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Abstract—In this work, first part of this study, the high 

resolution numerical schemes of Lax and Wendroff, of Yee, 

Warming and Harten, of Yee, and of Harten and Osher are applied to 

the solution of the Euler and Navier-Stokes equations in two-

dimensions. With the exception of the Lax and Wendroff and of the 

Yee schemes, which are symmetrical ones, all others are flux 

difference splitting algorithms. All schemes are second order accurate 

in space and first order accurate in time. The Euler and Navier-Stokes 

equations, written in a conservative and integral form, are solved, 

according to a finite volume and structured formulations. A spatially 

variable time step procedure is employed aiming to accelerate the 

convergence of the numerical schemes to the steady state condition. 

It has proved excellent gains in terms of convergence acceleration as 

reported by Maciel. The physical problems of the supersonic shock 

reflection at the wall and the supersonic flow along a compression 

corner are solved, in the inviscid case. For the viscous case, the 

supersonic flow along a compression corner is solved. In the inviscid 

case, an implicit formulation is employed to marching in time, 

whereas in the viscous case, a time splitting approach is used. The 

results have demonstrated that the Yee, Warming and Harten 

algorithm has presented the best solution in the inviscid shock 

reflection problem; the Harten and Osher algorithm, in its ENO 

version, and the Lax and Wendroff TVD algorithm, in its Van Leer 

variant, have yielded the best solutions in the inviscid compression 

corner problem; and the Lax and Wendroff TVD algorithm, in its 

Minmod1 variant, has presented the best solution in the viscous 

compression corner problem. 
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I. INTRODUCTION 

ONVENTIONAL shock capturing schemes for the solution of 

nonlinear hyperbolic conservation laws is linear and L2-

stable (stable in the L2-norm) when considered in the constant 

coefficient case ([1]). There are three major difficulties in 

using such schemes to compute discontinuous solutions of a 

nonlinear system, such as the compressible Euler equations: 

(i)  Schemes that are second (or higher) order accurate 

may produce oscillations wherever the solution is not smooth; 

(ii) Nonlinear instabilities may develop in spite of the L2-

stability in the constant coefficient case; 

(iii) The scheme may select a nonphysical solution. 

It is well known that monotone conservative difference 

schemes always converge and that their limit is the physical 

weak solution satisfying an entropy inequality. Thus monotone 

schemes are guaranteed not to have difficulties (ii) and (iii). 

However, monotone schemes are only first order accurate. 

Consequently, they produce rather crude approximations 

whenever the solution varies strongly in space or time. 

When using a second (or higher) order accurate scheme, 

some of these difficulties can be overcome by adding a hefty 

amount of numerical dissipation to the scheme. Unfortunately, 

this process brings about an irretrievable loss of information 

that exhibits itself in degraded accuracy and smeared 

discontinuities. Thus, a typical complaint about conventional 

schemes which are developed under the guidelines of linear 

theory is that they are not robust and/or not accurate enough. 

To overcome the difficulties, a new class of schemes was 

considered that is more appropriate for the computation of 

weak solutions (i.e., solutions with shocks and contact 

discontinuities) of nonlinear hyperbolic conservation laws. 

These schemes are required (a) to be total variation 

diminishing in the nonlinear scalar case and the constant 

coefficient system case ([2-3]) and (b) to be consistent with the 

conservation law and an entropy inequality ([4-5]). The first 

property guarantees that the scheme does not generate spurious 

oscillations. Schemes with this property are referred in the 

literature as total variation diminishing (TVD) schemes (or 

total variation non-increasing, TVNI, [3]). The latter property 

guarantees that the weak solutions are physical ones. Schemes 

in this class are guaranteed to avoid difficulties (i)-(iii) 

mentioned above. 

[6] has proposed a very enlightening generalized 

formulation of TVD [7] schemes. Roe’s result, in turn, is a 
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generalization of [8] work. [9] incorporated the results of [6; 

8] with minor modification to a one parameter family of 

explicit and implicit TVD schemes ([10-11]) so that a wider 

group of limiters could be represented in a general but rather 

simple form which is at the same time suitable for steady-state 

applications. The final scheme could be interpreted as a three-

point, spatially central difference explicit or implicit scheme 

which has a whole variety of more rational numerical 

dissipation terms than the classical way of handling shock-

capturing algorithms. 

[12] applied a new implicit unconditionally stable high 

resolution TVD scheme to steady state calculations. It was a 

member of a one-parameter family of explicit and implicit 

second order accurate schemes developed by [3] for the 

computation of weak solutions of one-dimensional hyperbolic 

conservation laws. The scheme was guaranteed not to generate 

spurious oscillations for a nonlinear scalar equation and a 

constant coefficient system. Numerical experiments have 

shown that the scheme not only had a fairly rapid convergence 

rate, but also generated a highly resolved approximation to the 

steady state solution.  A detailed implementation of the 

implicit scheme for the one- and two-dimensional 

compressible inviscid equations of gas dynamics was 

presented. Some numerical experiments of one- and two-

dimensional fluid flows containing shocks demonstrated the 

efficiency and accuracy of the new scheme. 

Recently, a new class of uniformly high order accurate 

essentially non-oscillatory (ENO) schemes has been developed 

by [13] and [14-16]. They presented a hierarchy of uniformly 

high order accurate schemes that generalize [17]’s scheme, its 

second order accurate MUSCL (“Monotone Upstream-

centered Schemes for Conservation Laws”) extension ([18-

19]), and the total variation diminishing schemes ([3; 20]) to 

arbitrary order of accuracy. In contrast to the earlier second 

order TVD schemes which drop to first order accuracy at local 

extrema and maintain second order accuracy in smooth 

regions, the new ENO schemes are uniformly high order 

accurate throughout, even at critical points. The ENO schemes 

use a reconstruction algorithm that is derived from a new 

interpolation technique that when applied to piecewise smooth 

data gives high order accuracy whenever the function is 

smooth but avoids a Gibbs phenomenon at discontinuities. An 

adaptive stencil of grid points is used; therefore, the resulting 

schemes are highly nonlinear even in the scalar case. 

In contrast to the earlier second order TVD schemes, which 

drop to first order accuracy at local extreme and maintain 

second order accuracy in smooth regions, the new ENO 

schemes are uniformly high order accurate throughout even at 

critical points. Theoretical results for the scalar conservation 

law and for the Euler equations of gas dynamics have been 

reported with highly accurate results. Preliminary results for 

two-dimensional problems were reported in [21]. 

[22] gives a very extensive survey of the state of the art of 

second order high resolution schemes for the Euler/Navier-

Stokes equations of gas dynamics in general coordinates for 

both ideal and equilibrium real gases. Also, excellent reviews 

on modern upwind conservative shock capturing schemes and 

upwind shock fitting schemes based on wave propagation 

property have been given by [23-24], respectively. 

Traditionally, implicit numerical methods have been praised 

for their improved stability and condemned for their large 

arithmetic operation counts ([25]). On the one hand, the slow 

convergence rate of explicit methods become they so 

unattractive to the solution of steady state problems due to the 

large number of iterations required to convergence, in spite of 

the reduced number of operation counts per time step in 

comparison with their implicit counterparts. Such problem is 

resulting from the limited stability region which such methods 

are subjected (the Courant condition). On the other hand, 

implicit schemes guarantee a larger stability region, which 

allows the use of CFL (Currant-Friedrichs-Lewis) numbers 

above 1.0, and fast convergence to steady state conditions. 

Undoubtedly, the most significant efficiency achievement for 

multidimensional implicit methods was the introduction of the 

Alternating Direction Implicit (ADI) algorithms by [26-28], 

and fractional step algorithms by [29]. ADI approximate 

factorization methods consist in approximating the Left Hand 

Side (LHS) of the numerical scheme by the product of one-

dimensional parcels, each one associated with a different 

spatial coordinate direction, which retract nearly the original 

implicit operator. These methods have been largely applied in 

the CFD (“Computational Fluid Dynamics”) community and, 

despite the fact of the error of the approximate factorization, it 

allows the use of large time steps, which results in significant 

gains in terms of convergence rate in relation to explicit 

methods. 

In the present work, the [7] TVD symmetric, the [9] TVD 

symmetric, the [12] TVD, and the [13] TVD/ENO schemes are 

implemented, on a finite volume context and using a structured 

spatial discretization, to solve the Euler and Navier-Stokes 

equations in the three-dimensional space. With the exception 

of [7; 9], all others schemes are high resolution flux difference 

splitting ones, based on the concept of Harten’s modified flux 

function. The [7; 9] TVD schemes are symmetrical ones, 

incorporating TVD properties due to the appropriated 

definition of a limited dissipation function. All schemes are 

second order accurate in space. An implicit formulation is 

employed to solve the Euler equations, whereas a time splitting 

method, an explicit method, is used to solve the Navier-Stokes 

equations. An approximate factorization in Linearized 

Nonconservative Implicit LNI form is employed by the [12-

13] schemes, whereas an approximate factorization ADI 

method is employed by the [7; 9] schemes. All algorithms are 

first order accurate in time. The algorithms are accelerated to 

the steady state solution using a spatially variable time step, 

which has demonstrated effective gains in terms of 

convergence rate ([30-31]). All schemes are applied to the 

solution of physical problems of the supersonic shock 

reflection at the wall and the supersonic flow along a 

compression corner, in the inviscid case, whereas in the 
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laminar viscous case, the supersonic flow along a compression 

corner is solved.  The results have demonstrated that the [12] 

algorithm has presented the best solution in the inviscid shock 

reflection problem; the [13] algorithm, in its ENO version, and 

the [7] TVD algorithm, in its Van Leer variant, have yielded 

the best solutions in the inviscid compression corner problem; 

and the [7] algorithm, in its Minmod1 variant, has presented 

the best solution in the viscous compression corner problem. 

II. NAVIER-STOKES EQUATIONS 

As the Euler equations can be obtained from the Navier-Stokes 

ones by disregarding the viscous vectors, only the formulation 

to the latter will be presented. The Navier-Stokes equations in 

integral conservative form, employing a finite volume 

formulation and using a structured spatial discretization, to 

two-dimensional simulations, are written as: 

 

                          0dVPV1tQ
V

 


,                     (1) 

 

where V is the cell volume, which corresponds to an 

rectangular cell in the two-dimensional space; Q is the vector 

of conserved variables; and    jFFiEEP veve


  

represents the complete flux vector in Cartesian coordinates, 

with the subscript “e” related to the inviscid contributions or 

the Euler contributions and “v” is related to the viscous 

contributions. These components of the complete flux vector, 

as well the vector of conserved variables, are defined as: 
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In these equations, the components of the viscous stress 

tensor are defined as: 

 

               yvxu32xu2 MMxx  ;                (4) 

                         xvyuMxy  ;                               (5) 

             yvxu32yv2 MMyy  .                (6) 

 

The components of the conductive heat flux vector are 

defined as follows: 

 

                          xedPrq iMx  ;                         (7) 

                          yedPrq iMy  .                         (8) 

 

The quantities that appear above are described as follows:  

is the fluid density, u and v are the Cartesian components of 

the flow velocity vector in the x and y directions, respectively; 

e is the total energy per unit volume of the fluid; p is the fluid 

static pressure; ei is the fluid internal energy, defined as: 

 

                            22
i vu5.0ee  ;                          (9) 

 

the ’s represent the components of the viscous stress tensor; 

Prd is the laminar Prandtl number, which assumed a value of 

0.72 in the present simulations; the q’s represent the 

components of the conductive heat flux; M is the fluid 

molecular viscosity;  is the ratio of specific heats at constant 

pressure and volume, respectively, which assumed a value 1.4 

to the atmospheric air; and Re is the Reynolds number of the 

viscous simulation, defined by: 

 

                                  MREFluRe  ,                          (10) 

 

where uREF is a characteristic flow velocity and l is a 

configuration characteristic length. The molecular viscosity is 

estimated by the empiric Sutherland formula: 

 

                              TS1bT 21
M  ,                      (11) 

 

where T is the absolute temperature (K), b = 1.458x10
-6

 

Kg/(m.s.K
1/2

) and S = 110.4 K, to the atmospheric air in the 

standard atmospheric conditions ([32]). The Navier-Stokes 

equations were nondimensionalized in relation to the 

freestream density, , and the freestream speed of sound, a, 

for the all problems. For the viscous compression corner 

problem it is also considered the freestream molecular 

viscosity, . To allow the solution of the matrix system of 

four equations to four unknowns described by Eq. (1), it is 

employed the state equation of perfect gases presented below: 

 

                          )vu(5.0e)1(p 22  .                (12) 

 

The total enthalpy is determined by: 

 

                                         peH .                            (13) 

III. LAX AND WENDROFF ALGORITHM 

The [7] TVD algorithm, second order accurate in space, is 

specified by the determination of the numerical flux vector at 

the (i+½,j) interface. The extension of this numerical flux to 

the (i,j+½) interface is straightforward, without any additional 

complications. 

The right and left cell volumes, as well the interface volume, 

necessary to coordinate change, following the finite volume 

formulation, which is equivalent to a generalized coordinate 

system, are defined as: 
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     j,1iR VV  , j,iL VV    and   LRint VV5.0V  ,         (14) 

 

where “R” and “L” represent right and left, respectively. The 

cell volume is defined by: 

 

        j,1ij,i1j,1ij,i1j,1ij,1i1j,1ij,1ij,ij,i yxxyxxyxx5.0V
 

        
      1j,1ij,i1j,ij,i1j,i1j,1i1j,i1j,1ij,i yxxyxxyxx5.0   , 

(15) 

 

where a computational cell, with its nodes and flux surfaces 

are defined in Fig. 1. 

 
Figure 1. Computational cell, interfaces and nodes. 

 

The area components at interface are defined by: 

SsS '
xint_x   and SsS '

yint_y  , where '
xs  and 

'
ys  are defined 

as: Sss x
'
x   and Sss y

'
y  , being   5.02

y
2
x ssS  . 

Expressions to sx and sy, which represent the Sx and Sy 

components always adopted in the positive orientation, are 

given in Tab. 1. 

 

Table 1. Normalized values of sx and sy. 

 

Surface: sx: sy: 

i,j-1/2  j,ij,1i yy     j,ij,1i xx   

i+1/2,j  j,1i1j,1i yy     1j,1ij,1i xx    

i,j+1/2  1j,1i1j,i yy     1j,i1j,1i xx    

i-1/2,j  j,i1j,i yy    j,i1j,i xx    

 

The metric terms to this generalized coordinate system are 

defined as: 

 

     intint_xx VSh  , intint_yy VSh   and intn VSh  .    (16) 

 

The calculated properties at the flux interface are obtained 

by arithmetical average or by [33] average. The [33] average 

was used in this work: 

 

        RLint  ,    LRLRRLint 1uuu  ,       (17) 

                  LRLRRLint 1vvv  ;                (18) 

              LRLRRLint 1HHH  ;         (19) 

                   2
int

2
intintint vu5.0H1a  .               (20) 

  

The eigenvalues of the Euler equations, in the  direction, to 

the convective flux are given by: 

 

        yintxintcont hvhuU  , nintcont1 haU  ,       (21) 

         cont32 U    and   nintcont4 haU  .       (22) 

  

The jumps in the conserved variables, necessary to the 

construction of the [7] TVD dissipation function, are given by: 

 

 LRint eeVe  ,  LRintV  ,       LRint uuVu  ; 

(23) 

                              LRint vvVv  .                           (24) 

 

The  vectors to the (i+½,j) interface are calculated by the 

following expressions: 

 

          bbaa5.01  , aa2  , cc3  ;           (25) 

                               bbaa5.04  ,                             (26) 

 

with: 
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                    nx
'
x hhh     and   ny

'
y hhh  .             (30) 

 

The [7] TVD dissipation function is constructed using the 

right eigenvector matrix of the Jacobian matrix in the normal 

direction to the flux face: 
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According to [9], five different limiters are implemented 

which incorporate the TVD properties to the original [7] 

scheme. The limited dissipation function Q is defined to the 

five options as: 

 

                 1r,1modminr,1modminr,rQ   ;           (32) 

                      r,r,1modminr,rQ ;                       (33) 

             rr5,0,r2,r2,2modminr,rQ ;             (34) 

         2,rMIN,1,r2MIN,0MAXr,rQ
 

                   
      12,rMIN,1,r2MIN,0MAX  ;          (35) 
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where: 

 

         l
j,2/1i

l
j,2/1i

l

j,2/1ir 

   and   l

j,2/1i
l

j,2/3i

l

j,2/1ir 

  ,     (37) 

 

“l” assuming values from 1 to 4. Equations (32) to (34) are 

referenced by these authors as Minmod1, Minmod2 and 

Minmod3, respectively. Equation (35) is referred in the CFD  

literature as the “Super Bee” limiter due to [34] and Eq. (36) is 

referred as the Van Leer limiter due to [35]. 

The [7] TVD dissipation function is finally constructed by 

the following matrix-vector product: 

 

               
j,2/1i

2
j,ij,2/1ij,2/1iLW Q1QtRD


 .        (38) 

 

The complete numerical flux vector to the (i+½,j) interface 

is described by: 

 

              )l(
LWinty

)l(
intx

)l(
int

)l(
j,2/1i D5.0VhFhEF  ,               (39) 

 

with: 

 

                     
int

)l(
ve

)l(
L

)l(
R

)l(
int EEE5.0E  ;                      (40) 

                    
int

)l(
ve

)l(
L

)l(
R

)l(
int FFF5.0F  .                         (41) 

 

The viscous vectors at the flux interface are obtained by 

arithmetical average between the primitive variables at the left 

and at the right states of the flux interface, as also arithmetical 

average of the primitive variable gradients also considering the 

left and the right states of the flux interface. 

The right-hand-side (RHS) of the [7] TVD scheme, 

necessaries to the resolution of the implicit version of this 

algorithm, is determined by: 

 

   nLW
2/1j,i

LW
2/1j,i

LW
j,2/1i

LW
j,2/1ij,ij,i

n
j,i FFFFVtLWRHS   . 

(42) 

The time integration to the viscous simulations follows the 

time splitting method, first order accurate, which divides the 

integration in two steps, each one associated with a specific 

spatial direction. In the initial step, it is possible to write for 

the  direction: 

 

 n
j,2/1i

n
j,2/1ij,ij,i

*
j,i FFVtQ   ; 

                                 
*

j,i
n

j,i
*

j,i QQQ  ;                         (43) 

 

and at the end step,  direction: 

 

 *
2/1j,i

*
2/1j,ij,ij,i

1n
j,i FFVtQ 
  ; 

                              1n
j,i

*
j,i

1n
j,i QQQ   .                      (44) 

IV. YEE, WARMING AND HARTEN ALGORITHM 

The [12] numerical algorithm, second order accurate in space, 

is specified by the determination of the numerical flux vector 

at the (i+1/2,j) interface. This scheme employs Eqs. (14-31). 

The g numerical flux function, which is a limited function to 

avoid the formation of new extrema in the solution and is 

responsible by the second order spatial precision of the 

scheme, is defined by: 

 

  ,MIN;0.0MAXsignalg l
j,2/1i

l
j,2/1il

l
j,i  

 

                
l

j,2/1i
l

j,2/1ilsignal                                     (45) 

 

where signall is equal to 1.0 if 
l

j,2/1i   0.0 and -1.0 

otherwise;    lll
l Q5.0  ; and Q, the entropy function, is 

defined as: 

 

         










flf
2
f

2
l

fll
ll

Wif,W5.0

Wif,W
WQ ,         (46) 

 

where “l” varies from 1 to 4 (two-dimensional space) and f  

assuming values between 0.1 and 0.5, being 0.2 the value 

recommended by [12]. 

The  term, responsible by artificial compressibility, which 

improves the scheme resolution in discontinuities like shock 

wave and contact discontinuities, is defined by  

 

 
















0.0if,0.0

0.0if,

l
j,2/1i

l
j,2/1i

l
j,2/1i

l
j,2/1i

l
j,2/1i

l
j,2/1i

l
j,2/1i

l
j,2/1il

j,i ; 

(47) 

 

The  parameter at the (i+1/2,j) interface, which introduces 

the artificial compressibility term in the algorithm, is given by 

the following expression: 
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                             l
j,ill 0.1  ,                              (48) 

 

in which l assumes the following values: 1 = 4 = 0.25 (non-

linear fields) and 2 = 3 = 1.0 (linear fields). The g~  function 

is defined by: 

 

                                 
l

j,il
l

j,i gg~  .                              (49) 

 

The numerical characteristic velocity, l , at the (i+1/2,j) 

interface, which is responsible by the transport of numerical 

information associated with the numerical flux function g, or 

indirectly through the g~ , is defined by: 

 

         
 










 

0.0if,0.0

0.0if,g~g~

l

lll
j,i

l
j,1i

l .             (50) 

 

Finally, the [12] dissipation function, to second order spatial 

accuracy, is constructed by the following matrix-vector 

product: 

 

          
j,2/1ij,1ij,ij,2/1ij,2/1i85/YWH QggRD


 .     (51) 

 

The numerical flux vector at the (i+1/2,j) interface is 

described by: 

 

         )l(
85/YWHinty

)l(
intx

)l(
int

)l(
j,2/1i D5.0VhFhEF  .         (52) 

 

The Equations (40-41) are employed to conclude the 

numerical flux vector of the [12] scheme and the time 

marching is performed by the implicit ADI factorization to be 

discussed in section VII. The RHS to is defined by: 

 

   nYWH
2/1j,i

YWH
2/1j,i

YWH
j,2/1i

YWH
j,2/1ij,ij,i

n
j,i FFFFVtYWHRHS   . 

(53) 

 

The time splitting method, defined by Eqs. (43-44), is 

employed to the explicit viscous simulations. 

V. YEE ALGORITHM 

The symmetric TVD scheme of [9], second order accurate in 

space, employs the Eqs. (14-37). The dissipation function to 

the [9] symmetric TVD scheme is defined as follows: 

 

               l
j,2/1i

l
j,2/1i

l
j,2/1iYee

l
j,2/1i Q1   ,        (54) 

 

with the  entropy function defined by: 

 

           










zif,2z

zif,z
z 22 , z,  scalars.       (55) 

The [9] TVD dissipation function is finally constructed by the 

following matrix-vector product: 

 

                        
j,2/1iYeej,2/1ij,2/1iYee RD


 ,                (56)  

 

The complete numerical flux vector to the (i+1/2,j) interface is 

described by: 

 

                 )l(
Yeeinty

)l(
intx

)l(
int

)l(
j,2/1i D5.0VhFhEF  ,           (57) 

 

with 
)l(

intE  and 
)l(

intF  defined according to Eqs. (40-41). The 

viscous terms are calculated in the same way as described in 

section III. 

 The right-hand-side (RHS) of the [9] TVD symmetric 

scheme, necessaries to the resolution of the implicit version of 

this algorithm, is defined by: 

 

   nYee
2/1j,i

Yee
2/1j,i

Yee
j,2/1i

Yee
j,2/1ij,ij,i

n
j,i FFFFVtYeeRHS   . 

(58) 

 

The explicit version to the viscous simulations is defined by 

Eqs. (43-44). 

VI. HARTEN AND OSHER ALGORITHM 

The [13] algorithm, second order accurate in space, employs 

Eqs. (14-31). The next step consists in constructing the 

TVD/ENO numerical flux vector. 

 Initially, it is necessary to define the  parameter at the 

(i+1/2,j) interface to calculate the numerical velocity of 

information propagation, which contributes to the second order 

spatial accuracy of the scheme: 

 

                               2
j,i ztz5.0z  ;                        (59) 

 

with (z) defined according to Eq. (55). The non-linear 

limited flux function, based on the idea of a modified flux 

function of [3], is constructed by: 

 

   
l

j,2/1i
l

j,2/1i
l

j,2/1i
l

j,2/1i
l
j,i ,,mm  

                   l
j,2/1i

l
j,2/1i ,m   ,                               (60) 

 

where the m and m limiters are defined as: 

 

     
     



 


otherwise,0

szsignalysignalif,z,yMINs
z,ym ;  (61) 

                          











zyif,z

zyif,y
z,ym ;                           (62) 

 

and the forward and backward operators are defined according 

to: 
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           j,ij,1i      and       j,1ij,i   .           (63) 

 

The numerical velocity of information propagation is 

calculated by: 

 

      




 

 


.otherwise,0

;0if, l
j,2/1i

l
j,2/1i

l
j,i

l
j,1il

j,2/1i
l

j,2/1i         (64) 

 

The dissipation function to the TVD and ENO versions of 

the [13] scheme is defined as: 

 

       l
j,2/1i

l
j,2/1i

l
j,2/1i

l
j,1i

l
j,i

l
j,2/1iHO

l
j,2/1i   ,  (65) 

 

with: “l” assuming values from 1 to 4 (two-dimensional space), 

 assuming the value 0.2 recommended by [13],  is the 

entropy function to guarantee that only relevant physical 

solutions are admissible, and  assumes the value 0.0 to obtain 

the TVD scheme of [3], second order accurate, and 0.5 to 

obtain the essentially non-oscillatory scheme, uniform second 

order accuracy in the field, of [13]. 

Finally, the dissipation operator of [13], to second order of 

spatial accuracy, in its TVD and ENO versions, is constructed 

by the following matrix-vector product: 

 

                   
j,2/1iHOj,2/1ij,2/1iHO RD


 .                  (66) 

 

The complete numerical flux vector to the (i+1/2,j) interface 

is described by: 

 

            )l(
HOinty

)l(
intx

)l(
int

)l(
j,2/1i D5.0VhFhEF  ,             (67) 

 

with 
)l(

intE  and 
)l(

intF  defined according to Eqs. (40-41). The 

viscous terms are calculated in the same way as described in 

section III. 

The RHS of the [13] algorithm, necessaries to the resolution 

of the implicit version of this scheme, is determined by: 

 

   nHO
2/1j,i

HO
2/1j,i

HO
j,2/1i

HO
j,2/1ij,ij,i

n
j,i FFFFVtHORHS   . 

(68) 

  

The explicit version to the viscous simulations employs a 

time splitting method, first order accurate in time, which 

divides the integration in two parts, each one associated with a 

specific spatial direction. This explicit version is defined by 

Eqs. (43-44). 

VII. IMPLICIT FORMULATIONS 

All schemes tested in this work employed an ADI formulation 

to solve the system of non-linear algebraic equations. Initially, 

the system of non-linear equations is linearized considering the 

implicit operator evaluated at time “n” and, posteriorly, the 

five-diagonal system of linear algebraic equations is factored 

in two systems of three-diagonal linear algebraic equations, 

each one associated with a particular spatial direction. The 

Thomas algorithm is employed to solve the two three-diagonal 

systems. The implicit formulation is employed to solve only 

the Euler equations, which implies that only the convective 

flux contributions are taken into account. 

 All implemented schemes used the backward Euler method 

and an ADI or LNI approximate factorization to solve the 

three-diagonal system in each direction. 

A. Implicit Scheme to the TVD symmetric algorithms of 

[7] and [9] 

An ADI form of the implicit TVD symmetric algorithms of [7] 

and [9] is represented by: 

 

             n j,i
*

j,1i3
*

j,i2
*

j,1i1 RHSQEQEQE   ,          (69) 

 

to the   direction; 

 

             
*

j,i
1n
1j,i3

1n
j,i2

1n
1j,i1 QQFQFQF  




 ,               (70) 

 

to the  direction; 

 

                             
1n

j,i
n

j,i
1n

j,i QQQ   ,                             (71) 

 

where: 

 

                  nj,2/1ij,2/1i

j,i

1 KA
2

t
E  


 ;                    (72) 

                nj,2/1ij,2/1i

j,i

2 KK
2

t
IE  


 ;                    (73) 

                  nj,2/1ij,2/1i

j,i

3 KA
2

t
E  


 ;                       (74) 

                  n2/1j,i2/1j,i

j,i

1 JB
2

t
F  


 ;                       (75) 

                  n2/1j,i2/1j,i

j,i

2 JJ
2

t
IF  


 ;                      (76) 

                     n2/1j,i2/1j,i

j,i

3 JB
2

t
F  


 ;                       (77) 

                n j,2/1i
1n

j,2/1i

ln
j,2/1i

n
j,2/1i RdiagRA 



  ;         (78) 

                 n 2/1j,i
1n

2/1j,i

ln
2/1j,i

n
2/1j,i RdiagRB 



  ;          (79) 

                       n j,2/1i
1n

j,2/1i
n

j,2/1i
n

j,2/1i RRK 


  ;                 (80) 

                       n 2/1j,i
1n

2/1j,i
n

2/1j,i
n

2/1j,i RRJ 


  ;                (81) 

                            n
j,2/1i

ln
j,2/1i diag

  ;                      (82) 

                            n
2/1j,i

ln
2/1j,i diag

  .                     (83) 
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In Equations (78-79), the R matrix is defined by Eq. (31) 

applied to each coordinate direction and 1R   is defined by 

Eq. (84) also applied to each coordinate direction; in Eqs. (78-

79) and (82-83), “l” assumes values from 1 to 4 (two-

dimensional space); and the interface properties are calculated 

by the [33] average. The RHS operator is defined by Eq. (42) 

if the [7] algorithm is solved and by Eq. (58) if the [9] 

algorithm is solved. 

 

   

 

 
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a

h
u

a
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2
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, (84) 

 

with '
xh  and 

'
yh  defined according to Eq. (30). 

 This implementation is first order accurate in time due to the 

 and  definitions, as reported by [9]. The  parameter 

defines the time integration method to be employed. A 0.0 

value to this parameter results in the Euler explicit method; the 

value 0.5 implies in the trapezoidal method; and the value 1.0 

results in the backward Euler method. In the present study, the 

backward Euler method was used. During the iterative process 

and at the steady state conditions, this implementation results, 

due to the employed non-linear limiters, in second order TVD 

algorithms. 

B. Implicit Scheme to the TVD and ENO algorithms of [12] 

and [13] 

In the flux difference splitting cases, the [12-13] algorithms, a 

Linearized Nonconservative Implicit form is applied which, 

although the resulting schemes lose the conservative property, 

they preserve their unconditional TVD properties. Moreover, 

the LNI form is mainly useful to steady state problems where 

the conservative property is recovery by these schemes in this 

condition. This LNI form was proposed by [12]. 

 The LNI form is defined by the following two step 

algorithm: 

 

   n j,i
*

j,ij,2/1ij,2/1ij,ij,2/1ij,2/1ij,i RHSQJtJtI  




 , in 

the  direction;                                                                     (85) 

 

  *
j,i

1n
j,i2/1j,i2/1j,ij,i2/1j,i2/1j,ij,i QQKtKtI  






 , in 

the  direction;                                                                    (86) 

 

                              1n
j,i

n
j,i

1n
j,i QQQ   ,                            (87) 

 

where RHS is defined by Eq. (53), if the [12] scheme is being 

solved, or (68), if the [13] scheme is being solved. The 

difference operators are defined as: 

 

      j,ij,1ij,2/1i   ,       j,1ij,ij,2/1i   ; 

                 j,i1j,i2/1j,i   ,       1j,ij,i2/1j,i   ;    (88) 

 

As aforementioned, this three-diagonal linear system, 

composed of a 4x4 block matrices, is solved using LU 

decomposition and the Thomas algorithm, defined by a block 

matrix system. 

 The separated matrices J
+
, J

-
, K

+
 and K

-
 are defined as 

follows: 

 

             1RDdiagRJ 





  ,   1RDdiagRJ 





  ,         (89) 

           1RDdiagRK 





  ,   1RDdiagRK 





  ,         (90) 

 

in which the R and R matrices are defined by Eq. (31) 

applied to the respective coordinate; and 
1R 

  and 
1R 

  

defined by Eq. (84) applied to the respective coordinate 

direction. 

 The diagonal matrices of the [12-13] schemes are 

determined by: 

 

 






































,
5

,
4

,
3

,
2

,
1

D

D

D

D

D

Ddiag  and 

          






































,
5

,
4

,
3

,
2

,
1

D

D

D

D

D

Ddiag         (91) 

 

with the D terms expressed as 

 

    llll5,0D 

   

                            llll5,0D 

  ,              (92) 

 

where: 

 

 defined by Eq. (55); 

  

  
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 l
  and 

l
  are the eigenvalues of the Euler equations, 

determined by Eqs. (21-22), in each coordinate direction;  

  
       

 















 








0.0if,0.0

0.0if,gg

j,2/1i

l

j,2/1i

l

j,2/1i

ll

j,i

'l

j,1i

'

j,2/1i

l ;        (93) 

  
       

 















 








0.0if,0.0

0.0if,gg

2/1j,i

l

2/1j,i

l

2/1j,i

ll

j,i

'l

1j,i

'

2/1j,i

l ;        (94) 

    






 
 ,MIN,0.0MAXsignalg

j,2/1i

ll
j,2/1i

ll

j,i

'
 

                 
j,2/1i

ll
j,2/1i

lsignal
  ;                               (95) 

    

    






 
 ,MIN,0.0MAXsignalg

2/1j,i

ll
2/1j,i

ll

j,i

'
 

                 
2/1j,i

ll
2/1j,i

lsignal
  ;                               (96) 

  lll 21   to steady state simulations. (97) 

  

 Finally, 
lsignal   = 1.0 if   0.0

j,2/1i

l 
  and -1.0 

otherwise; 
lsignal  = 1.0 if   0.0

2/1j,i

l 
  and -1.0 

otherwise. 

 This implicit formulation to the LHS of the TVD scheme of 

[12] and TVD/ENO scheme of [13] is second order accurate in 

space and first order accurate in time due to the presence of 

the characteristic numerical speed  associated with the 

numerical flux function g’. In this case, the algorithms 

accuracy is definitely second order in space because both LHS 

and RHS are second order accurate. 

 It is important to emphasize that the RHS of the flux 

difference splitting implicit schemes present steady state 

solutions which depend of the time step.  

 With this behavior, the use of large time steps can affect the 

stationary solutions, as mentioned in [36]. This is an initial 

study with implicit schemes and improvements in the 

numerical implementation of these algorithms with steady state 

solutions independent of the time step is a goal to be reached 

in future work of both authors. 

VIII. SPATIALLY VARIABLE TIME STEP 

 The basic idea of this procedure consists in keeping constant 

the CFL number in all calculation domain, allowing, hence, the 

use of appropriated time steps to each specific mesh region 

during the convergence process. 

  In this work were used two types of time step: one to 

convective flow (Euler equations) and the other to convective 

plus diffusive flow (Navier-Stokes equations). They are 

defined as follows: 

A. Convective Time Step 

 According to the definition of the CFL number, it is 

possible to write: 

                           j,ij,ij,i csCFLt  ,                           (98) 

  

where CFL is the “Courant-Friedrichs-Lewy” number to 

provide numerical stability to the scheme; 

  j,i

5.022
j,i avuc






   is the maximum characteristic 

speed of information propagation in the calculation domain; 

and   j,is  is a characteristic length of information transport. 

On a finite volume context,   j,is  is chosen as the minor 

value found between the minor centroid distance, involving the 

(i,j) cell and a neighbor, and the minor cell side length. 

B. Convective + Diffusive Time Step 

 In this model, the time step is defined according to the [42] 

model: 

                       
 

j,ivc

vc
j,i

tt

ttCFL
t 

















 ,                         (99) 

  

with tc being the convective time step and tv being the 

viscous time step. These quantities are defined as: 

 

                              
 

j,ic

j,i

j,ic

V
t


 ;                              (100) 

              max
j,2/1i

max
2/1j,i

max
j,2/1i

max
2/1j,ij,ic ,,,MAX   ;     (101) 

                      intintyintxintint
max Sanvnu  ;         (102) 

                                
 

j,iv

j,i

vj,iv

V
Kt


 ;                      (103) 

                               
  j,iL

2/3

j,i
VdPrRe

M
1p 

 ;                     (104) 

  2
j,2/1i

j,2/1i

M2
2/1j,i

2/1j,i

M2
j,2/1i

j,2/1i

M2
2/1j,i

2/1j,i

M

j,i SSSS2p
j,2/1i2/1j,ij,2/1i2/1j,i















 




















; 

 (105) 

                                      j,ij,iv 2p1p  ,                     (106) 

  

where the interface properties are calculated by arithmetical 

average, M is the freestream Mach number and Kv is equal to 

0.25, according to [42]. 

IX. INITIAL AND BOUNDARY CONDITIONS 

A. Initial Condition 

To the physical problems studied in this work, freestream 

flow values are adopted for all properties as initial condition, 

in the whole calculation domain ([37-38]). Therefore, the 

vector of conserved variables is defined as: 

     

T

2
j,i M5.0

)1(

1
sinMcosM1Q












  ,    (107) 

being  the flow attack angle. 
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B. Boundary Conditions 

The boundary conditions are basically of three types: solid 

wall, entrance and exit. The far field condition is a case of 

entrance and exit frontiers. These conditions are implemented 

in special cells named ghost cells. 

 

(a) Wall condition: This condition imposes the flow tangency 

at the solid wall. This condition is satisfied considering the 

wall tangent velocity component of the ghost volume as equals 

to the respective velocity component of its real neighbor cell. 

At the same way, the wall normal velocity component of the 

ghost cell is equaled in value, but with opposite signal, to the 

respective velocity component of the real neighbor cell. It 

results in: 

 

                        
22

x yxyn  ;                        (108) 

                        22
y yxxn  ;                     (109) 

 

where, for the (i+1/2,j) interface: 

 

                            j,1i1j,1i xxx   ;                         (110) 

                            j,1i1j,1i yyy   .                         (111) 

 

Hence, the ghost cell velocity components are written as: 

 

                        ryxr
2
x

2
yg vnn2unnu  ;                (112) 

                        r
2
x

2
yryxg vnnunn2v  ,              (113) 

 

with “g” related with ghost cell and “r” related with real cell. 

To the viscous case, the boundary condition imposes that the 

ghost cell velocity components be equal to the real cell 

velocity components, with the negative signal: 

 

                                    rg uu  ;                                  (114) 

                                    rg vv  .                                  (115) 

 

The pressure gradient normal to the wall is assumed be 

equal to zero, following an inviscid formulation and according 

to the boundary layer theory. The same hypothesis is applied 

to the temperature gradient normal to the wall, considering 

adiabatic wall. The ghost volume density and pressure are 

extrapolated from the respective values of the real neighbor 

volume (zero order extrapolation), with these two conditions. 

The total energy is obtained by the state equation of a perfect 

gas. 

 

(b) Entrance condition: 

(b.1) Subsonic flow: Three properties are specified and one is 

extrapolated, based on analysis of information propagation 

along characteristic directions in the calculation domain ([38]). 

In other words, three characteristic directions of information 

propagation point inward the computational domain and 

should be specified. Only the characteristic direction 

associated to the “(qn-a)” velocity cannot be specified and 

should be determined by interior information of the calculation 

domain. The pressure was the extrapolated variable from the 

real neighbor volume, to the studied problems. Density and 

velocity components had their values determined by the 

freestream flow properties. The total energy per unity fluid 

volume is determined by the state equation of a perfect gas. 

(b.2) Supersonic flow: All variables are fixed with their 

freestream flow values. 

 

(c) Exit condition: 

(c.1) Subsonic flow: Three characteristic directions of 

information propagation point outward the computational 

domain and should be extrapolated from interior information 

([38]). The characteristic direction associated to the “(qn-a)” 

velocity should be specified because it penetrates the 

calculation domain. In this case, the ghost volume’s pressure is 

specified by its freestream value. Density and velocity 

components are extrapolated and the total energy is obtained 

by the state equation of a perfect gas. 

(c.2) Supersonic flow: All variables are extrapolated from the 

interior domain due to the fact that all four characteristic 

directions of information propagation of the Euler equations 

point outward the calculation domain and, with it, nothing can 

be fixed. 

X. RESULTS 

Tests were performed in a personal computer (notebook) with 

Pentium dual core processor of 2.20GHz of clock and 

2.0Gbytes of RAM memory. Converged results occurred to 3 

orders of reduction in the value of the maximum residual. The 

maximum residual is defined as the maximum value obtained 

from the discretized conservation equations. The value used to 

 was 1.4. To all problems, the attack or entrance angle was 

adopted equal to 0.0. 

 The physical problems to be studied are the shock 

impinging a wall, causing a reflection effect; and the 

supersonic flow along a compression corner, in both inviscid 

and viscous cases. 

A. Shock Reflection Problem - Inviscid 

The first problem to be studied is the shock reflection problem. 

It was suggested by [36] and is described by an oblique shock 

wave impinging a wall and reflecting in direction to the far 

field. Figure 2 exhibits the computational domain. 

 

 
Figure 2. Computational domain to the reflection shock problem. 
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Figure 3. Mesh configuration (61x21). 

 

 Figure 3 shows the mesh configuration to this problem. It is 

composed of 1,200 cells and 1,281 nodes or in a finite 

difference representation 61x21 points. 

 

 
Figure 4. Sketch of the shock reflection solution. 

 
Figure 5. Pressure coefficient distribution at y = 0.5m. 

 

 The physical problem presents an oblique shock wave 

generated at the far field, with shock angle β of 29º, impinging 

a wall. After the interaction with the wall, the reflected shock 

is directed to the far field. The freestream Mach number to this 

simulation is 2.9, a moderate supersonic flow. 

The analytical solution, in terms of pressure contour lines as 

well in terms of pressure coefficient, is presented and serves as 

numerical comparison. The sketch of the pressure contour 

lines and the pressure coefficient distribution at y = 0.5m are 

presented in Figs. 4 and 5, respectively. 

 

 
Figure 6. Pressure contours ([7]-Minmod1). 

 
Figure 7. Pressure contours ([7]-Minmod2). 

 
Figure 8. Pressure contours ([7]-Minmod3). 

 
 Figures 6 to 10 present the pressure contours obtained by 

the [7] scheme in its variants, namely: Minmod1, Minmod2, 

Minmod3, Super Bee, and Van Leer, respectively. All 

solutions match the analytical one, except at the intermediary 
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region between incident and reflected shocks. All versions of 

the [7] scheme yield a percentage error of 1.84%. As can also 

be observed in all figures, the thickness of the incident and 

reflected shock waves is thick, which indicates an excessive 

amount of dissipation. 

 
Figure 9. Pressure contours ([7]-Super Bee). 

 
Figure 10. Pressure contours ([7]-Van Leer). 

 
Figure 11. Pressure contours ([12]). 

 

As can also be noted, the solutions are free of oscillations, 

even the “Super Bee” limiter, which presents the typical 

behavior of yielding oscillations in the solution (“Gibbs 

phenomenon”). Thick incident and reflected shock waves are 

found in the [7] algorithm solutions. The exception is the result 

obtained with the “Super Bee” limiter, which yields a sharp 

shock wave definition. 

Figure 11 shows the pressure distribution resulting from the 

incident and reflected shock waves, obtained by the [12] 

algorithm. As observed, some pressure oscillations are present 

in this solution. 

 
Figure 12. Pressure contours ([9]-Minmod1). 

 
Figure 13. Pressure contours ([9]-Minmod2). 

 

However, the numerical result agrees well with the analytical 

one. Again, the intermediate region between shock waves 

differs from the same region in the analytical solution. The 

error committed was of 1.84%. The [12] algorithm also 

presents the lowest thickness as comparing with the other 

solutions. 

 In Figures 12 to 16 are presented the solutions to the [9] 

scheme, in its five versions, namely: Minmod1, Minmod2, 

Minmod3, “Super Bee”, and Van Leer. These figures also 

present thick incident and reflected shock waves, but is less 
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amount than the [7] solutions. All solutions of [9] present 

oscillations in the pressure field. The solution obtained by the 

“Super Bee” limiter is the worse in relation to the other 

solutions of this scheme. 

 
Figure 14. Pressure contours ([9]-Minmod3). 

 
Figure 15. Pressure contours ([9]-Super Bee). 

 
Figure 16. Pressure contours ([9]-Van Leer). 

 

 Figure 17 exhibits the pressure contours obtained by the 

[13] scheme in its TVD variant. The solution is free of 

oscillations and the incident and reflected shock are well 

captured by the scheme. Again, both shock waves present thick 

widths, but in less amount than the [7] scheme. The error in the 

intermediary region between shock waves is again 1.84%. 

Figure 18 shows the pressure contours obtained by the [13] 

scheme in its ENO variant. Again the solution is free of 

oscillations and the incident and reflected shock waves are 

well captured. Moreover, the shocks widths are thick, but in 

less amount than in the [7] algorithm. The error in the 

intermediary region between shock waves, an error found in all 

solutions of the four schemes, is about 1.84%. In other words, 

all schemes present the same deficiency in determine the 

constant pressure value at the intermediary region. 

 
Figure 17. Pressure contours ([13]-TVD). 

 
Figure 18. Pressure contours ([13]-ENO). 

 

The Cp distributions at y = 0.5m are exhibited in Fig. 19 to 

22. In Figure 19 is shown the solutions obtained by the five 

versions of the [7] TVD scheme. In Figure 20 is exhibited the 

solutions obtained by the five versions of the [9] TVD 

symmetric scheme. In Figure 21 is shown the solutions 

obtained by the two versions of the [13] algorithm. The 
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reference solution in each case is separated and plotted again 

in Fig. 22 to determine the best solution. 

 
Figure 19. Cp distributions ([7]). 

 
Figure 20. Cp distributions ([9]). 

 
Figure 21. Cp distributions ([13]). 

 

From Figure 19, the reference solution to the [7] scheme is 

that obtained with the “Super Bee” limiter. From Figure 20, 

the reference solution to the [9] scheme is that obtained with 

the “Minmod2” limiter. From Figure 21, the reference solution 

to the [13] scheme is that obtained with the ENO procedure. 

These reference solutions of each algorithm, together with the 

solution obtained from [12] algorithm, are plotted in Fig. 22 to 

choose the best one. 

 Figure 22 compares the four reference solutions to 

determine the best among them. As observed, the [12] scheme 

exhibits the best solution capturing the shock profile closest to 

the analytical solution. 

 
Figure 22. Choosing the best solution. 

B. Compression Corner Problem - Inviscid 

The compression corner configuration is described in Fig. 23. 

The corner inclination angle is 10o. An algebraic mesh of 

70x50 points or composed of 3,381 rectangular cells and 3,500 

nodes was used and is shown in Fig. 24. The points are equally 

spaced in both directions. 

 
Figure 23. Computational domain to the compression corner problem. 

 
Figure 24. Mesh configuration (70x50). 
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This problem consists in a moderate supersonic flow 

impinging a compression corner, where an oblique shock wave 

is generated. The freestream Mach number is equal to 3.0. The 

solutions are compared with the oblique shock wave theory 

results. 

 
Figure 25. Pressure contours ([7]-Minmod1). 

 
Figure 26. Pressure contours ([7]-Minmod2). 

 
Figure 27. Pressure contours ([7]-Minmod3). 

 
Figure 28. Pressure contours ([7]-Super Bee). 

 
Figure 29. Pressure contours ([7]-Van Leer). 

 
Figure 30. Pressure contours ([12]). 

 

Figures 25 to 29 exhibit the pressure contours obtained by 

the [7] scheme, in its five variants. The most intense pressure 

field is due to the “Super Bee” solution. All solutions are of 

good quality, without pressure oscillations. The “Gibbs” 

phenomenon is not perceived in the “Super Bee” solution. 
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Figure 30 presents the pressure contours obtained by the 

[12] algorithm. A pressure peak is observed at the corner 

beginning and is apparent in the wall pressure distributions 

(Fig. 41). It damages the solution quality of this scheme. 

 
Figure 31. Pressure contours ([9]-Minmod1). 

 
Figure 32. Pressure contours ([9]-Minmod2). 

 
Figure 33. Pressure contours ([9]-Minmod3). 

 
Figure 34. Pressure contours ([9]-Super Bee). 

 
Figure 35. Pressure contours ([9]-Van Leer). 

 
Figure 36. Pressure contours ([13]-TVD). 

 

Figures 31 to 35 show the pressure contours obtained by the 

[9] algorithm in its five variants. As can be observed, with the 

exception of the solutions generated by Minmod1 and 

Minmod2, all others present pressure peak at the corner 

beginning. The solution generated by the “Super Bee” limiter 
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is the worse. 

Finally, Figures 36 and 37 exhibit the pressure contours to 

the solutions obtained by the TVD and ENO schemes of [13], 

respectively. Both solutions are of good quality, without 

pressures peaks or oscillations. 

 
Figure 37. Pressure contours ([13]-ENO). 

 
Figure 38. Pressure distributions along the compression corner ([7]). 

 
Figure 39. Pressure distributions along the compression corner ([9]). 

 
Figure 40. Pressure distributions along the compression corner ([13]). 

 

Figure 38 presents the wall pressure distributions obtained 

by [7], in its five variants, along the compression corner. They 

are compared with the oblique shock wave theory results. The 

reference solution is due to the “Super Bee” limiter. Figure 39 

exhibits the wall pressure distributions obtained by [9], also in 

its five versions, along the compression corner. The reference 

solution is that due to the Minmod2 limiter. Figure 40 shows 

the wall pressure distributions resulting from [13] scheme. The 

solution obtained by the ENO procedure is the reference one 

to the [13] scheme. 

Figure 41 exhibits the reference wall pressure solution of 

each scheme. They are compared with the oblique shock wave 

theory results and with themselves. The best distribution was 

due to the [9] scheme using the Minmod2 limiter. In this 

figure, with the exception of the [12] solution, all other 

solutions capture the shock discontinuity using three (3) cells, 

which is a good behavior for a high resolution scheme. The 

shock profile, again except the [12] solution, is monotonic, 

without pressure peaks. 

 
Figure 41. Pressure distributions along the compression corner (the best). 

 

One way to quantitatively verify if the solutions generated 

by each scheme are satisfactory consists in determining the 
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shock angle of the oblique shock wave, , measured in relation 

to the initial direction of the flow field. [39] (pages 352 and 

353) presents a diagram with values of the shock angle, , to 

oblique shock waves. The value of this angle is determined as 

function of the freestream Mach number and of the deflection 

angle of the flow after the shock wave, . To the compression 

corner problem,  = 10º (ramp inclination angle) and the 

freestream Mach number is 3.0, resulting from this diagram a 

value to  equals to 27.5º. Using a transfer in Figures 25 to 37, 

it is possible to obtain the values of  to each scheme, as well 

the respective errors, shown in Tab. 2. As can be observed, the 

[7], in its Van Leer variant, and [13], in its ENO version, 

second order schemes have yielded the best results. Errors less 

than 2.00% were observed in all solutions. 

 

Table 2. Shock angle and percentage errors. 

 

Algotithm  () Error (%) 

[7] – Minmod1 28.0 1.82 

[7] – Minmod2 27.7 0.73 

[7] – Minmod3 28.0 1.82 

[7] – Super Bee 27.0 1.82 

[7] – Van Leer 27.5 0.00 

[12] 27.3 0.73 

[9] – Minmod1 27.0 1.82 

[9] – Minmod2 28.0 1.82 

[9] – Minmod3 27.3 0.73 

[9] – Super Bee 27.9 1.45 

[9] – Van Leer 28.0 1.82 

[13] - TVD 27.4 0.36 

[13] - ENO 27.5 0.00 

C. Compression Corner Problem - Viscous 

To the viscous case, it was chosen the compression corner 

problem again. The computational domain and the mesh 

configuration are described in Figs. 42 and 43, respectively. 

The mesh is composed of 7,761 rectangular cells and 8,000 

nodes on a finite volume context (equivalent to a mesh of 

200x40 points in finite differences). Only the [7] and [9] 

algorithms yielded converged results, in their variants. 

In this viscous problem, the flow is compressed at the corner 

region and a detached boundary layer is characterized. A 

circulation bubble is formed at this region. The points of 

detachment and reattachment are, respectively, 0.9m and 

1.10m. 

 

 
Figure 42. Computational domain to the problem of the 

compression corner for viscous simulation. 

 

The initial condition to this problem considers a freestream 

Mach number of 3.0. The Reynolds number was estimated in 

1.688x10
4
, according to [32], considering the characteristic 

length of 0.00305m and an altitude of 20,000m. 

Figures 44 to 48 show the velocity vector field and the 

streamlines characterizing the circulation bubble at the corner 

region. These solutions were obtained by the [7] scheme using 

Minmod1, Minmod2, Minmod3, “Super Bee” and Van Leer 

limiters, respectively. 

 
Figure 43. Mesh configuration (200x40). 

 
Figure 44. Boundary layer separation and circulation bubble 

formation ([7]-Minmod1). 

 
Figure 45. Boundary layer separation and circulation bubble 

formation ([7]-Minmod2). 
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Figure 46. Boundary layer separation and circulation bubble 

formation ([7]-Minmod3). 

 
Figure 47. Boundary layer separation and circulation bubble 

formation ([7]-Super Bee). 

 
Figure 48. Boundary layer separation and circulation bubble 

formation ([7]-Van Leer). 

 

Figures 49 to 53 exhibit the skin friction coefficient 

distribution along the wall obtained by scheme [7] in its 

Minmod1, Minmod2, Minmod3, “Super Bee” and Van Leer 

variants, respectively. 

 
Figure 49. Skin friction coefficient distribution at wall ([7]-Minmod1). 

 
Figure 50. Skin friction coefficient distribution at wall ([7]-Minmod2). 

 
Figure 51. Skin friction coefficient distribution at wall ([7]-Minmod3). 

 

The points where the skin friction coefficient distribution 

intersects the x axis define de points of detachment and 

reattachment. For all figures, the point of detachment is less 
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than or equal to 0.8m and the point of reattachment is 1.4m. 

 
Figure 52. Skin friction coefficient distribution at wall ([7]-Super Bee). 

 
Figure 53. Skin friction coefficient distribution at wall ([7]-Van Leer). 

 
Figure 54. Wall pressure distributions ([7]). 

 

Figure 54 shows the pressure distributions obtained by the 

[7] scheme in its five variants, namely: Minmod1, Minmod2, 

Minmod3, “Super Bee” and Van Leer. They are compared 

with the numerical results of [41] and the experimental results 

of [40]. As can be observed, the reference solution to the [7] 

algorithm is obtained as using the Minmod1 limiter. It is also 

possible to note that, after the compression corner, the 

numerical solutions of [7] scheme, in its five variants, present 

good agreement with the numerical and experimental results of 

[41] and [40], respectively. 

 
Figure 55. Boundary layer separation and circulation bubble 

formation ([9]-Minmod1). 

 
Figure 56. Boundary layer formation ([9]-Minmod2). 

 
Figure 57. Boundary layer separation and circulation bubble 

formation ([9]-Minmod3). 
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Figure 58. Boundary layer separation and circulation bubble 

formation ([9]-Van Leer). 

 
Figure 59. Skin friction coefficient distribution at wall ([9]-Minmod1). 

 
Figure 60. Skin friction coefficient distribution at wall ([9]-Minmod2). 

 

Figures 59 to 62 presents the sketch of the skin friction 

distribution at wall obtained by the [9] scheme using 

Minmod1, Minmod2, Minmod3 and Van Leer limiters, 

respectively. As observed, the boundary layer separation 

detaches at less than or equal to x = 0.88m and reattaches at x 

= 1,12m, the closest values in relation to the real points of 

separation. The exception is the Minmod2 limiter solution, 

where the boundary layer did not separate. 

 
Figure 61. Skin friction coefficient distribution at wall ([9]-Minmod3). 

 
Figure 62. Skin friction coefficient distribution at wall ([9]-Van Leer). 

 
Figure 63. Wall pressure distributions ([9]). 

 

Figure 63 exhibits the wall pressure distribution obtained by 

the [9] in its four variants. The “Super Bee” limiter did not 

yield converged results. They are compared with the numerical 

results of [41] and the experimental results of [40]. As can be 
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observed, the reasonable solution is obtained by the [9] 

scheme using Minmod1 limiter. As comparing with the [7] 

solutions, it is clear that the latter presents best behavior and 

solutions closest with the references. 

Hence, it is possible to conclude that for the laminar viscous 

results, the [7] scheme, in its Minmod1 version, provides the 

best solution. 

XI. CONCLUSIONS 

In the present work, the [7] TVD symmetric, the [9] TVD 

symmetric, the [12] TVD, and the [13] TVD/ENO schemes are 

implemented, on a finite volume context and using a structured 

spatial discretization, to solve the Euler and Navier-Stokes 

equations in the three-dimensional space. With the exception 

of [7; 9], all others schemes are high resolution flux difference 

splitting ones, based on the concept of Harten’s modified flux 

function. The [7; 9] TVD schemes are symmetric ones, 

incorporating TVD properties due to the appropriated 

definition of a limited dissipation function. All schemes are 

second order accurate in space. An implicit formulation is 

employed to solve the Euler equations, whereas a time splitting 

method, an explicit method, is used to solve the Navier-Stokes 

equations. An approximate factorization in Linearized 

Nonconservative Implicit LNI form is employed by the [12-

13] schemes, whereas an approximate factorization ADI 

method is employed by the [7; 9] schemes. All algorithms are 

first order accurate in time. The algorithms are accelerated to 

the steady state solution using a spatially variable time step, 

which has demonstrated effective gains in terms of 

convergence rate ([30-31]). All schemes are applied to the 

solution of physical problems of the supersonic shock 

reflection at the wall and the supersonic flow along a 

compression corner, in the inviscid case, whereas in the 

laminar viscous case, the supersonic flow along a compression 

corner is again solved. 

The results have demonstrated that the [12] algorithm has 

presented the best solution in the inviscid shock reflection 

problem; the [13] algorithm, in its ENO version, and the [7] 

TVD algorithm, in its Van Leer variant, have yielded the best 

solutions in the inviscid compression corner problem; and the 

[7] algorithm, in its Minmod1 variant, has presented the best 

solution in the viscous compression corner problem. 
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