
 

 

 

Abstract—The purpose of the presented research is to improve 
color conversions of images that are losing important visual 
information when color reductions are applied. This in a very 
common problem in grayscale printing operations of color images 
when textual information and background have the same grayscale 
luminance value. Thus, taking into account the perceived neighboring 
color differences, the proposed algorithm adjusts iteratively the pixel 
values so that information that is usually lost in a standard color 
contraction becomes visible. 
 

Keywords—color to grayscale conversion, dimensionality 
reduction, information preserving color removal, iterative 
decolorization. 

I. INTRODUCTION 

ONVERSION from color to grayscale is a lossy process 
as it reduces a three-dimensional domain to a single 

dimension. The loss is an acceptable compromise that ensures 
compatibility with devices of limited capabilities or software 
that cannot handle the extra complexity associated with a three 
channel input. The main challenge is therefore creating an 
image that retains the core features of the original one, without 
introducing visual abnormalities. 

As human vision itself relies on luminance more than 
anything else, the most common procedure for grayscale 
conversion is weighted sum of the channel values that 
represent a particular color in the RGB model. While the end 
results are usually satisfactory, due to the fact that chroma and 
hue are completely ignored, some conversion scenarios have 
the potential of creating confusing outputs. To compensate for 
this drawback, modern algorithms usually add additional 
processing steps to the original grayscale conversion, aiming 
to optimize the result based on a previously defined evaluation 
function. 

A natural and information preserving conversion is useful 
for black and white typographies [1], document analysis, high 
performance binarization [2] or segmentation [3], local 
(adaptive) and global image processing [4], computer vision, 
as the algorithms usually receive as input grayscale images, 
which could end up being uniform using a standard color to 
grayscale algorithm. 

The rest of the paper is organized as follows. The next 
section is dedicated to related work. Section 3 contains the 
description of the algorithm we propose for grayscale 
conversion. The results and interpretation of the results are 

provided in Section 4, whereas the last section is reserved for 
conclusions and future work. 

II. RELATED WORK 

Based on how the pixels should be grouped, techniques for 
converting color images to grayscale can be roughly 
categorized as either global or local [5]. Global algorithms 
ensure that identical color pixels generate identical grayscale 
values. Local algorithms on the other hand, accomplish the 
conversion on small regions of the image, taking into 
consideration only the local features of those particular regions 
when applying the transformations. Whereas the algorithms in 
the first category are relatively fast, they offer poorer results 
than the ones based on local mapping. Yet, those in the latter 
category are orders of magnitude slower, due to the repetitive 
processing of overlapping regions, but produce better results. 
The classic conversion based on pixel luminance is perhaps 
the best example of global technique. 

Another classification splits the conversion methods into 
functional and optimizing [6]. Whereas functional conversions 
only rely on the actual pixel values to obtain the adequate gray 
scale pixel, optimizing methods also take into account more 
complex features than can only be obtained by analyzing the 
image as a whole. This classification, proposed by Benedetti et 
all [6], closely resembles the previous one, with the difference 
that it goes into more detail. Functional conversions can be 
further divided into trivial, direct methods and chrominance 
direct methods. Trivial methods either select a channel to 
represent the color, or average the values of the channels. 
Direct methods expand on the trivial ones, using weighted 
sums of the data channels. Chrominance direct methods aim to 
correct the results of direct conversion methods so that they 
better reflect human perception, as it illustrated by the 
Helmholtz-Kohlrausch effect. The optimizing methods vary 
greatly in their approaches [7], but they too can be classified 
into three groups. The first group consists of functional 
conversions that are then followed by various optimizations 
based on the characteristics of the image. The second employ 
iterative energy minimization, whereas the last category 
consists of various orthogonal solutions that do not fit within 
any of the previously enumerated categories. 

A different category altogether is the one that includes 
algorithms that are meant to code a color image into a 
grayscale image in such a way that the color image can be 
recovered from the printed grayscale result. One example is 
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[8]. In the proposed paper, the authors firstly convert the color 
image to grayscale, in order to make it as intuitive as possible 
to the human viewer. The grayscale image is split using 
wavelet transforms with a Haar operator. This yields a low 
resolution grayscale image and three texture layers (wavelet 
resonating factors) which are used to reconstruct the high 
resolution image from the low resolution. The process can 
repeat in order to split the image in more texture layers 
(similar to derivatives in 3 directions and different scales). 
Next, they encode the remaining, lost information, inside some 
of the texture layers. The image is then combined again. In this 
way, portions of texture are lost, but color can be fully 
recovered. 

Information loss as result of the conversion is expected and 
unavoidable. Each of the techniques enumerated has its own 
advantages and disadvantages, and produces images that are 
best suited for a particular kind of processing (ex: contrast 
enhancing [9]) or just preserving the ambiance of the image 
[10]. 

In addition, the more sophisticated algorithm is employed, 
choosing a suitable color distance metric [11] is important 
when evaluating the result of the image processing operation. 

The algorithm we propose is global, and its aim is directed 
primarily at converting human generated artificial RGB images 
that may become undistinguishable in grayscale. It should be 
noted though, that the algorithm is not limited strictly to a 
tridimensional color space, or the RGB color model [12]. 

III. ALGORITHM DESCRIPTION 

The input of the algorithm is an NM × matrix of vectors in 
the normalized RGB space, such that for each vector v , 

3]1,0[∈v . The output will be a NM ×  matrix of scalars, 

situated in the ]1,0[  range. 

Let there be three scalars ]1,0[,, ∈γβα , 

γβα ≥≥ and 1=++ γβα . In this context: 

- the module of vector v  is zyxv ⋅+⋅+⋅= γβα|| , 

where x , y and z  uniquely correspond to red, green or blue 

- the virtual module of vectors 1v and 2v  is 

|21|

|21||21||2,1|

zz
yyxxvv

−⋅
+−⋅+−⋅=

γ
βα

 
- regarding relation  , it is said that 21 vv  if and only if 

2||1| vv <  or 2||1| vv = , 21 xx <  or 2||1| vv = , 21 xx = , 

21 yy <  or 2||1| vv = , 21 xx = , 21 yy = , 21 zz ≤  

- an optimum modulo difference of 1v and 2v  

( )2,1( vvomd ) is defined as 2/|)2||1||2,1|( vvvv −+−  

if 21 vv  and 2/|)2||1||2,1(| vvvv +− otherwise 

 
Step 1 
The first step aims at initializing the data structures 

necessary for computation. Compute the modules of all vectors 

in the input matrix and store them in matrix A . 

Compute matrix BV  of ( ) NM ×+1  dimension, storing 

the optimum modulo differences of neighboring pixels, for the 

vertical direction. Similarly, compute the ( )1+× NM  BH  

matrix storing the optimum modulo differences for the 
horizontal direction. All components situated on the edge rows 

(i.e. rows 0  and M ) of matrix BV  and similarly the edge 

columns (i.e. columns 0  and N ) of BH  respectively are 0 ; 
this is due to the fact that the original matrix is considered to 
be bordered with same value elements as those situated on the 
edge of the matrix. 

 
Step 2 
For all entries in matrix A , evaluate the difference between 

neighboring element. That is, for NjMi ,1,,1 ==  and 

{ } 1,0,1,1, =+−∈ yxyx  compute the difference 

]][[]][[ xjyiAjiAdiff ++−= . Extract this result from 

the value stored in either BH  or BV  that corresponds to the 

optimum modulo difference of the vectors situated at ( )ji,  

and ( )xjyi ++ , . This step attempts to determine how large 

the gap between the ideal difference and that stored in the 
matrix actually is, and use it to correct the situation. 

However, the correction is not applied directly; instead, the 
correction is added to the structure corresponding to the 
original vector that is stored at the same coordinates in the 
original matrix. For edge elements, because there is no 
neighbor element, the contribution for that particular element 
is equal to 0. 

 
Step 3 
After all corrections have been accumulated, the correction 

is averaged to the number of vectors that contributed to the 
correction (the counter stored in the structure). The new 
correction is further decreased by a specified quota q  then 

applied to all values in matrix A  that correspond to the vector 
value group receiving the correction. The resulting value must 
be checked to prevent overflowing or under-flowing, therefore 

values are limited to ]1,0[ . 

The specified quota was introduced because changes in A  
tended to be radical and far from perfect, and left no place for 
improvement in future iterations. 

 
Step 4 
The new configuration of matrix A  is evaluated, and if it is 

better than the previous best alternative it is stored. An error 
index is computed based on how far neighboring elements in 

matrix A  are from the neighboring ideals stored in BH  and 

BV  respectively. The error index is the sum of modulo 

differences between neighboring elements in matrix A  and 

their corresponding values in either BH  or BV  If the newly 
computed error index is smaller than the previous best error 
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index, then the current A  matrix is a better approximation for 
the original matrix and the best matrix is updated. All 
corrections in the structures stored in the map are reset. If the 
upper limit of expected iterations has not been reached then 
Step 2 is run once again. 

 
Here is the pseudocode corresponding to the previously 

described algorithm: 
/* compute matrices A and G from input 
image */ 
for i : 0..m-1 do 
  for j : 0..n-1 do 
    G[i][j] = A[i][j] = mod(I[i][j]) 
  done 
done 
 
/* compute BV and BH */ 
for i : 1..m-1 do 
  for j : 0..n-1 do 
    BV[i][j] = opt_mod(I[i-1][j],I[i][j]) 
  done 
done 
 
for i : 0..m-1 do 
  for j : 1..n-1 do 
    BH[i][j] = opt_mod(I[i][j-1],I[i][j]) 
  done 
done 
 
/* initialize the edge elements to 0 */ 
for j : 0..n-1 do 
  BV[0][j] = BV[m][j] = 0 
done 
 
for i : 0..m-1 do 
  BH[i][0] = BV[i][n] = 0 
done 
 
/* initialize best matrix */ 
for i : 0..m-1 do 
  for j : 0..n-1 do 
    BM[i][j] = A[i][j] 
  done 
done 
BEI = error_index(A,BV,BH) 
 
iteration = MAX_ITERATIONS 
while iteration > 0 do 
 
  /* initialize the accumulator */ 
  for i : 0..MOD_RANGE do 
    ACC[i]=0 
  done 
 
  for i : 0..m-1 do 
    for j : 0..n-1 do 
      ACC[G[i][j]] = get_gap(i,j,A,BV,BH) 
    done 
  done 
 
  /* adjust matrix A */ 

  for i : 0..m-1 do 
    for j : 0..n-1 do 
      A[i][j] += ACC[G[i][j]] * q 
    done 
  done 
 
  /* compute the error index and update */ 
  EI = error_index(A,BV,BH) 
  if EI < BEI then 
    for i : 0..m-1 do 
      for j : 0..n-1 do 
        BM[i][j] = A[i][j] 
      done 
    done 
    BEI = EI 
  done 
 
  iteration -= 1 
done 
 

The usage of matrices BH and BV is no more than an 
optimization; had they not been used, in determining both the 
error index as well as the corrections it would have been 
necessary to compute the optimum modulo difference of 
various pixels in the image over and over again, which would 
have been time consuming. It is a classic instance of storage 
versus execution time tradeoff. 

IV. RESULTS 

The test machine for the algorithm was an Intel Core2Duo, 
with 2GB of RAM running 64bit Windows7. The algorithm 
was written in C++ using Visual Studio. 

The algorithm was tested on two types of images: real-life 
photos and artificially generated. 

For real-life photos, there is little or no difference between 
the grayscale image obtained through simple transformations 
and the one obtained through the adaptive algorithm. This may 
be due to the fact that a particular pixel value has a wide range 
of neighboring values, which means that the applied correction 
is neither too high, nor too low. Another reason could be the 
actual number of existing values: there are so many pixel 
values within a real-life photo that even if some pixels are 
transformed, the overall impact on the image is negligible. 

Some results obtained in the “real-life photos” test scenario 
are presented in Fig. 1, where the proposed algorithm and the 
traditional grayscale conversion are presented side by side. 
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For the artificially created images on the other hand, the 

situation could not be more different. For specifically chosen 
images, the simple grayscale conversion algorithm creates 
images with a single tone of gray, whereas the adaptive 
algorithm conversion algorithm produces images with 
distinguishable elements. What is also interesting is that if new 
elements are added to a color image, and both the original and 
modified image are converted to grayscale, regions of the 

image that were unmodified in the color image can end up 
being different in the final grayscale image, as can be seen in 
the first and second row of images in Fig. 2. This is due to the 
fact that the new information propagates to all the regions of 
the image through the neighboring relations that are constantly 
evaluated. 

 
Although the results were satisfactory, the execution time 

was hardly so. Therefore, an attempt was made to reduce the 
execution time. Based on the experience from the development 
stages, it was decided that the quota q should not be a fixed 

one, instead it should be dynamically adjusted. The quota 

q starts at a maximum level 0q ; with each new iteration, the 

value of q  is decreased by a constant predefined reduction 

factor r . To prevent the quota from becoming too small, at 
each new iteration the number of resulting underflow and 
overflow values is counted and if it goes beyond a certain 

threshold T , q  is reset to 0q  and the last iteration is 

repeated. Under normal circumstances there is no underflow or 
overflow. More significant though is the risk of having the 
changes become too “jumpy” and unpredictable, so a lower 

 

  

  

  

  
Fig. 1 Color to grayscale conversion of real-life photos: first row - 
original color image, manually edited by applying a response curve 

on all RGB channels, curve designed to enhance the appearance 
when printing grayscale; second row – original color image 

unprocessed; third row – grayscale image obtained using the regular 
method of individual pixel luminance; fourth row – grayscale image 

obtained using the proposed adaptive algorithm 

 

  

  

  

  
Fig. 2 Color to grayscale conversion of artificial images: first row - 
original color image, manually edited by applying a response curve 

on all RGB channels, curve designed to enhance the appearance 
when printing grayscale; second row – original color image 

unprocessed; third row – grayscale image obtained using the regular 
method of individual pixel luminance; fourth row – grayscale image 

obtained using the proposed adaptive algorithm 
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bound 1q , also has to be imposed on q . This lower bound 

allows for more free variation of the matrix values, but it is not 
so unpredictable to make recovery from an improbable path 
impossible. 

Following this change, visually, the resulting images were 
basically identical. From the mathematical point of view, there 
were slight differences between the images in the natural 
images, but within corresponding pixels, the difference was 
less than 1%. 

As can be seen from Fig. 3, the average number of iterations 
drastically decreases by employing the dynamic quota. 
However, it did not go as low as it had originally been 
estimated. One reason is that in the later iterations the changes 
from one image to another are relatively slow, and hardly ever 
will influence the resulting integer based representation of the 
solution. This was especially true for the natural images, with 
high number of pixel values and high number of distinct 
neighboring pixel values. An attempt to set a threshold for the 
iterations that became increasingly less significant was made, 
but fixing a universally acceptable value did not produce 
improved results. 

 

V. CONCLUSION OF FUTURE WORK 

Future work will concentrate on finding a more efficient 
storage mechanism; perhaps instead of using a map entry for 
every single possible entry, a group of pixels could be 
considered similar enough and be evaluated together. Even so, 
the memory requirement for storing all possible values for a 
24BPP image in a three dimensional matrix would require 
16M structures, with an 4 octets for counter and 4 more for 
correction, this leads to a total of 256MB. 

Another aim would be to improve execution time by 
parallelizing the code; though for most of it this should be 
simple, the fact that the algorithm repeatedly updates the 
correction value can be a hurdle. 

On a completely different note, it would be interesting to 
modify the algorithm to take into account more than the 
difference between a pixel and its neighbors. Instead, the ideal 
reference matrix could be computed based on a smoothed 
matrix. 

A more radical approach would be to try a local based 
iterative solution. For that segmenting the image beforehand 
would be necessary, probably by intersecting sets of 
segmented areas for each of the channels. The regions that 
form the image would impose a correction on the neighboring 
regions which would result in corrections applied to the pixels 
that form the area. This could either be applied as a unique 
processing mechanism or in correlation with the global 
correction mechanism. 
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Fig. 3 Average number of iterations before obtaining the “ideal” 

image using the fixed and dynamic quotas 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 207




