 is the flow velocity vector, and  sign indicates the 

positive or negative parts respectively. The parameter  is 

defined as 

 

    32112 .                    (26) 

C. Numerical Scheme 

The numerical scheme of [2] implemented in this work is 

based on an unstructured finite volume formulation, where the 

convective numerical fluxes at interface are calculated as 

 

    l)m(

L

)m(

R
)m(

l SF
~

F
~

F
~






  
,                  (27) 

 

where “R” and “L” represent right and left states, respectively, 

S is the cell face area and “l” indicates the flux interface. The 

subscript “L” is associated to properties of a given “i” cell and 

the subscript “R” is associated to properties of the “ne” 

neighbor cell of “i”. The cell volume on an unstructured 

context is defined by: 

 

     1n2n1n3n2n3n3n2n3n1n2n1ni yxxyyxyxxyyx5.0V  , (28) 

 

with n1, n2 and n3 being the nodes of a given triangular cell, 

defined in Fig. 1. Figure 1 exhibits the computational cell 

adopted for the simulations, as well its respective nodes, 

neighbors and flux interfaces. 

 The time integration is performed by an explicit method, 

second order accurate, Runge-Kutta type of five stages and can 

be represented of generalized form by: 

 

 
)k(

i
)1n(

i

)1k(
iiik

)0(
i

)k(
i

)n(
i

)0(
i

QQ

,QCVtQQ

QQ










            (29) 

 

with k = 1,...,5; 1 = 1/4, 2 = 1/6, 3 = 3/8, 4 = 1/2 and 5 = 

1. The contribution of the convective numerical flux vectors is 

determined by the Ci vector: 

 
)m(

3
)m(

2
)m(

1
)m(

i F
~

F
~

F
~

C  .                     (30) 

 

This version of the flux vector splitting algorithm of [2] is first 

order accurate in space. 

 
Figure 1. Schematic of a cell and its neighbors, nodes and flux interfaces. 

IV. VAN LEER, LIOU AND STEFFEN JR., AND RADESPIEL AND 

KROLL ALGORITHMS 

The space approximation of the integral Equation (1) to a 

triangular finite volume yields an ordinary differential equation 

system given by: 

 

iii CdtdQV  ,                            (31) 

 

with Ci representing the net flux (residual) of the conservation 

of mass, conservation of momentum and conservation of 

energy in the volume Vi. The residual is calculated as: 

 

321i FFFC  ,                           (32) 

 

where Fl is the discrete convective minus diffusive flux at the 

interface “l”. 

The convective discrete flux calculated by the AUSM 
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scheme (Advection Upstream Splitting Method) can be 

interpreted as a sum involving the arithmetical average 

between the right (R) and the left (L) states of the “l” cell face, 

multiplied by the interface Mach number, and a scalar 

dissipative term. The subscript “L” is associated to properties 

of a given “i” cell and the subscript “R” is associated to 

properties of the “ne” neighbor cell of “i”. Hence, to the “l” 

interface: 
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where  T
lyxl SSS   defines the normal area vector to the 

“l” surface. The area components at this interface are defined 

by: 

 
ll

x
l
x SnS     and   

ll
y

l
y SnS  .                     (34) 

 

The normal unity vector components, 
l
xn and 

l
yn , and the 

flux area of the “l” interface, Sl, are defined as: 

 

  5.02
l

2
ll

l
x yxyn  ,   5.02

l
2
ll

l
y yxxn   

and     5.02
l

2
l

l yxS  .                   (35) 

 

Expressions to xl and yl are given in Tab. 1.  The quantity 

“a” represents the speed of sound, which is defined as: 

 

  5.0
kpa  .                         (36) 

 

Table 1 Values of xl and yl. 
 

Interface xl yl 

l = 1 1n2n xx   1n2n yy   

l = 2 2n3n xx   2n3n yy   

l = 3 3n1n xx   3n1n yy   

 

Ml defines the advection Mach number at the “l” face of the 

“i” cell, which is calculated according to [4] as: 

 
  RLl MMM ,                             (37) 

 

where the separated Mach numbers M
+/-

 are defined by the [3] 

formulas: 
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and 
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M
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
















           (38) 

 

ML and MR represent the Mach number associated with the left 

and right states, respectively. The advection Mach number is 

defined by: 

 

   aSvSuSM yx  .                       (39) 

 

The pressure at the “l” face of the “i” cell is calculated by a 

similar way: 

 
  RLl ppp ,                           (40) 

 

with p
+/-

 denoting the pressure separation defined according to 

the [3] formulas: 
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and 
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
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


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.1Mif,p
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p
2

;           (41) 

 

The definition of the dissipative term  determines the 

particular formulation of the convective fluxes. The following 

choice corresponds to the [3] algorithm, according to [6]: 
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The above equations clearly show that to a supersonic cell 

face Mach number, the [3] scheme represents a discretization 

purely upwind, using either the left state or the right state to 

the convective terms and to the pressure, depending of the 

Mach number signal. This [3] scheme is first order accurate in 

space. The time integration is performed using an explicit 

Runge-Kutta method of five stages, second order accurate, and 

can be represented in generalized form by: 

 

    
)k(

i
)1n(
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j,ij,i
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iik
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QQ

,QGVQCtQQ

QQ
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
     (43) 

 

with k = 1,...,5; 1 = 1/4, 2 = 1/6, 3 = 3/8, 4 = 1/2 and 5 = 

1; and C = F1 + F2 + F3. The G vector is used only in the 

turbulent simulations. 

The [4] scheme is described by Eqs. (31) to  (41) and (43).  

The next step is the determination of the  dissipative term. 

According to [6], the following choice for  results in the [4] 

scheme: 

 

l
LS
l M .                              (44) 

 

Finally, the [6] algorithm is based on an hybrid scheme, 

which combines the [3] scheme, better resolution at shock 

regions, and the [4] (AUSM) scheme, better resolution at 

background regions. Hence, 

 

  LS
l

VL
ll 1  ,                      (45) 

 

with: 
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where 
~

 is a small parameter, 0 < 
~
 0.5, and  is a constant, 

0    1. In this work, the values used to 
~

 and  were: 0.2 

and 0.5, respectively. The time integration follows the method 

described by Eq. (43). This scheme is first order accurate in 

space. 

The gradients of the primitive variables to the viscous flux 

are calculated using the Green theorem, which considers that 

the gradient of a primitive variable is constant at the volume 

and that the volume integral which defines the gradient is 

replaced by a surface integral (see [37]). To the xu   

gradient, for example, it is possible to write: 

 

  










xS

x

S

x

V

udS
V

1
Sdnu

V

1
dV

x

u

V

1

x

u 
 

      
3l2l1l x3neix2neix1nei Suu5.0Suu5.0Suu5.0

V

1


 . (47) 

V. RUMSEY, GATSKI, YING, AND BERTELRUD TURBULENCE 

MODEL 

In this work, the k- model of [43] is the studied model, where 

s = . The equilibrium eddy-viscosity term employed in the 

diffusion terms is given by 

 

  kcRe **
T ,                            (48) 

 

where .081.0c*   

The explicit nonlinear constitutive equation that is used to 

close the Reynolds-averaged Navier-Stokes equations is given 

(after regularization) 
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where 
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are the mean-rate-of-strain tensor and the mean-vorticity 

tensor, respectively. The turbulent viscosity T is 

 

  kcReT .                            (51) 

 

and 

 

1662222
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)(2.0)1(3
c 




 ;         (52) 

2

1

ijij2 )SS)(/(     and   2

1

ijij3 )WW)(/(  ,   (53) 

 

where 1 = (4/3-C2)(g/2), 2 = (2-C3)(g/2), 3 = (2-C4)(g/2) 

and g = (C1/2+C5-1)-1. The constants that govern the pressure-

strain correlation model of [46] are C1 = 6.8, C2 = 0.36, C3 = 

1.25, C4 = 0.4 and C5 = 1.88. The 
'
T  terms are given by 
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  kcRe ''
T ,                            (54) 

 

where 
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 The source term denoted by G in the governing equation 

contains the production and dissipation terms of k and . To 

the [43] model, the Gk and G  terms have the following 

expressions: 

 

kkk DPG     and     DPG ,           (56) 

 

where: 
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kkPP  ,  and  ReD 2 .             (57) 

 

The closure coefficients adopted to the [43] model assume 

the following values: 83.0 ; 41.0 ; 4.1k  ; 

2.2 ; PrdL = 0.72; PrdT = 0.9; 





  
*2 c/ . 

VI. UNSTRUCTURED TRIANGULATION 

An unstructured discretization of the calculation domain is 

usually recommended to complex configurations, due to the 

easily and efficiency that such domains can be discretized 

([30], [47-49]). However, the unstructured mesh generation 

question will not be studied in this work. The unstructured 

meshes generated in this work were structured created and 

posteriorly the connectivity, neighboring, node coordinates 

and ghost tables were built in a pre-processing stage. 

A study involving two types of domain triangulation is 

performed. In the first case, the mesh is generated with the 

triangles created in the same sense (see Fig. 2). In the second 

case, the triangles generated in one row is in a specific sense 

and in the above row is in an opposite sense (see Fig. 3), 

originating a mesh with more regular geometrical properties. It 

is important to emphasize that in the second method, the 

number of lines should be odd. These triangulation options are 

studied in the turbulent cases. As in [34-35] the alternated 

generation process should provide excellent results in 

symmetrical configurations. It is expected to be repeated in 

this study. 

 
Figure 2. Triangulation in the Same Sense (SS). 

 
Figure 3. Triangulation in Alternate Sense (AS). 

VII. TIME STEP 

As in [34-35, 38-39] the spatially variable time step procedure 

resulted in an excellent tool to accelerate convergence, it is 

repeated in this study with the expectative of also improve the 

convergence rate of the numerical schemes. 

A. Spatially Variable Time Steps 

The basic idea of the spatially variable time step procedure 

consists in keeping constant the CFL number in all calculation 

domain, allowing, hence, the use of appropriated time steps to 

each specific mesh region during the convergence process. In 

this work, two options of spatially variable time step, 

calculated in each iteration, were studied and are described 

below: 

 

Convective time step. According to the definition of the 

CFL number, it is possible to write: 

 

  iii csCFLt  ,                         (58) 

 

where: CFL is the “Courant-Friedrichs-Lewy” number to 
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provide numerical stability to the scheme; 

  i

5.022
i avuc






   is the maximum characteristic 

velocity of information propagation in the calculation domain; 

and  is  is a characteristic length of information transport. 

Considering a finite volume context,  is  is chosen as the 

minor value found between the minor centroid distance, 

involving the “i” cell and a neighbor, and the minor cell side 

length. 

 

Convective + diffusive time step. To a viscous simulation 

and according to the work of [49], it is possible to write: 

 

 

ivc

vc
i

tt

ttCFL
t 













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with tc being the convective time step and tv being the 

viscous time step. These quantities are defined as: 
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   iiv 2p1p  ,                            (64) 

 

where interface properties are calculated by arithmetical 

average, M is the freestream Mach number,  is the fluid 

molecular viscosity and Kv is equal to 0.25, as recommended 

by [49]. 

VIII. INITIAL AND BOUNDARY CONDITIONS 

A. Initial Condition 

Freestream values, at all grid cells, are adopted for all flow 

properties as initial condition, as suggested by [30, 50]. 

Therefore, the vector of conserved variables is defined as: 

 
T

2
i kM5.0

)1(

1
sinMcosM1Q
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
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









  , 

(65) 

 

where k is the freestream turbulent kinetic energy and  is 

the freestream turbulent vorticity. These parameters assumes 

the following values in the present work: k = 1.0x10
-6

 and 

 2
REF

lu10   , with u being the freestream u Cartesian 

component of velocity and lREF being a characteristic length, 

the same adopted in the definition of the Reynolds number. 

B. Bounadry Conditions 

The boundary conditions are basically of five types: solid wall, 

entrance, exit, far field and continuity. These conditions are 

implemented with the help of ghost cells. 

 

Wall Condition. Considering the inviscid case, this 

condition imposes the flow tangency at the solid wall. It is 

satisfied considering the wall tangent velocity component of 

the ghost volume as equals to the respective velocity 

component of its real neighbor cell. At the same way, the wall 

normal velocity component of the ghost cell is equaled in 

value, but with opposite signal, to the respective velocity 

component of the real neighbor cell. On the other hand, in the 

viscous case, it imposes the non-permeability and non-slip wall 

conditions. Therefore, the tangent velocity component of the 

ghost volume at wall has the same magnitude as the respective 

velocity component of its real neighbor cell, but opposite 

signal. In the same way, the normal velocity component of the 

ghost volume at wall is equal in value, but opposite in signal, 

to the respective velocity component of its real neighbor cell. 

These procedures lead to the following expressions to ughost 

and vghost, in each case: 
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to the inviscid case;  

 


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
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
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realghost

vv

uu
,                       (67) 

 

to the viscous case. 

 The pressure gradient normal to the wall is assumed to be 

equal to zero, following an inviscid formulation or a boundary-

layer like condition. The same hypothesis is applied to the 

temperature gradient normal to the wall, considering adiabatic 

wall. The ghost volume density and pressure are extrapolated 

from the respective values of the real neighbor volume (zero 

order extrapolation), with these two conditions. The total 

energy is obtained by the state equation of a perfect gas. 

 To the k- model, the turbulent kinetic energy and the 

turbulent vorticity at the wall ghost volumes are determined by 

the following expressions: 

 

0.0kghost    and      22
nMghost d338  ,      (68) 

 

where  assumes the value 3/40 and dn is the distance of the 

first centroid point to the wall. 

Entrance Condition. The entrance condition considers 

subsonic and supersonic flow. They are detailed below: 
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(a) Subsonic flow: Five properties are specified and one 

extrapolated. This approach is based on information 

propagation analysis along characteristic directions in the 

calculation domain (see [50]). In other words, for subsonic 

flow, five characteristic propagate information point into the 

computational domain. Thus five flow properties must be fixed 

at the inlet plane. Just one characteristic line allows 

information to travel upstream. So, one flow variable must be 

extrapolated from the grid interior to the inlet boundary. The 

pressure was the extrapolated variable from the real neighbor 

volumes, for all studied problems. Density and velocity 

components adopted values of freestream flow. To the k- 

model, the turbulence kinetic energy and the turbulence 

vorticity assume the values of the initial condition (freestream 

flow). The total energy is determined by the state equation of a 

perfect gas. 

(b) Supersonic flow: In this case no information travels 

upstream; therefore all variables are fixed with their freestream 

values. 

 

Exit Condition. Again, two flow situations are analyzed. 

They are detailed below: 

 

(a) Subsonic flow: Five characteristic propagate information 

outward the computational domain. Hence, the associated 

variables should be extrapolated from interior information. 

The characteristic direction associated to the “(qnormal-a)” 

velocity should be specified because it point inward to the 

computational domain (see [50]). In this case, the ghost 

volume pressure is specified from its initial value. Density, 

velocity components, the turbulence kinetic energy and the 

turbulence vorticity are extrapolated. The total energy is 

obtained from the state equation of a perfect gas. 

(b) Supersonic flow: All variables are extrapolated from 

interior grid cells, as no flow information can make its way 

upstream. In other words, nothing can be fixed. 

 

Far field Condition. This condition is only needed to the 

turbulent variables, once the far field is also an entrance and/or 

exit boundary. The mean flow kinetic energy is assumed to be 
2u5.0K   and the turbulence kinetic energy at the far field 

adopts the value kff = 0.01K, or 1% of K. The turbulence 

vorticity is determined by its freestream value. 

 

Continuity Condition. This condition requires the flow 

continuity at the trailing edge of the re-entry capsule (Kutta 

condition). It is done considering the vector of conserved 

variables at the trailing edge lower-surface as equal to the 

vector of conserved variables at the trailing edge upper-

surface. 

IX. RESULTS 

Simulations were performed using a personal notebook with 

processor INTEL core i7 and 8GBytes of RAM memory. The 

convergence criterion consisted of a reduction of four (4) 

orders in the magnitude of the residual. The residual was 

defined as the maximum value of the discretized equations. As 

one have four (4) equations to the inviscid case and six (6) 

equations to the turbulent case, each one should be tested to 

obtain the value of the maximum discretized equation for each 

cell. Comparing all discretized equation values, one obtains 

the maximum residual in the field. The entrance or attack angle 

in the present simulations was adopted equal to 0.0
o
. The value 

of  was estimated in 1.4 for “cold gas” flow simulations. Two 

problems were studied: the air inlet (inviscid case) and the re-

entry capsule (turbulent case). 

A. Inviscid Solutions 

In the inviscid case, it was studied the hypersonic flow along 

an air inlet configuration. The freestream Mach number was 

adopted equal to 10.0, a “cold gas” hypersonic flow. The air 

inlet configuration and mesh are show in Figs. 4 and 5, 

respectively. To this problem only the same sense mesh 

orientation (SS) was studied. This mesh is composed of 6,000 

triangular cells and 3,111 nodes, which corresponds to a mesh 

of 61x51 points in a finite difference context. 

 

 
Figure 4. Air inlet configuration. 

 
Figure 5. Air inlet mesh. 
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Figure 6. Pressure contours ([2]). 

 
Figure 7. Pressure contours ([3]). 

 
Figure 8. Pressure contours ([4]). 

 

Figures 6 to 9 exhibit the pressure contours obtained by [2-

4, 6] schemes to a first order solution. All schemes capture 

appropriately the shock waves at the upper and lower surfaces 

of the air inlet. The shock interference at the inlet throat is well 

captured. Oscillations are not present, which indicates that the 

wall pressure distributions of each scheme are smooth and well 

defined. The most severe pressure field is obtained by the [4] 

scheme, identifying such algorithm as more conservative than 

the others for this case. 

 
Figure 9. Pressure contours ([6]). 

 
Figure 10. Mach number contours ([2]). 

 
Figure 11. Mach number contours ([3]). 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 412



 

 

Figures 10 to 13 present the Mach number contours 

obtained by all four algorithms [2-4, 6]. The solutions are of 

good quality, without oscillations. The shock waves are well 

captured by the schemes. The most intense Mach number field 

is found in the [2-3] solutions. 

 
Figure 12. Mach number contours ([4]). 

 
Figure 13. Mach number contours ([6]). 

 
Figure 14. Pressure distributions. 

Figure 14 presents the wall pressure distribution at the air 

inlet lower wall. All solutions converge to approximately the 

same curve. The shock interference is well characterized by 

the depression in the pressure curve at about 0.114 m. The 

smooth behavior of the pressure distribution at the air inlet 

entrance characterizes this region as a compression wave and 

not as an oblique shock wave, whence discontinuities in the 

flow properties would be distinguishable. 

One way to quantitatively verify if the solutions generated 

by each scheme are satisfactory consists in determining the 

shock angle of the oblique shock waves at the lower and upper 

air inlet walls, measured in relation to the initial direction of 

the flow field. [51] (pages 352 and 353) presents a diagram 

with values of the shock angle, , to oblique shock waves. The 

value of this angle is determined as function of the freestream 

Mach number and of the deflection angle of the flow after the 

shock wave, . With a transfer were measured the inclination 

angles of the lower and upper ramp’s walls of the entrance 

device. To the lower wall this angle was of L = 6.5
o
 in relation 

to the horizontal and to the upper wall was of U = 13.5
o
 in 

relation to the horizontal. With these angles and with the 

freestream Mach number was possible to determine the 

theoretical shock angles of the oblique shock waves. These 

angles are disposed in Tab. 2, joined with the measured values 

of them to each numerical scheme and the respective 

percentage error. Using again a transfer in Figures 6 to 9, it is 

possible to obtain the values of  to each scheme, as well the 

respective errors, shown in Tab. 2. The results highlight the [3] 

scheme as the most accurate of the studied versions, with error 

of 10.0%, to the lower wall, and 4.6%, to the upper wall. 

 
Table 2 Measured values of the shock angles of the oblique shock waves. 

 

Surface Scheme β (Theory) β (Measured) Error (%) 

 [2] 10.0 11.0 10.0 

Lower [3] 10.0 11.0 10.0 

 [4] 10.0 12.0 20.0 

 [6] 10.0 11.3 13.0 

 [2] 17.5 20.0 14.3 

Upper [3] 17.5 18.3 4.6 

 [4] 17.5 19.6 12.0 

 [6] 17.5 20.1 14.9 

B. Turbulent Solutions – Same Sense Mesh Generation 

In this work, only the k- model of [43] is analyzed. Initially 

the SS case was considered. 

The re-entry capsule configuration is shown in Fig. 15, 

whereas the re-entry capsule mesh, generated in the SS case, is 

exhibited in Fig. 16. The freestream Mach number of 9.0 was 

studied, which corresponds to the maximum value of this 

parameter that each algorithm was able to support. Only the [3, 

6] algorithms were tested in this example. Only first order 

solutions were obtained. The Reynolds number is estimated in 

2.14x10
6
 and in the viscous case an exponential stretching of 

7.5% was employed in the  direction. 
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Figure 15. Re-entry capsule configuration. 

 
Figure 16. Re-entry capsule mesh (SS case). 

 

Figures 17 and 18 exhibit the pressure contours obtained by 

the [3, 6] numerical algorithms, respectively. Both pressure 

fields are identically in quantitative terms, although in 

qualitative terms some discrepancies are observed close to the 

blunt surface of the re-entry configuration. 

 
Figure 17. Pressure contours ([3]). 

 
Figure 18. Pressure contours ([6]). 

 

Figures 19 and 20 show the Mach number contours 

generated by the [3, 6] schemes, respectively. Both solutions 

are very close, with the formation of a wake at the trailing 

edge. Non-symmetry is noted at the wake, which is an 

indicative that the separation region behind the re-entry 

capsule geometry presents an unsymmetrical behavior. This 

consideration implies that the pair of circulation bubbles that is 

formed in this region is unsymmetrical too. The [3] contours 

are smoother than the [6] contours. 

 
Figure 19. Mach number contours ([3]). 

 

Figures 21 and 22 exhibit the velocity vector field and the 

streamlines around the re-entry capsule configuration. The [6] 

solution presents a small non-symmetry characteristic at the 

trailing edge. Both solutions present a wake formed at the 

trailing edge and this wake is not positioned at the body’s 

symmetry line, indicating a non-symmetry zone. Afterwards it 

will be shown that it is characteristic of the mesh generation 

process and that the AS generation process eliminates this 

solution aspect. In general, the solutions are good. It is 

possible to identify the formation of a pair of circulation 

bubbles at the trailing edge, in both solutions, resulting from 

wake viscous effect. As can be noted, the pair of circulation 
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bubble presents no symmetry in relation to the capsule 

symmetry line, which originates a non-physical result. As was 

observed in the early studies ([34-35, 38-39]), the AS mesh 

orientation overcome this characteristic of the SS mesh 

orientation. 

 
Figure 20. Mach number contours ([6]). 

 
Figure 21. Velocity field and streamlines ([3]). 

 
Figure 22. Velocity field and streamlines ([6]). 

Figure 23 shows the wall pressure distributions obtained by 

the [3, 6] schemes, in terms of -Cp distribution. The solutions 

are very close, without meaningful differences. The -Cp 

plateau equal to zero indicates that at the separation region the 

pressure is constant and has its freestream value. In other 

words, in a region of great exchange of energy, the pressure is 

constant and equal to its freestream value. The Cp peak at the 

re-entry capsule leading edge is approximately 1.92 for both 

schemes. The variation of –Cp at the ellipse region is 

practically linear, without great variations. 

 
Figure 23. –Cp distributions at wall. 

 

Figure 24 exhibits the turbulent kinetic energy profile 

obtained at the node 58, by the [3, 6] algorithms. As can be 

seen, the k distributions are very close with some differences 

in the boundary layer region. Moreover, the kinetic energy of 

the [6] scheme is bigger than the respective energy of the [3] 

scheme. It means that the [6] scheme remove more kinetic 

energy of the mean flow than the [3] scheme does. 

 
Figure 24. Turbulent kinetic energy. 

 

Figure 25 shows the turbulent vorticity profile obtained at 

the node 58, by the [3, 6] numerical schemes. As can be noted, 

the vorticity is more intense close to the wall, into the 
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boundary layer region, where it is formed. The intensity of the 

vorticity is of the order of 107 unities, indicating strong 

vorticity interaction in this region. Note that the vorticity is a 

maximum close to the wall. 

 
Figure 25. Turbulent vorticity. 

 

Figure 26 presents the u velocity profile, calculated at node 

58, obtained by both numerical schemes. Both solutions agree 

in qualitative and quantitative terms and both reaches the 

boundary layer edge at the same Y position. The u profile 

presents a reverse flow close to y = 0.0 and characterizes as 

turbulent profile because of the large width close to the wall 

and a linear behavior approaching the boundary edge. 

 
Figure 26. u profile. 

C. Turbulent Solutions – Alternated Sense Mesh 

Generation 

A detail of the employed mesh in the present study generated 

by the AS process is shown below, in Fig. 27. 

 Figures 28 and 29 exhibit the pressure contours obtained by 

[3, 6] numerical algorithms, in the re-entry capsule problem, as 

[43] is employed. The most severe pressure field is obtained 

by the [3] scheme, characterizing this one as more 

conservative for this AS case. 

 
Figure 27. Re-entry capsule mesh (AS case). 

 
Figure 28. Pressure contours ([3]). 

 
Figure 29. Pressure contours ([6]). 

 

Figures 30 and 31 show the Mach number fields obtained by 

the [3, 6] algorithms, respectively. Both Mach number field 

are similar in quantitative terms, presenting some small 

differences in qualitative aspects. Figures 32 and 33 exhibit the 

velocity field and the streamlines generated by both schemes in 
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the AS case. The circulation bubbles formed at the boundary 

layer region due to flow detachment present better symmetry 

properties than in the SS case. Again, such mesh orientation 

generation process provides better characteristics to the 

numerical schemes, allowing a more appropriated capture of 

non-linear flow aspects. 

 
Figure 30. Mach number contours ([3]). 

 
Figure 31. Mach number contours ([6]). 

 
Figure 32. Velocity field ad streamlines ([3]). 

 
Figure 33. Velocity field and streamlines ([6]). 

 

 Figures 32 and 33 present the velocity field and the 

streamlines obtained by the numerical algorithms of [3, 6], 

employing the [43] turbulence model. The vortices distribution 

is symmetric in relation to the body’s symmetry axis. The 

wake is aligned with the body’s symmetry axis. The adherence 

and impermeability conditions required by the Navier-Stokes 

equations are plenty satisfied. The boundary layer separation 

and the shock wave are well captured by the numerical 

algorithms, which ratifies these ones as efficient numerical 

tools to be used in absence of a high resolution scheme. They 

are upwind schemes with good capturing properties of the flow 

discontinuity. 

 Figure 34 exhibits the –Cp distributions at wall obtained by 

the [3, 6] algorithms as using the [43] turbulence model. The 

peak of Cp is equal to 1.92, the same obtained in the SS 

simulations. The Cp plateau is also captured, as occurred in the 

SS case. Both solutions – [3, 6] – present similar behavior, not 

being possible identify one better than the other. 

 
Figure 34. –Cp distributions at wall. 

 

 Figure 35 presents the turbulent kinetic energy profile 

generated by the numerical schemes under study. There are 
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small differences between the solutions. The [6] scheme 

characterizing the flow a little more turbulent than the [3] 

scheme does. In quantitative terms, the difference is small. 

 
Figure 35. Turbulent kinetic energy. 

 

 Figure 36 shows the turbulent vorticity profile obtained by 

the [3, 6] algorithms employing the [43] turbulence model. 

The biggest value of vorticity is found close to the wall and 

assumes a dimensionless value of 5x10
7
. Far from the wall the 

vorticity is zero because there are no vortices at the far field. 

The local of great exchange of energy, due to the cascade of 

energy, is close to the wall, where the vortices are created and 

propagated, interacting among themselves. 

 
Figure 36. Turbulent vorticity. 

 

 Figure 37 exhibits the u profile. This dimensionless profile 

is typical of a turbulent flow, indicating that the present study 

is valid. A reverse flow region is identified by both algorithms 

close to the wall. The cut off behavior observed in some 

profiles is due to the mesh generation process. Note that in the 

SS case, the cut off effect is not present. It is due to the 

continuity in the ordination of the cells and neighbors. In the 

AS case this ordination is more spread out. The good solution 

aspects observed in this work, in the inviscid and turbulent 

flows, justifies such use and ratifies the affirmation done in 

[35]. 

 
Figure 37. u profile. 

D. Stagnation Pressure Estimation 

One possibility to quantitative comparison of both schemes 

and the [43] turbulence model is the determination of the 

stagnation pressure ahead of the configuration. [51] presents a 

table of normal shock wave properties in its B Appendix. This 

table permits the determination of some shock wave properties 

as function of the freestream Mach number. In front of the re-

entry capsule configuration, the shock wave presents a normal 

shock behaviour, which permits the determination of the 

stagnation pressure, behind the shock wave, from the tables 

encountered in [51]. It is possible to determine the ratio 

prpr0  from [51], where pr0 is the stagnation pressure in 

front of the configuration and pr is the freestream pressure 

(equals to 1/ with the present dimensionless). Hence, to the 

present case one has prpr0  = 104.80, resulting in pr0 = 

74.83. 

Table 3 shows the values of the stagnation pressure obtained 

by the [3, 6] to the [43] turbulence model studied in this work 

for the case M = 9.0. Errors less than 4.50% were found, 

which is not better than the results obtained in [39], for the 

same problem and the same Mach number case. 

 

Table 3 Values of stagnation pressure. 

 

Scheme Orientation pr0 Error (%) 

[3] SS 72.82 2.69 

[3] AS 72.19 3.53 

[6] SS 72.82 2.69 

[6] AS 71.50 4.45 

E. Inviscid Conclusions 

In quantitative terms the [3] scheme present the best value to 

the upper and lower shock angles of the air inlet configuration, 
characterizing such algorithm as providing accurate results to 

hypersonic flow problems, even in its first-order accuracy. As 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 418



 

 

final conclusion, the [3] algorithm is more recommended to 

perform inviscid simulations: it was better than the others 

algorithms in the studies before and in the present study. 

F. Turbulent Viscous Conclusions 

As conclusion of the turbulent viscous calculations it is 

possible to affirm that the [3] scheme is more conservative 

than the [6] scheme. The former is also more accurate in the 

determination of the stagnation pressure at the configuration 

nose. It is also possible to conclude that the [40] turbulence 

model, analyzed in [38-39], is the most robust among the 

tested models. The [41], in its four variants, presented limited 

robustness properties, but it is also as accurate as the [40] 

model is. The [42] turbulence model is an intermediate one: 

better than the [41] in terms of robustness and worse than the 

[40] in terms of accuracy. The [43] turbulence model has 

presented good performance, capturing the main aspects of the 

fluid flow, like: boundary layer detachment, vortices 

formation, pressure plateau, etc. The [43] turbulence model, 

although not so robust than the [40] model, presents the same 

characteristics of the other four turbulence models tested along 

this work. At the end of this journey, it is possible to highlight 

that the [40] model, with errors below 4.10% in the estimation 

of the stagnation pressure ahead of the re-entry capsule 

configuration, is the best one studied in this work. The AS 

mesh generation process was again the most appropriate 

choose to yield meshes of good quality, in terms of symmetry 

and in the determination of the shock wave thickness. The 

reducing in the shock wave thickness and the good distribution 

of the vortices in relation to the body’s symmetry line are 

highlighted aspects of this process and guarantees or ratifies 

such choose when treating unstructured spatial discretization. 

X. CONCLUSIONS 

In this work, fifth of this study, numerical simulations 

involving supersonic and hypersonic flows on an unstructured 

context are analysed. The [3, 6] schemes are implemented on a 

finite volume formulation, using unstructured spatial 

discretization. The algorithms are implemented in their first 

order spatial accuracy. The hypersonic air inlet problem was 

studied considering the inviscid formulation. It aims to identify 

the main aspects of the [2-4, 6] algorithms in the capture of the 

shock interference and high “cold gas” non-linear features of 

such flow regime. To the turbulent simulations, the [43] model 

is employed to solve the re-entry capsule problem. The results 

have demonstrated that the [3] algorithm yields the best results 

in terms of the prediction of the shock angles of the oblique 

shock waves in the air inlet problem and the best value of the 

stagnation pressure at the configuration nose in the re-entry 

capsule configuration. The spatially variable time step is the 

best choice to accelerate the convergence of the numerical 

schemes, as reported by [21-22]. This paper is the conclusion 

of Maciel’s works started in 2011 and treats mainly the 

influence of the turbulence model on the solution quality. 
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