
 

 

  
Abstract—The term predictive control designates a class of 

control methods which are suitable for control of various kinds of 
systems. The predictive control can be divided into several parts 
which are a model, a predictor, a cost function and constraints. The 
optimization problem must be solved in every each sampling period 
and it depends on parameters of the cost function and constraints. 
Various kinds of algorithms may be used for solving this problem. 
This contribution is focused on an analysis of the parameters of the 
cost function and the constraints and its effects to the optimization 
problem.  
 

Keywords—predictive control, cost function, constraints, 
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I. INTRODUCTION 
HE essential idea of predictive control [1], [2], [3], [4] 

is based on the possibility to predict behaviour of a 
system using its model. Predictive control can be divided into 
several parts.  

A predictor defines a relation between past and future 
values. There are a lot of methods how to obtain prediction 
equations. These methods are based on a model of the 
controlled system. The model describes a relation between 
input and output. A range of various models can be used (for 
instance transfer function, ARMA, neural network etc.). A 
widely used model in predictive control is the CARIMA 
model [5] which directly contains a difference of the 
manipulated variable. This model can be written in the 
following form  

 

( ) ( ) ( )knC+k=BukAy
∆

−1  (1) 

 
where polynomials A and B describes a transfer function of 

the system. Δ = 1 – z-1, y is the output variable, u is the 
manipulated value and n is a nonmeasurable noise which is 
assumed to have zero mean value and constant covariance. C 
is a colouring polynomial. 

On the basis of this model the predictor can be calculated. 
The predictor [6] can be divided into two parts: a free 
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response, which is that part of the systems response which is 
determined by past values of the systems inputs and outputs, 
and a forced response, which is determined by future control 
increments.  
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where y  and u  are future values, y  and u  are past 

values. Matrices G and X contain coefficients which are 
necessary to be calculated in order to obtain the predictor.  

The predictor can be also written in the form shown in eq 
(3)  

 

0y+uG=y ~ˆ  (3) 
 
where y0 is the free response of the process.  
Matrix G contains values of the step sequence and it can be 

written in the following form  
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Another part of predictive control is a cost function which 

can be defined as a sum of squares of control errors and 
squares of differences of the manipulated variable. The cost 
function can be written according to eq. (5) as 

 

( ) ( ) uuλ+wywy=J TT ~~-ˆ-ˆ  
( ) ( ) uu+wy+uGwy+uG=J T

0
T

0
~~-~-~ λ  

(5) 

 
where λ is a weighting factor which is another degree of 

freedom.  
It can be also written in the form, as presented in eq. (6)  
 

uHuugJ TT ~~~20 ++= c  (6) 
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where g is a gradient of the cost function and H is the 
Hessian matrix.  

The gradient and Hessian matrix can be written in the form 
shown in eq. (7)  

 
( )wyGg 0

TT −=  
IGGH T λ+=  

(7) 

 
The solution can simply be obtained by derivative of the 

cost function. Equation (8) considers the vector of the 
manipulated variable  

 
gHu 1−−=~

 
( )0ywKu −=~

 
(8) 

 

where ( ) TT GλIGGK
1−

+= .  
Only the first element is used and the whole procedure is 

repeated in the next sampling period. It is called the Receding 
Horizon concept.  

There are three important horizons in predictive control. N1 
and N2 are minimum and maximum prediction horizons. It 
means horizons over which are predicted output values. Nu is 
called a control horizon and it defines length of the vector of 
control increments.  

In technical practice often occur constraints of variables 
which causes that the analytical solution of the cost function is 
located outside the allowed area. In a constrained case 
alternative methods of optimization must be used to obtain the 
solution. The optimization must be as effective as possible.  

In the past, the predictive control was mostly applied for 
control of systems with large time constants. Nowadays it is 
also possible to apply it for control of systems with faster 
dynamics because of increasing computational power. But the 
optimization problem must be solved in each sampling period 
and computationally effective algorithms are required. The 
aim of the paper is to analyze the cost function and effects of 
constraints to an allowed area. 

II. CONSTRAINTS AND COST FUNCTION 
Computational costs of solving the optimization problem are 
dependent on a shape of the cost function and the allowed 
area.  

A. Cost Function 
As it is presented in eq. (5) the cost function is a quadratic 

function with the shape depicted in Fig. 1. In this figure, there 
is depicted the cost function for the first sampling period, but 
in the following steps the cost function looks similarly.  

 

 
Fig. 1. cost function (Nu = 2) 

 
Dimension of the cost function is equal to Nu + 1. It is not 

possible to show the n-dimensional function in 3D space in 
case Nu > 2. But it is possible to depict its cuts (or projections) 
with fixed values in other axes which is shown in Fig. 2.  

 

 
Fig. 2. cost function (Nu = 3, Δu(k + 2) = 0) 

 
The shape of this function is the same as in the previous 

case. The shape for other values of Δu(k + 2) is similar.  
According to its shape it can be solved by the derivative, 

because the cost function is unimodal with one local 
minimum.  

In multidimensional case, the shape of the cost function 
stays the same (multidimensional parabola), because of the 
quadratic equation.  

A. Constraints 
The values of variables in a real system are usually 

constrained. The constraints are mostly given by security 
conditions or technical limits. In this case the cost function is 
limited by a specific area.  

We can consider three types of constraints. The first one is 
constraint of difference of the manipulated variable. It can be 
written in the form represented in eq. (9).  

 

maxmin uuu ΔΔΔ ≤≤  (9) 
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It can be also expressed by a set of equations (10) 
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The system of equations can be written in a matrix form, as 

presented in eq. (11) 
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(11) 

 
where I is an identity matrix of dimension Nu × Nu.  
The constraints of the difference of the manipulated 

variable lead to the shape of the allowed area in the form of 
nD-cube which is depicted in Fig. 3 and Fig. 4.  

 

 
Fig. 3. Constraints of difference of manipulated variable (Nu = 2) 

 
The red point is a minimum obtained by derivative of the 

cost function. The green point is the global minimum of the 
allowed area (hereinafter referred to as the allowed solution).  

 

In the multidimensional case, the constraints are formed as 
nD-space.  

 

 
Fig. 4. Constraints of difference of manipulated variable (Nu = 3) 
 
The next type is the constraint of the manipulated variable. 

It can be expressed by equation (12).  
 

maxmin uuu ≤≤  (12) 
 
A set of equations is in form (13).  
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And the matrix form can be expressed as follows  
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where T is a lower triangular matrix with ones in the non-

zero positions.  
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The shape of the allowed area is depicted in Fig. 5.  
 

 
Fig. 5. Constraint of manipulated variable (Nu = 2) 

 
As it can be seen in figure 3 the range of Δu(k) is in the 

interval form.  But the next difference value Δu(k + 1) is 
dependent on the previous value of Δu(k). The interval of the 
vertical axis is being continuously moved which causes the 
shape depicted in Fig. 3. Every next interval of other axes in 
case of a multidimensional problem is also moved according 
to previous values of differences of the manipulated variable.  

 

 
Fig. 6. Constraint of manipulated variable (Nu = 3) 

 

The third type of constraint is defined as an interval of the 
output variable which can be written in the following form 

 

maxmin yy y≤≤  (15) 
 
There must be defined a relation between y and Δu. 

Equation (3) can be substituted to equation (15) and the 
constraint is expressed as follows 

 

max0min y+uGy y≤≤ ~Δ  (16) 
 
Equation (16) can be modified  
 

0max

0min

yyuG
yyuG
+−≥−

−≥
~
~

Δ
Δ

  
(17) 

 
The matrices A and b take the following form  
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If the mapping between manipulated and output values is 

feasible then the interval of output constraint corresponds to 
the interval of the manipulated variable constraint. In this case 
the shape of the allowed area, which is depicted in Fig. 7, is 
similar to the shape depicted in Fig. 5.  

 

 
Fig. 7. Constraint of output variable (Nu = 2) 
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This constraint can be also depicted in 3D form.  
 

 
Fig. 8. Constraint of output variable (Nu = 3) 

 
It is obvious that positions of the local and global 

minimums can be different and they are dependent on the cost 
function and constrains. The constraints can be combined each 
other and the allowed area is in the intersection of them, 
which is depicted in Fig. 9 and Fig. 10.  

 

 
Fig. 9. Combination of constraints (Nu = 2) 

 
It is interesting that the allowed solution is not the point 

closest to analytical solution due to shape of the equipotential 
lines.  

In multidimensional case, the shape of the constraints is a 
combination of nD-spaces. The ratio between the volume of 
the allowed area and the researched area is much smaller than 
it was in 2D case. The allowed solution is a point inside the 
nD-region (or on the border).  

 

 
Fig. 10. Combination of constraints (Nu = 3) 

 
The allowed area is continuous but we can consider other 

types of constraints e.g. discrete values, multi-intervals etc. In 
these cases a solution of the optimization problem may be 
more complicated, because the allowed area could be divided 
into several regions. This problem can be solved by soft-
constraints1 methods, but there must be defined some method 
of penalization of the cost function. It is also possible to 
consider the allowed area as continuous and use discretization 
after solving the optimization problem. 

III. SIMULATION AND ALGORITHMS 

A. Simulation 
As a simulation example is presented control of the 

following system of the second order  
 

( ) ( )( )180.40129.519
88.35

++
=

ss
sG

 
(19) 

 
The horizons were set as N1 = 1, N2 = 3 and Nu = 2 in order 

to have a possibility to show graphs (3D cost function and 2D 
allowed area).  

 
1 In case of soft-constraints, cost functions of points which 

are located outside of the allowed area are penalized. In case 
of hard-constraints, points outside an allowed area aren't 
allowed.  
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The constraints were set to the values shown in eq. (20).  
 

5.35 ≤∆≤− u  
120 ≤≤ u  
3100 ≤≤ y  

(20) 

 
The optimization problem was solved by Hill Climbing 

algorithm [7] combined with random walk method in order to 
find a first allowed member. An analytical solution and a zero 
point were tested first.  

Time responses of control are depicted in Fig. 11 and Fig. 
12.  
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Fig. 11. Setpoint and output variables of control process 
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Fig. 12. Manipulated variable of control process 

 
We can study the shape of the allowed area and values of 

the manipulated variables. It is obvious that the control error 
for k = 1 is large and there are also defined the constraints of 
difference of the manipulated variable, manipulated variable 
and output variable. The shape of the allowed area is depicted 
in Fig. 13.  

 

 
Fig. 13. Allowed area for k = 1 

 
It is obvious that the analytical solution is located outside 

the allowed area. For the unconstrained case the analytically 
computed value is Δu(k) = 10.4437. But the solution which 
was found within the allowed area is 3.5 because constraint of 
difference of the manipulated variable is Δumax = 3.5.  

The allowed area for k = 2 is depicted in Fig. 14. 
 

 
Fig. 14. Allowed area for k = 2 

 
In this step the analytical solution is much closer to the 

solution obtained inside the allowed area. The allowed area 
for k = 3 is depicted in Fig. 15.  
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Fig. 15. Allowed area for k = 3 

 
In the third step the analytical solution is inside the allowed 

area. In most cases the analytical solution is inside the allowed 
area so it could be find very quickly. In these cases the 
solution can be obtained by derivative of the cost function. In 
other cases must be used a suitable algorithm in order to find a 
solution inside the allowed area. These cases are mainly 
located around sudden changes of the reference signal, 
because of saturation of the requirements due to the 
constraints.  

 

 
Fig. 16. Elapsed time of computation 

 
The simulation was carried out in the Wolfram 

Mathematica environment and the elapsed time was measured 
by AbsoluteTime[] function. A size of population was defined 
as 50 members (Nu = 2). The absolute elapsed time depends 
on the computing capabilities and the characteristics of the 
cost function and the constraints. The maximum of the elapsed 
times determines the minimum size of the sampling period, 
and consequently the dynamics of the system.  

The time process of the elapsed time may be also used for 

comparison between different algorithms. However, the better 
way of the comparison is to use number of calculations of the 
cost function because of an independence of available 
computing resources and the time.  

IV. ALGORITHMS 
The searching of the solution can be divided into two 

phases. In the first stage is being searched an arbitrary 
solution which is placed inside the allowed area. The second 
phase consists of searching the best solution within the 
allowed area.  

 

 
Fig. 17. Searching solution inside the allowed area 

 
The simplest way how to find the allowed area is the 

random walks method [7]. This method is not suitable for 
solving of higher dimensional problems because its efficiency 
rapidly decreases with increasing dimension due to the ratio 
between the hyper-volume of the allowed and the researched 
area.  

The allowed area can be also found by the method of 
penalization of the cost function outside of the allowed area 
(soft-constraints). The question is how to penalize the cost 
function in order to find the allowed area quickly. For 
example multiplication of the cost function only increases 
value of the cost function but the gradient may stay similar. In 
this case the gradient methods may not converge to the 
allowed area. The analytical solution can be used as the initial 
estimate. Also a zero point [0,0, ..., 0] is a good candidate to 
be inside the allowed area. But zero values of difference of the 
manipulated variable correspond to the constant value of the 
manipulated variable and the free response of the system may 
not fulfil requirements on constraints of the output variable.  

The next method how to find the allowed area is to solve a 
system of inequalities with fixed future values of difference of 
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manipulated variables.  
The second phase can be solved by gradient methods 

because of the shape of the cost function. A general equation 
of the gradient method can be written in the form shown in eq. 
(21) 

 
( ) ( ) ( )( )xgxx fii +=+1  (21) 

 
where f(g(x)) is a function of the gradient of the cost 

function. Essential aspects in these methods are size of a step 
and an initial location, because the shape of the allowed area 
may cause that the best solution is in the different way than 
the way of the gradient (equipotential lines).  

One of the most suitable methods is quadratic programming 
[8], [9]. This method is often used in predictive control [11], 
[12], [13], [14] but it is also possible to use other methods 
which enable to solve this problem such as evolutionary 
algorithms [7]. Some methods must be adjusted because of the 
definition of the test function as a matrix notation. A 
combination of different methods may be used as well. A 
specimen2 cannot be used generally, because the shape of the 
allowed area may not be squared or discrete in all axes. There 
must be defined the test function instead.  

Disadvantage of quadratic programming (and many other 
methods) is higher computational cost and computational 
time.  

In cases when a model, initial conditions and a setpoint are 
known the problem can be solved offline [10].  

V. CONCLUSION 
In the paper were introduced basic aspects of solving the 
optimization problem in predictive control. In an 
unconstrained case it is possible to find the solution by 
derivate of the cost function. The cost function is a quadratic 
function, which is unimodal, and it has one local minimum. In 
a constrained case a shape of the allowed area depends on a 
type and values of constraints. In this case the analytical 
solution may be located outside of the allowed area. There are 
lots of algorithms which enable to solve this problem. One of 
the most effective methods is called quadratic programing but 
it is also possible to solve this problem by many other 
methods for example by methods based on evolutionary 
algorithms. The crucial issue of the optimization is 
computational costs because it must be solved on-line in each 
sampling period. Searching of the solution can be divided into 
two phases. In the first phase there must be found the allowed 
area. In the second phase there must be found the best solution 
inside the allowed area.  
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2 The specimen is a term which is used to describing constraints (types and 

values in every axis) in evolutionary algorithms.  
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