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Abstract—The method of truncated eigenfunction expansions is 

used in the present paper to construct a semi-analytical solution for 

an eddy current problem containing a surface flaw. The flaw is 

represented by a cylindrical hole in the upper layer of a two-layer 

conducting medium. The axis of the cylindrical flaw coincides with 

the axis of an eddy current coil carrying alternating current. The 

obtained solution is semi-analytical since there are two steps in the 

solution procedure that require the use of numerical methods: (a) 

calculation of complex eigenvalues without apriori information on 

the location of the eigenvalues and (b) solution of a system of linear 

algebraic equations. Results of numerical calculations are presented. 

 

Keywords—Eddy current testing, change in impedance, 

separation of variables, eigenvalues.  

I. INTRODUCTION 

NALYTICAL solutions of eddy current testing problems for 

the cases of unbounded conducting media are well-known 

in the literature [1]-[3]. The presence of flaws in a conducting 

medium results in more complicated boundary value problems, 

which, in general, cannot be solved by analytical methods. 

Numerical methods (such as finite element methods [4]) are 

often used in such cases to calculate the electromagnetic field 

in the medium. If an eddy current problem is solved for an 

unbounded medium then it is assumed that the vector potential 

tends to zero as one of the geometrical coordinates tends to 

infinity. From a physical point of view the electromagnetic 

field is negligible at a sufficiently large distance from the 

source of current.  

This idea is used in [5] where the authors assumed that the 

vector potential is exactly zero at a large radial distance 

br  from the axis of a cylindrical coil. Later [3] many 

problems are solved using the same assumption. It is shown in 

[3] that the computational error can easily be controlled by 

choosing the value of b . The proposed method [3] is usually 

called the TREE method where the abbreviation stands for the 

TRuncated Eigenfunction Expansions.  

The approach based on the TREE method for a solution of 
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eddy current testing problems with cylindrical symmetry is 

presented in [3]. Different types of axisymmetric flaws are 

recently considered in the literature: (a) an infinite cylindrical 

hole in a conducting half-space [3], (b) a cylindrical hole of 

finite length in a conducting half-space [6], (c) a cylindrical 

inclusion in a half-space [7], (d) a surface cylindrical flaw in a 

plate [8]. Direct solution of such axisymmetric problems can 

be used in practice in order to estimate electrical conductivity 

of plates and other objects with cylindrical symmetry [9], [10]. 

In the present paper the TREE method is used to solve an 

eddy current testing problem for the case where a cylindrical 

air-core coil is located above a two-layer conducting medium 

containing a surface flaw in the form of a cylindrical hole 

coaxial with the coil. The problem is solved by the method of 

separation of variables. The obtained solution is semi-

analytical since there are two steps in the procedure that 

require the use of numerical methods: (a) calculation of 

complex eigenvalues without apriori information on the 

location of the eigenvalues and (b) solution of a system of 

linear algebraic equations. Such a model can be used to 

estimate the effect of corrosion in metal coatings. 

II. MATHEMATICAL FORMULATION OF THE PROBLEM 

Consider a cylindrical air-core coil of radii 1r and 2r ( 12 rr  ) 

located above a conducting two-layer medium (see Fig. 1). 

The upper layer of the conducting medium has the electrical 

conductivity 1 and is represented by regions 1R and 

2R whereas 2 the conductivity of the lower half-space 

(region 3R ). The coil carries an alternating current with 

frequency f . The lift-off is 1z and the height of the coil is 

.12 zz  The upper conducting layer (region 1R ) contains a 

flaw in the form of a cylindrical hole of radius c and height 

1d . The axis of the cylinder coincides with the axis of the coil. 

The thickness of the lower layer is 2d .  
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Fig. 1. A coil carrying an alternating current above a conducting 

medium with a flaw. 

 

 

The solution of the problem shown in Fig. 1 can be obtained 

by a superposition principle if one knows the solution of the 

corresponding problem for a single-turn coil (see Fig. 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A single-turn coil above a conducting medium with a flaw. 

 

   We assume that a single-turn coil of radius 0r is located at 

height h above the conducting medium shown in Fig. 2. The 

problem is axisymmetric so that the amplitude of the vector 

potential has only one non-zero component in the 

 direction (here ),,( zr   is the system of cylindrical 

polar coordinates centered at O ).  

The system of equations for the amplitude of the vector 

potential in regions )3,2,1,0( iRi has the form (see Fig. 2): 
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where )(x is the Dirac delta-function, 0 if 

cr 0 and 1  if brc  , b is the distance from 

the axis of the coil where the electromagnetic field is assumed 

to be exactly zero and f 2 .  

The boundary conditions are 

,3,12,0,0|  iA bri                                                  (5) 
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where 213 ddd  and the superscripts a and c correspond 

to air and conductive region, respectively. 
The interface conditions at cr  have the form 
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In addition, vector potential is bounded at infinity in regions 

0R and 3R : 

.as0,as0 30  zAzA                (12) 

III. SOLUTION FOR A SINGLE-TURN COIL 

In order to construct the solution to (1) we consider two sub-

regions of region 0R , namely, 

}0{00 hzR  and }{01 hzR  .The solutions in 

00R and 01R are denoted by 00A and 01A , respectively. Using 

the principle of superposition we represent the solutions to (1) 

in 00R and 01R in the form 
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where ii DD 21 , and iD3 are arbitrary constants, bii /  , 

i are the roots of the equation 

0)(1 J                                                                         (15) 

and )(1 xJ is the Bessel’s function of the first kind of order 

one. 

The vector potential is continuous at hz  : 

.|| 0100 hzhz AA                                                             (16)                                                                              

Integrating (1) with respect to z from h to h and 

considering the limit as  0  in the resulting equation we 

obtain 
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It follows from (13)-(17) that 
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Using (18) we obtain 
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Multiplying (19) by  rrJ j1 , integrating the resulting 

equation with respect to r  from 0 to b and using the 

orthogonality condition 
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the following equation is obtained 
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Equations (20) and (22) can be rewritten in the form 
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Substituting (23) and (24) into (13) and (14) we obtain 
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Using the method of separation of variables and superposition 

principle the solution in region 1R can be written in the form 
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)(1 xY is the Bessel’s function of the second kind of order one, 
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The solutions in regions 2R and 3R are 
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Multiplying (32) by  rrJ j1 , integrating the obtained 

equation with respect to r  from 0 to b and using (21) we 
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The coefficients ija can be computed using the following 

formulas from [11]: 
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Thus, using (36) and (37) we obtain 
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Applying the same procedure to (33) we obtain  
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Eliminating jD2 from (34) and (38) we get 
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Using boundary conditions (8) and (9) we can express 

constants jD6 and jD7 in terms of iD4 and iD5 : 
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Similarly, applying the boundary conditions (10) and using 

(40), (41) we eliminate jD6 , jD7 and jD8 to obtain 
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In order to solve the system (39), (42) numerically we have to 

truncate the number of terms in the series (in other words, the 

upper summation index in (39) and (42) should be  replaced by 

n ). Recommendations on the selection of the value of n are 

given, for example, in [12]. Thus, the system to be solved has 

the form 
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Using interface conditions (11) we obtain the following 

equation 
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1 cpJcqTqcqTcpJpp iiiiiii                      
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Equation (45) is used to determine complex eigenvalues 

ip and the corresponding values iq . The method of 

computation of the eigenvalues ip is based on the two papers 

[13] and [14] published in 1967and uses the Cauchy’s 

theorem. The number of zeros, 0s ,  of an analytic function 

)(z inside a closed contour C is equal to the following 

contour integral 

.
)(

)('

2

1
0 dz

z

z

i
s

C







                                                        (46)                                                                                          

Another interesting result from the theory of complex variables 

is the following [13]. If C is a closed curve in the complex 

plane which does not pass through a zero of )(z and G is 

the interior of C , then  

,
)(

)('

2

1

1





k

i

m

i

C

m

m dz
z

z
z

i
s 






                                (47) 

where kii ,...,2,1,  are all zeros of )(z which lie in 

G and .,...,2,1 km  A multiple zero is counted according to 

its multiplicity in (47). Using (47) we can construct a 

polynomial of degree k which has the same zeros 

kii ,...,2,1,  as the function )(z . Note that in this case 

the polynomial is not an approximation to )(z , it simply has 

the same roots as the function )(z . At this stage several 

possible strategies are available in order to find .i If the 

domain G is small enough and there is only one zero of 

)(z inside C , then 1k and the value of 1s from (47) 

gives us the only zero, 1 , of the function )(z inside C . 

However, if there is more than one root of )(z inside C then 

a polynomial is constructed using (47) and the roots of this 

polynomial can be calculated (for example, by means of 

Mathematica command Roots). As it is mentioned before, the 

roots of the corresponding polynomial are exactly the same as 

the zeros of )(z inside C . It is known that the roots of 

higher order polynomials can be quite sensitive to the variation 

of the coefficients of the polynomial. Thus, the number of 

zeros of )(z inside C should not be too large ( k should not 

exceed 5). As a result, if 5k then the domain G should be 

divided into smaller sub-domains so that the number of zeros 

of )(z in each sub-domain be smaller than 5.  

    The next practical issue is the shape of the contour C . Two 

basic shapes are recommended for calculations in [13]: circles 

and rectangles. The choice of the shape of the contour C is 

dictated by calculation of the contour integrals in (46) and 

(47). It is known that contour integrals can be conveniently 

calculated if C is a circle or rectangle. We choose rectangle as 

the basic shape of C since any rectangle can be easily sub-

divided into smaller rectangles. 

   As it has been already pointed out, there are two steps in the 

solution process where numerical calculations are necessary. 

First, one has to solve (45) and find the complex 

eigenvalues ip (and the corresponding values of 

),..,2,1, niqi  . Thus, the value of n in (43) and (44) 

represents the number of eigenvalues ip . Second, the system 

of linear equations (43), (44) has to be solved and all the 

constants niDD ii ,...,2,1,, 54  have to be determined. Next, 

we compute the coefficients njD j ,...,2,1,2  from (34).  

    It is seen from (25) and (26) that the vector potential in 

region 0R is the sum of the two terms. The second term on the 

right-hand side of (25) and (26) represents the vector potential 

of a single-turn coil located in an unbounded free space where 

the conducting medium is absent. The first term on the right-

hand side of (25) and (26) is the induced vector potential due 

to the presence of the conducting medium. Hence, the induced 

vector potential in region 0R is given by the formula 

).(),( 1

1

20 rJeDzrA i

z

i

i

ind i 




                                   (48) 

IV. CALCULATION OF THE CHANGE IN IMPEDANCE OF A 

SINGLE-TURN COIL 

The induced change in impedance of the coil shown in Fig. 

2 is given by the formula 

).,(2 0000 hrAr
I

j
Z indind 


                                            (49) 

Calculations are performed with Mathematica using (48) and 

(49). The following values of the parameters of the problem 

are chosen: 5.40 r mm, 2.0h mm, 31  Ms/m, 

52  Ms/m, 2.2c mm, 5.01 d mm, 102 d mm. 

The results are shown in Fig. 3 for seven values of frequency 

f from 1 kHz to 7 kHz (from top to bottom) with the step size 

of 1 kHz. 

 
Fig. 3. The change in impedance of the single-turn coil for seven 

frequencies from 1 kHz to 7 kHz ( 7.01 d mm, 3.02 d mm).  
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Computations are also performed for the case 7.01 d mm, 

3.02 d mm (the other parameter values are the same as in 

Fig. 3). The change in impedance is shown in Fig. 4.  

 
Fig. 4. The change in impedance of the single-turn coil shown in Fig. 

2 for seven frequencies from 1 kHz to 7 kHz ( 5.01 d mm, 

102 d mm).  

 

 

V. SOLUTION FOR A COIL OF FINITE DIMENSIONS 

The induced vector potential in region 0R for the case of a 

coil of finite dimensions shown in Fig. 1 is given by the 

formula 

dhdrhrzrAzrA

r

r

z

z

indind

coil 0000 ),,,(),(
2

1

2

1

  .                      (50) 

Note that numerical solution of the system (43), (44) for a 

single-turn coil can be found by substituting the values of 

0r and h into the right-hand side of (43). For a coil of finite 

dimensions such an approach cannot be used since we have to 

integrate the change in impedance over the cross-section of the 

coil (with respect to 0r and h ). In order to perform 

calculations for the coil of finite size we rewrite (43), (44) in 

the matrix form 

BXA


 ,                                                              (51) 

where the coefficient matrix A is  











2221

1211

AA

AA
A                                                                   (52)                                                                                                              

and the elements of the block matrices 211211 ,, AAA and 

22A are given by 

,)(),(11 jiij apjiA   ,)(),(12 jiij apjiA    
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The matrices X


and B


in (51) are 
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where 
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Hence, (51) can be written in the form  
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Solving the second equation in (55) we obtain 

.121

1

222 XAAX


                                                             (56)                                                                                                     

Substituting (56) into the first equation in (55) gives 
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                                               (57)                                                                                              

It follows from (56) and (57) that 
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Equation (34) should be written in matrix form: 

,2 bYD
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                                                                           (59)                                                                                                             
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Formula (48) for the induced vector potential of a single-turn 

coil can be rewritten in the form 

,),,,( 200 fDhrzrA Tind
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                                                 (62) 
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Substituting (62) into (50) and using the formulas                      
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we obtain the induced vector potential in air due to the 

presence of the conducting medium ( the current amplitude 

I in this case is replaced by the current density  
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The integral with respect to  in (64) can be computed in 

terms of the Bessel and Struve functions [11] as follows 

 
2

1

2

1

)()()()(
2

)( 01101

r

r

r

r

i

i

i

i

HJHJdJ


























 

The induced change in impedance of a coil of finite 

dimensions is calculated by means of the following formula 

[12]: 
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Using (64) and (65) we obtain the induced change in 

impedance of the coil in the form 
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VI. CALCULATION OF THE CHANGE IN IMPEDANCE FOR A COIL 

OF FINITE DIMENSIONS 

Calculations are done using formula (66) for the following 

values of the parameters of the problem shown in Fig. 

2: 31  Ms/m, 52  Ms/m, 2.2c mm, 5.31 r mm, 

52 r mm, 3.01 z mm, 6.22 z mm, 200N . Seven 

values of frequencies from 1 kHz to 7 kHz with the step size of 

1 kHz are used. Computational results are shown in Figs. 5-6. 

Fig. 5 plots the change in impedance of the coil for the 

following values of the parameters 5.01 d mm and 

102 d mm. 

 
Fig. 5. The change in impedance of the coil shown in Fig.2 for seven 

different frequencies from 1 kHz (top point) to 7 kHz (bottom point) 

for the case 5.01 d mm and 102 d mm. 

 

The graph of the change in impedance for the values of the 

parameters  7.01 d mm and 3.02 d mm is shown in Fig. 

6 for the same seven frequencies. 
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Fig. 6. The change in impedance of the coil shown in Fig.2 for seven 

different frequencies from 1 kHz (top point) to 7 kHz (bottom point) 

for the case 7.01 d mm and 3.02 d mm. 

VII. CONCLUSION AND DIRECTIONS OF FUTURE WORK 

The method of truncated eigenfunction expansions is used 

in the present paper to compute the change in impedance of a 

coil due to a cylindrical flaw in a conducting medium. The 

problem is solved by the method of separation of variables. 

The obtained solution is semi-analytical since the method of 

separation of variables is combined in the paper with 

numerical methods in order to compute complex eigenvalues 

and solve systems of linear algebraic equations. The method 

can be generalized for other problems with axial symmetry. 

Recently a similar asymmetric problem is solved in [15] 

where a coil is located above a conducting half-space with an 

infinite vertical cylindrical hole. The axis of the coil does not 

coincide with the axis of the hole. The problem is solved using 

the second order vector potential formulation of the Maxwell’s 

equations. Such an approach can also be generalized for the 

case considered in the present paper. 
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