
 

 

  
Abstract—This paper outlines the issues of Linear Matrix 

Inequalities (LMIs) and semidefinite programming with emphasis on 
their wide application potential in the field of automatic control. It 
presents the history and basic theory of LMIs, briefly introduces their 
possible solution by means of convex optimization, and overviews 
the selected problems from the control theory viewpoint. The final 
part of the work deals with the most popular LMI software solvers. 
 
Keywords—Linear Matrix Inequalities, Semidefinite 

Programming, Convex Optimization, Control Theory.  

I. INTRODUCTION 
INEAR Matrix Inequalities (LMIs) represent elegant and 
effective tool for solving many optimization problems in 

the area of system and control theory, identification, and 
signal processing. Even though historically first LMI 
introduced Lyapunov as early as in about 1890, they have 
become popular not until the last decades when true “LMI-
boom” has exploded – see just several examples in [1]–[4]. 

From the control point of view, the potential LMI usage is 
really wide and it includes various problems starting e.g. from 
stability analysis, going through 2H  and H∞  issues, up to the 
synthesis of robust state-feedback, and many more as will be 
shown later. Obviously, considering such extensive range of 
problems in LMI way would not be useful unless they could 
be effectively solved. The key feature of LMI is that it defines 
convex constraint with respect to the variable vector. For that 
reason, the feasible set is convex and it can be found with the 
assistance of numerical algorithms of convex optimization, 
more specifically using the subfield of these optimization 
techniques which is known as semidefinite programming and 
which can be interpreted as a generalization of linear 
programming. Nowadays, the most frequently applied and 
implemented algorithms rely on interior point methods. The 
excellent sources for LMIs and semidefinite programming are 
e.g. [5]–[8]. 

Due to the fact that analytical tools generally do not exist, 
an array of powerful LMI software solvers based on numerical 
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algorithms has been produced. The user can choose from the 
commercial packages such as LMI Lab which is a part of 
Robust Control Toolbox for Matlab and many high-
performance freeware alternatives represented by YALMIP, 
SeDuMi, etc. 

The paper is going to present recent developments in 
semidefinite programming and LMIs with emphasis on their 
possible applications in control. However, it is not intended 
to bring any novel theoretical knowledge nor application 
results. Its main purpose is to aggregate the basic theory of 
LMI and semidefinite programming and introduce its 
utilization in the field of control on the basis of literature 
from “References” section. The necessary theoretical 
foundations are going to be accompanied by the outline of 
selected control problems and overview of available software 
solvers. 

The paper is organized as follows. In section 2, some 
historical aspects of LMIs and related issues are provided. The 
section 3 then presents basic forms, interpretations and 
properties of LMIs including several “tricks” for their 
modification. Next, the section 4 outlines the key facts on 
semidefinite programming. The selected LMI applications 
from the automatic control area are presented in section 5. 
Further, the section 6 overviews commercial as well as free 
software packages for solving the LMI problems. And finally, 
section 7 offers some conclusion remarks. 

II. HISTORY OF LMIS 
Although the huge research on LMIs and their possible 

applications in control theory is the matter of the several last 
decades, the historically first LMI appeared as early as in 
about 1890 when Aleksandr Mikhailovich Lyapunov proved 
that the differential equation: 

 

0( ) ( ), (0)d x t Ax t x x
dt

= =  (1) 

 
is stable if and only if there exists a solution of matrix 
inequality: 

 
0, 0T TA P PA P P+ < = >  (2) 

 
which is linear with respect to unknown symmetric positive-
definite matrix P. The stability of equation (1) means that: 
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0( ) 0x t x→ ∀  (3) 
 

i.e. all trajectories converge to zero. 
Thus the stability of dynamical system (1) can be analyzed 

via the LMI (2) which is solvable analytically by means of a 
set of linear equations. 

In the 1940’s, the Lyapunov’s method was applied to some 
practical control issues, especially from the realms of 
nonlinear control system stability, by Lur’e, Postnikov, etc. 

Then, in the early 1960’s Kalman, Yakubovich and Popov 
worked out the graphical solution of a class of LMIs which is 
known as Positive Real Lemma or KYP Lemma. 
Furthermore, the following years revealed that this LMI 
family can be solved also with assistance of an algebraic 
Riccati equation. 

More recently, in 1984, Karmarkar presented a new 
algorithm for solution of linear programs in polynomial time 
which in 1988 consequently resulted in development of 
Interior Point Methods by Nesterov and Nemirovskii [9]. 
Their approach has been already directly applicable to convex 
problems involving LMIs and it has brought really efficient 
way of computer-based solving the LMIs by means of convex 
optimization. 

Finally, in 1993, Gahinet and Nemirovskii released a high-
performance package LMI Control Toolbox for Matlab [10]–
[12]. 

Nice survey on historical aspects of LMIs in the area of 
control theory can be found at the beginning of the book [5]; 
some notes then e.g. in [13], [14]. 

III. FUNDAMENTAL FORMS AND PROPERTIES OF LMIS 
The basic canonical form of LMI is: 
 

0
1

( ) 0
m

i i
i

F x F x F
=

= + >∑  (4) 

 
where mx ∈\  is the vector of decision variables and 

T n n
i iF F ×= ∈\ , 0, ,i m= …  are given symmetric constant 

matrices. The symbol “>” means that matrix F(x) is positive 
definite. 

Besides, the nonstrict LMIs also exist. They can be 
expressed as: 

 
( ) 0F x ≥  (5) 
 

where the symbol “ ≥ ” indicates the matrix is positive 
semidefinite. In all cases, the LMI represents a convex 
constraint with respect to x. 

The two-dimensional examples of graphical representation 
of LMIs with the shapes of linear plane, quadratic plane, and 
circle can be seen in figs. 1-3, respectively [13], [14]. 
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Fig. 1 linear plane 
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Fig. 2 quadratic plane 
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Fig. 3 circle 

 
The LMI corresponding to the linear plane from fig. 1 can 

be simply derived as: 
 

0
y x
y x

>
− >

 (6) 

 
The quadratic plane visualized in fig. 2 is described by: 

 
2

2

1

0
1 0

0
1

y x
y x
y x x
y x
x

−

>

− >
− ⋅ ⋅ >

⎡ ⎤
>⎢ ⎥

⎣ ⎦

 (7) 

 
And finally, the LMI for the circle (fig. 3) can be obtained as 
follows: 
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2 2 2

2 2 2

2 1 1

2

0
1 1 0

1 0 0
0 1

x y r
r x y
r x x y y

r x y
x
y

− −

+ <

− − >
− ⋅ ⋅ − ⋅ ⋅ >

⎡ ⎤
⎢ ⎥ >⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 

 
As can be noticed from the previous equations, there are 

number of common tools and “tricks” which extends the 
usability of LMIs. The simplest ones are for example: 

 
( ) 0 ( ) 0F x F x> ⇔ − <  (9) 
 

1 2 1 2( ) ( ) ( ) ( ) 0F x F x F s F x< ⇔ − <  (10) 
 

Then, the set of multiple LMIs can be expressed as the single 
LMI: 

 

[ ]
1

1

1

( ) 0
( ) ( ), , ( )

( ) 0
( ) 0

0
0 ( )

k

k

k

F x
F x diag F x F x

F x
F x

F x

<
⇔ = =

<

⎡ ⎤
⎢ ⎥= <⎢ ⎥
⎢ ⎥⎣ ⎦

# "

"
# % #

"

 (11) 

 
Nonlinear (convex) inequalities are convertible to the form 

of LMI with the assistance of Schur complements [5], [14]. 
The principle is that the LMI: 

 
11 12

12 22

( ) ( )
( ) 0

( ) ( )T

F x F x
F x

F x F x
⎡ ⎤

= >⎢ ⎥
⎣ ⎦

 (12) 

 
where 11 11( ) ( )TF x F x=  and 22 22( ) ( )TF x F x=  (the submatrices 
are symmetric), and moreover 11( )F x , 22 ( )F x , 12 ( )F x  depend 
affinely on x, is equivalent to: 

 
1

11 1 22 12 11 12( ) 0, ( ) ( ) ( ) ( ) ( ) 0TF x S x F x F x F x F x−> = − >  (13) 
 

or 
 

1
22 2 11 12 22 12( ) 0, ( ) ( ) ( ) ( ) ( ) 0TF x S x F x F x F x F x−> = − >  (14) 
 

where 1( )S x , 2 ( )S x  are Schur complements. 
In other words, the matrix (12) is positive definite if and 

only if one of the statements (13), (14) hold true. Thus, the set 
of nonlinear inequalities (13) or (14) can be replaced by the 
LMI (12). 

The useful application of Schur complements is e.g. matrix 
norm constraint expressed as the LMI: 

 

2

( )
( ) 1 0

( )T

I F x
F x

F x I
⎡ ⎤

< ⇔ >⎢ ⎥
⎣ ⎦

 (15) 

 
Another frequently used “trick” is the elimination of matrix 

variables [5], [13]. Suppose: 
 

1 2 3 3 2( ) ( ) ( ) ( ) ( ) 0T T TF z F z XF z F z X F z+ + >  (16) 
 

where the vector z and the matrix X are independent variables, 
and 1( )F z , 2 ( )F z  and 3( )F z  do not depend on X. The 
statement (16) is equivalent to: 

 
2 1 2

3 1 3

( ) ( ) ( ) 0

( ) ( ) ( ) 0

T

T

F z F z F z

F z F z F z

>

>

� �
� �

 (17) 

 
for some X and 0z z= . The terms 2 ( )F z�  and 3( )F z�  represent 
orthogonal complements of 2 ( )F z  and 3( )F z  for every z, 
respectively. 

The inequality (16) can be expressed also in different form 
– by means of Finsler’s lemma [5]: 

 
1 2 2

1 3 3

( ) ( ) ( ) 0

( ) ( ) ( ) 0

T

T

F z F z F z

F z F z F z

σ
σ

− >

− >
 (18) 

 
for some σ ∈\ . This version is useful in robust control [13]. 

Another tool suitable for control theory is so-called S-
procedure which transfers the constraint on some quadratic 
functions (or quadratic forms) to the LMI form. For details see 
e.g. [5], [13]. 

It has been already indicated that the LMI represents a 
convex constraint with respect to x. Remind what the convexity 
means. The set mC ⊆ \  is said to be convex, if the line joining 
any two points c1 and c2 in C remains entirely within C [15], 
[16]. To state this in a different manner, it must hold true: 

 
( )1 2 1 21 , 0;1c c C c c Cλ λ λ+ − ∈ ∀ ∈ ∈  (19) 

 
The expression ( )1 21c cλ λ+ −  is then called a convex 
combination of c1 and c2. The main thought is illustrated in 
simple fig. 4. Typical examples of two-dimensional convex 
sets are regular polygons, nonconvex sets can be represented 
e.g. by stars. 

 
 

c1

c2

Convex set Nonconvex set

c1 c2

 
Fig. 4 examples of convex and nonconvex set [15] 
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Since the constraint of LMI is convex, it means that e.g. for 
( ) 0F x >  and ( ) 0F y >  it holds true: 
 
( (1 ) ) ( ) (1 ) ( ) 0F x y F x F yλ λ λ λ+ − = + − >  (20) 
 

for all 0,1λ ∈ . 
Several interesting properties follow from this fact, e.g.: 
• Feasible set is convex 
• Solution can be found by means of convex optimization 
• Generally, analytical solution does not exist 
• There are numerical algorithms which are able to find the 

  solution (if it exists) 
In addition to the canonical form (4), the LMI can be 

expressed also in different ways. The frequent alternative 
form (similar to the linear programming) is a semidefinite one 
[13], [14], [6]: 

 
min Tc x
Ax b
x K

=
∈

 (21) 

 
where Tc x  represents a linear function, Ax b=  is a linear 
constraint, and x K∈  determines a positive semidefinite 
constraint with K representing the positive semidefinite cone 
(the set of all symmetric positive semidefinite matrices of 
particular dimension). 

Actually, this is why the LMI optimization is sometimes 
called the semidefinite optimization and the problem (21) is 
called a semidefinite program. Semidefinite programming can 
be considered as a natural generalization of linear 
programming. 

In the field of control theory, the LMIs are rarely given 
directly in canonical (4) or semidefinite (21) form. The 
problems in which the variables are matrices are much more 
common. For example [5], [13], the Lyapunov inequality (2), 
where TP P=  is the variable, can be rewritten to the 
canonical form (4) with: 

 
0 0

T
i i i

F

F A P P A

=

− −
 (22) 

 
where iP  for ( )1, , 1 2i n n= +⎡ ⎤⎣ ⎦"  is a basis for symmetric 

n n×  matrices. 
Unfortunately, the software products for LMI problems 

usually suppose the canonical or semidefinite form. Thus, the 
LMIs with matrices as variables have to be preprocessed 
which can represent time and effort consuming task. 

Basically, there are three main problems related to LMIs 
[5], [13], [14], [17], i.e. feasibility, linear objective 
minimization, and generalized eigenvalue minimization. 

The aim of the feasibility is to find such x that: 
 
( ) 0F x <  (23) 

holds true. 
The problem of linear objective minimization consists in 

searching for x which minimizes the linear criterion: 
 

min Tc x  (24) 
 

under constraint (23). 
And finally, the generalized eigenvalue minimization means 

the problem of minimizing the maximum generalized 
eigenvalue of a pair of matrices depending affinely on x, 
subject to LMI constraint, that is: 

 
min λ  (25) 
 
under conditions: 

 
1 2

2

1

( ) ( )
( ) 0
( ) 0

F x F x
F x
F x

λ<
>
<

 (26) 

 
General procedure of solving the LMI consists of two basic 

steps. The first one is the verification of LMI feasibility. If the 
result is positive, the process continues with the second part, 
i.e. finding the solution which differs from the global 
optimum by less than selected tolerance. 

The LMIs can be solved effectively (in polynomial time) by 
means of Interior Point Methods [9]. 

IV. SEMIDEFINITE PROGRAMMING 
It has been already shown that solving the LMI problems 

mean minimization of the linear function under generally 
nonlinear and nonsmooth, but convex constraint with respect 
to vector of decision variables. Thus, the related convex 
optimization problems can be considered as semidefinite 
programs. As claimed e.g. in [6], semidefinite programming 
unifies standard issues such as linear and quadratic 
programming, and it has many useful applications in 
engineering and combinatorial optimization. 

The semidefinite program (as already outlined) can be 
written as [6], [18]: 

 

( ) 0
1

min

0

T

m

i i
i

c x

F x F F x
=

= + ≥∑
 (27) 

 
where mc ∈\  is the vector and 0 , , n n

mF F ×∈… \  are 
symmetric constant matrices appearing in the constraining 
LMI. 

Semidefinite programming is an extension of linear 
programming where the componentwise inequalities between 
vectors are replaced by matrix inequalities. For example, 
suppose the linear program [6]: 
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min
0

Tc x
Ax b+ ≥

 (28) 

 
in which 0Ax b+ ≥  is componentwise inequality. The linear 
program (28) can be expressed as the semidefinite one (27) 
with: 

 
( )( ) diagF x Ax b= +  (29) 

 
that is: 

 
( )
( )

0 diag

diag , 1, ,i i

F b

F a i m

=

= = …
 (30) 

 
where matrix [ ]1

n m
mA a a ×= ∈" \ . 

However, the semidefinite programming is able to cope 
with problems which can not be specified by means of linear 
programs, i.e. the following nonlinear (but convex) 
optimization task [6]: 

 

( )2

min

0

T

T

c x
d x

Ax b+ ≥

 (31) 

 
where 0Td x >  is supposed. Using an auxiliary variable t, the 
problem can be reformulated to: 

 

( )2

min
0

T

T

t
Ax b

c x
t

d x

+ ≥

≤

 (32) 

 
The nonlinear (convex) objective function from (31) has 

constituted a nonlinear (convex) constraint in (32). 
Furthermore, the constraints can be expressed as LMI with the 
assistance of the “trick” (11) and Schur complements [6]: 

 

( )
min

diag 0 0
0 0
0

T

T T

t

Ax b
t c x

c x d x

⎡ + ⎤
⎢ ⎥ ≥⎢ ⎥
⎢ ⎥⎣ ⎦

 (33) 

 
An array of very important applications (not only from the 

field of control theory) as well as both practical and 
theoretical solving efficiency indicates the significance and 
high impact of the semidefinite programming. The set of 
application examples including quadratically constrained 
quadratic programming, minimum eigenvalue and matrix 
norm minimization, logarithmic Chebychev approximation, 
structural optimization, etc. can be found in [6]. 

V. SELECTED CONTROL APPLICATIONS 
The brief outline of possible control problems which can be 

solved via LMIs is going to be presented within this section. 

A. Asymptotic Stability Analysis 
The classical problem is represented by asymptotic stability 

investigation. Continuous-time time-invariant dynamic system 
(1) is asymptotically stable if and only if there exists a 
quadratic Lyapunov function [8], [14]: 

 
( ) TV x x Px=  (34) 
 

such that: 
 
( ( )) 0
( ( )) 0

V x t
V x t

>
<�

 (35) 

 
along trajectories of the system. Equivalently, matrix A from 
the system (1) must satisfy: 

 
max Re ( ) 0i i Aλ <  (36) 

 
Since: 
 

( )( ) 2T T TV x x Px x P P x= = +  (37) 

 
one can choose the Lyapunov matrix P as the symmetric one 
without loss of generality [8]. 

The condition of asymptotic stability in the LMI form (2) 
follows from the derivation: 

 
( ) ( )T T T T T T TV x x Px x Px x A Px x PAx x A P PA x= + = + = +� � �  (38) 
 

and from inequalities (35). Thus investigation of asymptotic 
stability is assumed a feasibility problem of LMI (2) or 
equivalently of LMI: 

 
0

0
0

TA P PA
P

⎡ ⎤− −
>⎢ ⎥

⎣ ⎦
 (39) 

 

B. Computation of Norms 
Another potential application of LMIs consists in 

computation of norms. Continuous-time single-input single-
output linear time-invariant system with transfer function 

( )G s  has the 2H  norm defined as: 
 

2

2

1 ( )
2

G G j dω ω
π

∞

−∞

= ∫  (40) 

 
For system described by: 
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( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=

�  (41) 

 
with transfer function: 

 
( ) 1( )G s C sI A B−= −  (42) 

 
the 2H  norm can be expressed according to [8], [14]: 

 
( )2

02
trace TG B P B=  (43) 

 
where 0P  is the observability gramian: 

 

0
0

TA t T AtP e C Ce dt
∞

= ∫  (44) 

 
given by solution of Lyapunov equation: 

 
0 0 0T TA P P A C C+ + =  (45) 

 
with 0 0P >  for observable ( ),A C . 

Thus, the 2H  norm can be computed via solving the LMI: 
 

( )2

2
min trace

0
0

T

T T

G B PB

A P PA C C
P

=

+ + ≤
>

 (46) 

 
Further, the H∞  norm of a system given by ( )G s  is: 
 

sup ( )G G j
ω

ω
∞

=  (47) 

 
Assume the continuous-time linear system: 
 

( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

�  (48) 

 
with transfer function: 

 
( ) 1( )G s C sI A B D−= − +  (49) 

 
The H∞  norm is limited according to: 
 

G γ
∞

<  (50) 

 
if and only if: 

 
2 0TR I D Dγ= − >  (51) 

 
and Hamiltonian matrix [8], [14]: 

 

( ) ( )
1 1

1 1

T T

TT T T

A BR D C BR B

C I DR D C A BR D C

− −

− −

⎡ ⎤+
⎢ ⎥
⎢ ⎥− + − +⎣ ⎦

 (52) 

 
has no eigenvalues placed on the imaginary axis. Then, 
according to [8] a bisection algorithm with guaranteed 
quadratic convergence for finding the minimum γ  such that 
(52) has no eigenvalues on the imaginary axis. 

Consequently, the H∞  norm can be determined through 
solving the LMI [8], [14]: 

 

2 0

0

T T T

T T T

A P PA C C PB C D
B P D C D D I

P
γ

⎡ ⎤+ + +
<⎢ ⎥+ −⎣ ⎦

>

 (53) 

 
which can be expanded to: 

 

0

0

T T

T T

A P PA PB C
B P I D

C D I

P

γ
γ

⎡ ⎤+
⎢ ⎥− <⎢ ⎥
⎢ ⎥−⎣ ⎦

>

 (54) 

 

C. Positive Real Lemma and Bounded Real Lemma 
Another important LMI-based result from control theory 

field is known as the Positive Real Lemma or KYP Lemma. It 
brings a frequency-domain interpretation for some LMI 
problems and moreover, in some special cases, a technique for 
numerical solution via Riccati equations [5]. The main idea of 
the Positive Real Lemma can be briefly formulated with the 
assistance of the following five statements which are 
equivalent to each other [13], [14]: 

1. Linear system (48) is passive, i.e.: 
 

0

( ) ( ) 0Tu t y t dt
τ

≥∫  (55) 

 
2. The transfer matrix (49) is positive real, i.e.: 
 
( ) ( ) 0 Re 0TG s G s s+ ≥ ∀ >  (56) 
 
3. The LMI: 
 

( ) 0

0

T T

T T

T

A P PA PB C

B P C D D

P P

⎡ ⎤+ −
≤⎢ ⎥

− − +⎢ ⎥⎣ ⎦
= >

 (57) 

 
is feasible. 

4. There exists a real matrix TP P=  satisfying the Riccati 
equation: 

 
( )( ) ( )1

0
TT T T TA P PA PB C D D PB C

−
+ + − + − ≤  (58) 
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5. Under some additional presumptions [5], there exists a 
real matrix TP P=  satisfying the algebraic Riccati equation: 

 
( )( ) ( )1

0
TT T T TA P PA PB C D D PB C

−
+ + − + − =  (59) 

 
The similar result appearing during H∞  minimization is 

represented by the Bounded Real Lemma. Analogically to the 
previous case, the key features will be formulated using five 
equivalent statements [13], [5]: 

1. Linear system (48) is nonexpansive, i.e.: 
 

0 0

( ) ( ) ( ) ( )T Ty t y t dt u t u t dt
τ τ

≤∫ ∫  (60) 

 
2. The transfer matrix (49) is bounded real, i.e.: 
 
( ) ( ) Re 0TG s G s I s≤ ∀ >  (61) 
 
3. The transfer matrix (49) has bounded H∞  norm, i.e.: 
 
( ) 1G s

∞
≤  (62) 

 
4. The LMI: 
 

0

0

T T T

T T T

T

A P PA C C PB C D
B P D C D D I

P P

⎡ ⎤+ + +
≤⎢ ⎥+ −⎣ ⎦

= >

 (63) 

 
is feasible. 

5. Under some additional presumptions [5], there exists a 
real matrix TP P=  satisfying the algebraic Riccati equation: 

 

( )( ) ( )1
0

T T

TT T T

A P PA C C

PB C D I D D PB C D
−

+ + +

+ + − + =

"  (64) 

 

D. Other Problems 
Certainly, this overview of is just a preliminary survey 

because the LMIs represent elegant and very efficient 
instrument for an array of problems in the control theory area. 
According to [5], [14], the range of possible solvable 
problems contains, e.g.: 

• Matrix scaling problems 
• Construction of quadratic Lypunov functions for stability 

and performance analysis of linear differential inclusions 
• Joint synthesis of state-feedback and quadratic Lypunov 

functions for linear differential inclusions 
• Synthesis of state-feedback and quadratic Lyapunov 

functions for stochastic and delay systems 
• Synthesis of Lur’e-type Lyapunov functions for 

nonlinear systems 
• Optimization over an affine family of transfer matrices 
• Optimal system realization 

• Interpolation problems 
• Multicriterion LQG/LQR 
• Inverse problem of optimal control 
• H2/H∞ control problems 
• Positivity of polynomials 
• Robust stability analysis 

VI. LMI SOLVERS 
This Section offers an overview of the popular software 

solvers for LMI problems. 

A. LMI Lab 
The well known commercial high-performance package for 

LMI problems distributed by The MathWorks, Inc. is the LMI 
Lab [17] for Matlab. Formerly, it was the separate LMI 
Control Toolbox [10]–[12], but since Matlab Release 14 with 
Service Pack 1 it has been included as a part of Robust 
Control Toolbox [19]. Generally, the LMI Lab offers tools to 
[17]: 

• Specify LMI systems either symbolically with the LMI 
Editor or incrementally with the “lmivar” and “lmiterm” 
commands 

• Retrieve information about existing systems of LMIs 
• Modify existing systems of LMIs 
• Solve the three generic LMI problems (feasibility 

problem – “feasp” command, linear objective 
minimization – “mincx” command, and generalized 
eigenvalue minimization – “gevp” command) 

• Validate results 
Just for illustration, the fig. 5 shows the LMI Editor which 

can be launched by typing “lmiedit” command and which 
allows to define LMI systems in a symbolic manner by means 
of graphical user interface. 

 

 
Fig. 5 The LMI Editor 
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B. Free Toolboxes 
In addition to the commercial LMI Lab, there are also free 

alternatives available. The powerful tool popular in automatic 
control community is YALMIP [20], [21] which represents 
package for Matlab environment focused on advanced 
modelling and solution of convex and nonconvex optimization 
problems and which has been gradually developed and 
improved since the first public release in early 2001 [20]. The 
principal concept of YALMIP consists in the application of an 
array of the external solvers (e.g. SeDuMi, SDPT3, CSDP, 
SDPA, MOSEK, and many others) for low-level numerical 
computations related to optimization problems. On the other 
hand, the YALMIP itself aims especially at efficient 
modelling and high-level algorithms. The list of the employed 
codes can be found at [21]. 

Another well known product is SeDuMi [22]–[24]. Besides, 
it has been utilized also as one of the external solvers for 
YALMIP as mentioned. The SeDuMi package itself 
implements interior point methods for solving the 
optimization problems over symmetric cones. It can be 
combined also with an alternative SeDuMi Interface [25], but 
the development of this extension was stopped in 2002, thus 
the YALMIP is now the recommended option from the 
interface viewpoint. 

The comparison of several LMI solvers can be found e.g. in 
[26]. Moreover, [27], [28] provide also benchmark results for 
many codes. 

VII. CONCLUSION 
This paper has been focused on fundamentals of LMIs and 

semidefinite programming and on their application potential in 
the field of system and control theory. Nevertheless, it has not 
been intended to bring any novel theoretical knowledge nor 
application results. The work has presented basics of effective 
work with LMIs and some tools and “tricks” for extending 
their usability. Moreover, it has described several typical 
control-based problems which can be effectively solved by 
means of LMIs such as analysis of asymptotic stability, 
computation of   and   norms, Positive Real Lemma and 
Bounded Real Lemma, and outline of an array of the other 
issues. Naturally, consideration of such extensive range of 
problems in LMI way can be useful only if they are effectively 
solvable. As it has been shown, the critical feature of LMI is 
that it defines convex set and thus they can be advantageously 
applied to description of constraints for optimization tasks. 
This leads to solution of so-called semidefinite programs 
which can be relatively effortlessly numerically solved using 
interior point methods. From the practical point of view, the 
LMI software solvers are irreplaceable nowadays. The typical 
and probably the most popular commercial and free packages 
have been introduced within this paper. 

Moreover, some problems can lead to Bilinear Matrix 
Inequalities (BMIs): 

 

0
1 1 1

( ) 0
m m m

i i i j ij
i i j

F x F x F x x F
= = =

= + + >∑ ∑∑  (65) 

 
where, analogously to LMIs, mx ∈\  is the vector of decision 
variables and T n n

i iF F ×= ∈\ , T n n
ij ijF F ×= ∈\ , , 0, ,i j m= …  

are given symmetric constant matrices. 
The main disadvantage of BMIs is that they are, unlike the 

LMIs, not convex and so they lead to very complicated 
optimization algorithms with generally limited ability of 
convergence to global extremes. Some BMI problems can be 
trans-formed to the LMI description. However, this is already 
out of the scope of this work. 
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