
 

 

 

Abstract—Well-known and important problem of portfolio 

selection (optimization) in economics, finance and management was 

partially solved using traditional methods and techniques. However, 

since the problem is intractable, nondeterministic optimization 

metaheuristics are better suited tools for such problems. This paper 

presents artificial bee colony (ABC) swarm intelligence metaheuristic 

for solving constrained portfolio optimization problem. To prove the 

algorithm’s robustness and efficiency for this application, series of 

tests on standard benchmark portfolio data used in the literature were 

performed. The algorithm was compared to the genetic algorithm 

(GA) approach and firefly algorithm (FA) swarm intelligence 

metaheuristic, which were tested on the same data set. Optimization 

results showed that the ABC algorithm obtains satisfying results.  

 

Keywords—Portfolio optimization problem, metaheuristic 

optimization, swarm intelligence, artificial bee colony (ABC), nature 

inspired algorithms. 

I. INTRODUCTION 

ORTFOLIO optimization problem, which is sometimes 

referred to as portfolio selection problem, is a well-known 

problem in economy, management and finance. Portfolio 

includes various financial securities, such as bonds and stocks 

owned by an organization or by individual [1]. 

One of the main issues when dealing with portfolio optimi-

zation is risk. Investors are always trying to balance between 

portfolio’s gains and risk. Thus, the goal is to select a portfolio 

with minimum risk at defined minimal expected returns. This 

further means reducing non-systematic risks to zero.  

Portfolio optimization problem is a multi-criteria optimi-

zation problem where the goal is to minimize risks, while 

maximizing returns. Unfortunately, this problem approach has 

several shortcomings [2]. First, it can be quite difficult to 

gather enough data for risk and returns evaluation. Second, this 
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model is too simple for modeling real-world problem features. 

It does not capture all properties such as transaction costs, cost 

of management, etc. Third, the estimation of return and 

covariance from historical data is very prone to measurement 

errors. Covariance matrix is used for defining the risk. 

Portfolio optimization problem is being solved using variety 

of methods and techniques. Parametric quadratic programming 

technique [3], linear programming method [4] and integer 

programming [5] were successfully applied to solving fuzzy 

portfolio selection problem.  

With the application of additional real-world constraints on 

the basic portfolio optimization formulation, the problem 

becomes harder for solving. In this case, traditional techniques 

and methods cannot generate satisfying results, and the use of 

heuristic and metaheuristic approaches is more promising. 

Those algorithms have relatively low computational 

complexity (typical polynomial) and do not guarantee that the 

optimal solution will be retrieved. Heuristics improve 

algorithm`s performance by shortening execution time at the 

cost of accuracy [6]. There are two basic types of heuristic 

methods: constructive and local search heuristics. Constructive 

approaches build solution “from the scratch” in a step-by-step 

manner. At the other side, local search heuristics selects 

random complete solution from the population of potential 

solutions. Then, the chosen solution is being incrementally 

improved during algorithm`s execution. 

A metaheuristic is formally defined as an iterative 

generation process which guides a subordinate heuristic by 

combining intelligently different concepts for exploring and 

exploiting the search space. Thus, metaheuristics search for a 

good heuristics of a particular problem. Learning strategies are 

used to structure information in order to find efficiently near 

optimal solutions. Key point in metaheuristics is that they do 

not guarantee to find the optimal solution, but the satisfying 

solution in a reasonable amount of execution time. 

Some of the nature-inspired metaheuristics were used for 

solving portfolio optimization problem. Bio-inspired 

algorithms mimic the behavior of natural systems and can be 

roughly divided into two groups: evolutionary algorithms (EA) 

and swarm intelligence. Well-known representative of EA, 

genetic algorithm (GA) employs selection, crossover and 

mutation operators while performing the exploration and 

exploitation of the search space. GA was applied on portfolio 

selection problem [7]. In [8], a combination encoding scheme 

and genetic operators are designed for solving combination 
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optimization problems. The authors applied this combination 

GA to the portfolio optimization problem which can be 

reformulated approximately as a combination optimization 

problem [8]. Besides GA, the representatives of EA include 

evolutionary programming (EP), evolution strategies (ES) and 

genetic programming (GP).  

Swarm intelligence algorithms use the effects of the fact that 

behavior of many individuals show extraordinary collective 

intelligence without employing any centralized supervision 

component. They belong to the group of population-based 

optimizations and start with the initial (usually random) 

population of candidate problem solutions and improve them 

in iterations. 

Particle swarm optimization (PSO) is a swarm intelligence 

algorithm which emulates social behavior of school of fish or 

flock of birds. It was successfully applied to variations of 

constrained portfolio optimization problems [9], [10], [11]. 

Ant colony optimization (ACO) simulates the foraging 

behavior of ants. Properties of ants system that ant deposit a 

substance called pheromone between food source and its nests 

was captured and incorporated into the algorithm. ACO 

implementation for solving portfolio problem was not found in 

the literature, but ACO was successfully applied on many hard 

optimization problems [12], [13], [14], [15], [16].  

Seeker optimization algorithm (SOA) is based on human 

search process which uses human reasoning, memory, past 

experience and human interactions. Seeker operates in the 

larger environment of candidate solutions called search 

population. The total population is divided into three equally-

sized subpopulations according to the sequence of the seekers. 

All the agents in the same population form a social unit called 

neighborhood, and each population performs search in its 

domain of the search space [17]. Although SOA was not 

applied on portfolio selection problem, it was applied on a 

variety of other optimization problems such is global 

optimization [17], [18]. 

Cuckoo search (CS) algorithm models search process by 

using the Levy flights (series of straight flight paths with 

sudden 90 degrees turn with short and long steps). This 

algorithm was developed by Yang and Deb [19] and was 

tested on different optimization problems [20]. Firefly 

algorithm (FA) is one of the latest swarm intelligence 

metaheuristics. It models the flashing behavior of fireflies and 

the basic algorithm’s principle is that each firefly moves 

toward the brighter one. Using this philosophy, FA performs 

the search process. FA was first proposed for unconstrained 

numerical optimization [21], applied to image processing [22] 

with entropy function [23], but it was also tested on portfolio 

selection problem [24], [25]. Bat algorithm is the latest SI 

algorithm [26]. 

In this paper, we present implementation of artificial bee 

colony (ABC) algorithm for solving constrained portfolio 

optimization problem. The constrained ABC implementation 

was adopted and the tests were performed on a portfolio of a 

five assets. This swarm intelligence metaheuristics have not yet 

been applied in solving this kind of problem, but obtained 

satisfying results in various numerical optimization problems 

[27], [28], [29], [30], [31]. Side-by-side comparison was made 

with one GA approach and FA which were tested on a same 

data set. Empirical tests showed that the ABC is a promising 

method for solving this kind of problem.  

This paper is organized as follows. After Introduction, 

overviews of portfolio optimization problem models are given 

in Section 2. Section 3 describes constrained version of the 

ABC metaheuristic. In Section 4, data sets, experimental 

results and comparisons are presented, while Section 5 gives 

final conclusions and remarks. 

II. MODELS AND FORMULATIONS FOR PORTFOLIO 

OPTIMIZATION PROBLEM  

Portfolio optimization is the process of choosing the 

proportions (weights) of various assets to be held in 

a portfolio, in such a way as to make the portfolio better than 

any other according to some criterion (constraint). The 

criterion will mix together, directly or indirectly, 

considerations of the expected value of the portfolio's rate of 

return as well as of the return's dispersion and possibly other 

measures of financial risk. 

The fundamental guideline in making financial investments 

decisions is diversification where investors invest into 

different types of assets. Portfolio diversification minimizes 

investors’ exposure to the risks while maximizing returns on 

portfolios. 

There are two basic methods for solving portfolio 

optimization problem. The first one named standard mean-

variance mode was defined by Markowitz [32], and it is 

funded on a assumptions of a rational investor with either 

multivariate normally distributed asset returns, or, in the case 

of arbitrary returns, a quadratic utility function [33]. If these 

assumptions hold, then the optimal portfolio for the investor 

lies on the mean-variance efficient frontier. 

In this model, the selection of risky portfolio is considered 

as one objective function and the mean return on an asset is 

considered to be one of the constraints [10]. This model is 

formulated as follows: 
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where N is the number of available assets, iR is the mean 
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return on an asset i and )( ji RRCov  is covariance of returns 

of assets i and j respectively. Weight variable i  controls the 

proportion of the capital that is invested in asset i, and 

constraint in Eq. (3) ensures that the whole available capital is 

invested. In this model, the goal is to minimize the portfolio 

risk
2

p , for a given value of portfolio expected return pR . 

In the presented standard mean-variance model, variables 

are real and they range between zero and one, as they represent 

the fraction of available money to invest in assets. This choice 

is quite straightforward, and has the advantage of being 

independent of the actual budget. 

A second method is applied by construction of only one 

evaluation function which models the whole problem 

formulation. This model consists of two submodels: efficient 

frontier and Sharpe ratio [9]. 

When employing efficient frontier model, the aim is to find 

different objective function values by varying the desired mean 

return R. Many practical approaches include risk aversion 

parameter  ]1,0[ and use the following equation in model 

formulation: 
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 parameter controls the relative importance of the mean 

return to the risk. With the increase of  , the relative 

importance of the risk to the investor increases, and 

importance of the mean return decreases, and vice-versa. he 

dependencies between changes of and the mean return and 

variance intersections are shown on a continuous curve which 

is called efficient frontier in the Markowitz theory [32]. 

Sharpe ration (SR) model uses information from mean and 

variance of an asset [34]: 
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where p denotes portfolio, Rp is the mean return of the 

portfolio p, and Rf is a test available rate of return on a risk-

free asset. StdDev(p) is a measure of the risk in portfolio 

(standard deviation of Rp). By adjusting the portfolio 

weights i , portfolio’s Sharpe ratio can be maximized. 

Besides basic portfolio optimization problem formulations, 

there are also other definitions which take into account other 

factors which make model more realistic. This refers to [35]: 

 

 the existence of frictional aspects like the transaction 

costs, sectors with high capitalization and taxation; 

 the existence of specific impositions arising from the 

legal, economic, etc. environment; 

 the finite divisibility of the assets to select. 

 

Taking into account all above mentioned additional 

portfolio optimization constraints, new portfolio optimization 

problem can be established [10]. This model is called extended 

mean-variance model and it is classified as a quadratic mixed-

integer programming model necessitating the use of efficient 

heuristics to find the solution. It can be formulated as follows: 
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where M represents the number of selected assets among 

possible N assets. B is the total available budget, while 

ilowB and 
iupB  are lower and upper limits respectively of the 

budget that can be invested in asset i. S is the total number of 

sectors. ci represents the minimum transaction lot for asset i, 

and xi denotes the number of ci that is purchased. According to 

this, xici are integer values that show the units of asset i in the 

portfolio. 
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Decision variable zi is used for cardinality constraint. If an 

asset i is present in the portfolio, the value of zi is 1, otherwise 

it is equal to 0. Equation (11) models cardinality constraint. 

Budget constraint is shown in Equation (13), and it is 

converted to inequality. Lower and upper bounds of budget 

constraint are given in Equation (14). 

Sector capitalization constraint improves portfolio’s 

structure decisions by preferring investments in assets that 

belong to the sector with higher capitalization value. The 

assets which belong to the sector with more capitalization 

should have more shares in the final portfolio. This constraint 

is held only if securities from the corresponding sectors are 

selected [24]. Equation (15) establishes sector capitalization 

constraint into extended mean-variance model. Despite the fact 

that a certain sector has high capitalization, security from this 

sector that has low return and/or high risk must be excluded 

from final portfolio’s structure. To make such exclusion, 

variable ys is defined and it has a value of 1 if the 

corresponding sector has at least one selected asset, and 0 

otherwise. In (16), is is a set of assets which can be found in 

sector S. Sectors are sorted in descending order by their 

capitalization value. Sector 1 has the highest capitalization 

value, while sector S has the lowest value. 

III. CONSTRAINED ABC METAHEURISTIC 

ABC is well-known population based swarm intelligence 

metaheuristic. It is inspired by the foraging behavior of honey 

bee swarms in nature. This approach firstly proposed by 

Karaboga [36], and lately developed by the Karaboga and 

Basturk [37], [38].  

An important difference between the ABC and other swarm 

intelligence algorithms is that in the ABC algorithm the 

possible solutions represent as food sources (flowers), not 

individuals (honeybees). In other algorithms, like PSO, each 

possible solution represents an individual of the swarm. In the 

ABC algorithm the quality of solution is represented as fitness 

of a food source. Fitness is calculated by using objective 

function of the problem. 

In ABC metaheuristic, there are three types of artificial bees 

(agents): employed, onlookers and scouts. Half of the colony is 

employed bees. The relation between employed bee and the 

food source is one-to-one, and that means that there is only 

one employed bee per each food source. If a food source 

becomes abandoned, employed bee that is mapped to that food 

source becomes a scout, and as soon as scout finds a new food 

source, it again becomes employed bee. In the ABC algorithm 

onlookers and employed bees carry out the exploitation 

process in the search space, while the scouts control the 

exploration process. 

In the case of honey bees, the basic properties on which 

self-organization relies are as follows: 

 positive feedback: As the nectar amount of food sources 

increases, the number of onlookers visiting them 

increases, too; 

 negative feedback: The exploration process of a food 

source abandoned by bees is stopped. 

 fluctuations: The scouts carry out a random search 

process for discovering new food sources. 

 multiple interactions: Bees share their information about 

food source positions with their nest mates on the dance 

area. 

ABC algorithm, as an iterative algorithm, starts by 

associating each employed bee with randomly generated food 

source (solution). Each solution xi (i =1, 2, ..., SN) is a D-

dimensional vector, where SN denotes the size of the 

population. Initial population of randomly generated solution 

is created using: 

 

                    )()1,0(, jjjji lbubrandlbx             (17) 

 

In each iteration, each employed bee discovers a food 

source in its neighborhood, and evaluates its nectar amount 

(fitness). Discovery of a new, neighborhood solution is 

modeled with the following expression: 
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where xi,j is j-th parameter of the old solution i, xk,j is j-th 

parameter of a neighbor solution k,   is a random number 

between 0 and 1, and MR is modification rate. MR is ABC 

control parameter. 

Pseudo-code of the ABC algorithm for constrained 

optimization problems [39] is: 

1. Initialize the population of solutions 

2. Evaluate the population 

3. cycle=1 

4. repeat 

5. Produce new solutions for the employed bees 

by using Equation (18) and evaluate them 

6. Apply selection process based on Deb’s 

method [40]. 

7. Calculate the probability values pi for the 

solutions xi, using fitness of the solutions 

and the constraint violations (CV) by  
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8. For each onlooker bee, produce a new 

solution vij by Equation (18) in the 

neighborhood of the solution selected 

depending on pi and evaluate it 

9. Apply selection process between υi and xi 

based on Deb’s method [40]. 

10. Determine the abandoned solutions by using 

“limit” parameter for the scout; if they 

exist, replace them with new randomly 

produced solutions by (17). 

11. Memorize the best solution achieved so far 

12. cycle = cycle+1 

13. until cycle = MCN 

 

We also note that the fitness is in the case of minimization 

calculated using: 
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where objFuni is value of objective function which is the 

subject of optimization.  

IV. PROBLEM FORMULATION, DATA AND RESULTS 

In this section, we present data used in the experiments, 

portfolio optimization problem formulation used in testing 

ABC approach, and experimental results. We used the same 

problem formulation and data set like in [24] and [41]. We 

compared the ABC approach to the GA [41] and FA [24]. 

MATLAB software was used for GA implementation, while 

FA has its own framework developed in C# using .NET 4.5 

Framework and Visual Studio 2012 working environment.  

A. Data set for the experiments 

As mentioned above, for testing purposes, we used simple 

historical data set like in [24] and [41]. The data encompasses 

historical return of a five stocks portfolio of a period of five 

years (2007-2011).  Data set is shown in Table 1. 

 

 

TABLE I 

DATA SET FOR THE EXPERIMENTS 

Year Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 

2007 -0.15 0.29 0.38 0.18 -0.10 

2008 0.05 0.18 0.63 -0.12 0.15 

2009 -0.43 0.24 0.46 0.42 0.15 

2010 0.79 0.25 0.36 0.24 0.10 

2011 0.32 0.17 -0.57 0.30 0.25 

 

The mean return on each asset and covariance matrix is 

given in Tables 2 and 3 respectively. 

 

 

TABLE II 

MEAN RETURNS FOR EACH ASSET 

Stock 1 0.116 

Stock 2 0.226 

Stock 3 0.252 

Stock 4 0.204 

Stock 5 0.11 

 

 

TABLE III 

COVARIANCE MATRIX 

 Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 

Stock 1 0.21728 -0.003376 -0.053492 -0.009264 0.01064 

Stock 2 -0.003376 0.00253 0.008468 0.002376 -0.00456 

Stock 3 -0.053492 0.008468 0.22247 -0.31128 -0.02392 

Stock 4 -0.009264 0.002376 -0.031128 0.04068 0.00276 

Stock 5 0.01064 -0.00456 -0.02392 0.00276 0.01675 

 

B. Problem formulation 

The goal is to select weights of the each asset in the 

portfolio in order to maximize the portfolio’s return and to 

minimize the portfolio’s risk. We transformed multi-objective 

problem into single one with constraints. 

The expected return of each individual security i is 

presented as follows: 

 

                                                              ,)( iii rwE                          (22) 

where i denotes the weight of individual asset i, and ri is 

the expected return of i. Total expected return of the portfolio 

P can be formulated as follows: 
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where n is the number of securities in the portfolio P. 

In our problem formulation, first goal is to maximize 

portfolio’s expected return, and thus, the expression shown in 

(23) is objective function for the portfolio’s return and it 

should be maximized. 

The objective function of the portfolio variance (risk) is 

presented as a polynomial of second degree:            
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where )(2

i is variance of asset i, and ),( ji rrCov is 

covariance between securities i and j. 

According to (23) and (24), the multiobjective function to 

be minimized is illustrated as: 
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   Also, considering individual asset i, not the whole portfolio 

P, it can be formulated as: 
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Problem constraints are: 
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To satisfy condition that the positive portfolio’s return 

should be reached, we used: 
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where 
m in

i  and 
max

i are minimum and maximum weights 

of asset i respectively. 

 

C. ABC parameters setup 

In this subsection, we present experimental results for 

testing ABC metaheuristics for portfolio optimization problem. 

(see Subsection A for problem formulation). All tests were 

performed on Intel Core 3770K processor @4.2GHz with 8GB 

of RAM memory, Windows 8 x64 operating system and 

Visual Studio 2012  with .NET 4.5 Framework.  

Solution number SN was set to 40, and maximum cycle 

number number MCN was set to 6000, yielding total of 

240,000 objective function evaluations (40*6000). The same 

number of objective function evaluations was used in ABC’s 

approach for constrained optimization presented in [27], and 

in the FA for constrained portfolio optimization in [24].  

Limit parameter is calculated using: 

 

     
SN

MCN
limit                            (30)                                            

Thus, in this case, limit is set to 150 (6000/40). According 

to ABC experimental studies, limit calculated with (30) 

established optimal balance between explotation and 

exploration [39].  

The algorithm was tested on 30 independent runs, each 

starting with a different random number seed.  

Since the portfolio of a five stocks is used, dimension D of a 

problem is 5. Each food source in the population is a 5-

dimensional vector. In initialization phase, food source x is 

generated using the following expression: 
 

          ,))(1,0( minmaxmin

iiii randx          (31) 

 

where rand(0, 1) is a random number uniformly distributed 

between 0 and 1. 

 Constraint handling techniques were used to direct the 

search process towards the feasible region of the search space. 

Equality constraints decrease efficiency of the search process 

by making the feasible space very small compared to the entire 

search space. For improving the search process, the equality 

constraints can be replaced by inequality constraints using the 

following expression [42]: 

 

                               ,0|)(| xh            (32) 
 

where 0 is very small violation tolerance. The   was 

dynamically adjusted according to the current algorithm’s 

iteration: 
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where t is the current iteration, and dec is a value slightly 

larger than 1. When the value of   reaches the predetermined 

threshold value, expression (33) is no longer applied. 

Summary of all ABC’s parameters is given in Table 4.  
 

TABLE IV 

FA PARAMETER SET 

Parameter Value 

Number of food sources (SN) 40 

Number of cycles (MCN) 6000 

Modification rate (MR) 0.8 

Limit 150 

Initial violation tolerance (ε) 1.0 

Decrement (dec) 1.002 

ωmin 0 

ωmax 1 

 

We also ran additional test where we wanted to see whether 

our algorithm could perform better if it used more function 

evaluations and to make better comparison with the FA [24]. 

For this additional test we set maximum cycle number MCN to 

8000 while keeping solution number SN on the previous value. 

In this way, we employed 320,000 function evaluations 

(40*8000). In this test, limit is set to 200 (8000/40).  

D. Experimental results and comparisons 

In experimental results, we show best, mean and worst 
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results for objective function value, variance (risk) and 

average return of portfolios (Table 5). In Table 6, we show 

portfolio weights for the best and worst results.  

 
TABLE V 

EXPERIMENTAL RESULTS 

 Best Worst Mean 

Objective function 4.529 4.656 4.608 

Variance 0.027 0.059 0.037 

Return 0.234 0.209 0.218 

 

 

   

TABLE VI 

PORTFOLIO WEIGHTS FOR BEST AND WORST RESULTS 

 ω1 ω2 ω3 ω4 ω5 

Best 0.021 0.505 0.310 0.065 0.099 

Worst 0.072 0.210 0.320 0.195 0.203 

 
We also wanted to see how our algorithm performs when 

the number of function evaluations is slightly greater. So, we 

ran additional test, but this time, we set the number of cycles 

(MCN) to 8,000, while the number of food sources (SN) 

remained the same as in the first experiment. This parameter 

set gives 320,000 (40*8000) function evaluations which is 

33.3 % higher than in the first experiment. The results are 

shown in the tables below. 

 

TABLE VII 

EXPERIMENTAL RESULTS WITH 320.000 EVALUATIONS 

 Best Worst Mean 

Objective function 4.513 4.612 4.587 

Variance 0.019 0.049 0.029 

Return 0.245 0.217 0.231 

  

 

  

TABLE VIII 

PORTFOLIO WEIGHTS FOR BEST AND WORST RESULTS IN 320.000 

EVALUATIONS TEST 

 ω1 ω2 ω3 ω4 ω5 

Best 0.032 0.569 0.355 0.031 0.013 

Worst 0.052 0.241 0.205 0.221 0.281 

 

If we compare ABC results obtained with 240,000 and 

320,000 evaluations, only slight improvement can be noticed. 

Bests are improved by 0.3% (4.529/4.513), worsts by 0.9% 

(4.656/4.612) and means by only 0.4% (4.608/4.587). If we 

compare those figures with the increase of 33.3% in function 

evaluations, we conclude that this is a bad trade-off. 

According to the experiment results presented in Tables 5 

and 6, ABC for constraint portfolio optimization performs 

similar like GA approach. Three variants of GA were shown 

[41]: single-point, two-point and arithmetic. Arithmetic variant 

performed significantly better than other two variants, but not 

better than the ABC approach presented in this paper, even 

with 240,000 function evaluations. At the other hand, ABC 

completely outperformed single-point and two-point variants 

of the GA. We should note that the objective function values, 

which should be minimized, were compared. GA experimental 

results for all three variants are shown in Table 9.  

 

TABLE IX 

GA EXPERIMENTAL RESULTS 

Objective function Variance Return 

Single-point variant 

4.900 0.019 0.204 

Two-point variant 

4.598 0.080 0.221 

Arithmetic variant 

4.532 0.0325 0.222 

 

As can be seen from Table 7, with higher number of 

function evaluations, our ABC algorithm performs far better 

than all three variants of the GA presented in [41]. 

FA metaheuristic was also tested on 240,000 and 320,000 

function evaluations [24]. Results for 240,000 and 320,000 

evaluations are given in Tables 10 and 11 respectively. 

 

TABLE X 

FA EXPERIMENTAL RESULTS WITH 240.000 EVALUATIONS 

 Best Worst Mean 

Objective function 4.542 4.698 4.615 

Variance 0.036 0.072 0.059 

Return 0.218 0.198 0.205 

    

    

TABLE XI 

FA EXPERIMENTAL RESULTS WITH 320.000 EVALUATIONS 

 Best Worst Mean 

Objective function 4.528 4.662 4.593 

Variance 0.032 0.064 0.051 

Return 0.231 0.208 0.217 

 

Also, in FA approach, a bad trade-off when more 

evaluations are used can be noticed [24]. Bests are improved 

by 0.3% (4.542/4.528), worsts by 0.7% (4.698/4.662) and 

means by only 0.4% (4.615/4.593) [24].We conclude that 

similar trade-off exist in the ABC and FA approach when 

considering results enhancements and the increase of number 

of evaluations. 

If we compare ABC and FA metaheuristcs for constrained 

portfolio optimization problem, we conclude that the ABC is 

noticeably better. If we compare test with 240,000 function 

evaluations, ABC’s superiority is evident. All three, best, mean 

and worst results are better. In 320,000 function evaluation 

tests, ABC also performs much better than the FA. 

Even if we compare ABC’s results with 240,000 and FA’s 

results with 320,000 evaluations tests, worst results that ABC 

obtains are better than worsts in FA implementation 

(4.656:4.662). Best and mean results are better in the FA, but 

with 33% more function evaluations. 

As a final conclusion, we state that the ABC algorithm has 

significantly better performance than GA nature-inspired 

algorithm [41] and the FA swarm intelligence metaheuristic 

when tackling the constrained portfolio optimization problem.  
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V. CONCLUSION 

In this paper, ABC algorithm for constrained portfolio 

optimization problem was presented. The implementation of 

the ABC for this problem was not found in the literature. The 

algorithm was tested on a set of five stocks portfolio. 

The results of the investigation reported in this paper show 

that the ABC swarm intelligence metaheuristic has potential 

for solving this problem. 

Two experiments were conducted with different number of 

function evaluations. In the first experiment (240,000 

evaluations), ABC performed better than all three variants of 

GA: single-point crossover, two-point crossover, and 

arithmetic version. Also, in this test, ABC completely 

outscored FA.  

In the second experiment (320,000 evaluations), the 

performance difference between ABC and GA is more 

expressed. Also ABC outperformed FA with the same number 

of evaluations.  

It is interesting to point out that the ABC with 240,000 

evaluations obtained better worst results than the FA with 

320,000 evaluations.  

ABC was applied only to the basic portfolio optimization 

problem definition. There is a large potential for applying 

metaheuristic techniques to this class of problems, because 

they appear not to be investigated enough. In the subsequent 

work, original, as well as the modified version of the ABC will 

be applied to the extended-mean variance, and other portfolio 

optimization models. Also, other swarm intelligence 

metaheuristics will be applied to various portfolio optimization 

problem models and definitions. 
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