

Abstract—The purpose of the presented research is to improve
color conversions of images that are losing important visual
information when color reductions are applied. This in a very
common problem in grayscale printing operations of color images
when textual information and background have the same grayscale
luminance value. Thus, taking into account the perceived neighboring
color differences, the proposed algorithm adjusts iteratively the pixel
values so that information that is usually lost in a standard color
contraction becomes visible.

Keywords—color to grayscale conversion, dimensionality
reduction, information preserving color removal, iterative
decolorization.

I. INTRODUCTION

ONVERSION from color to grayscale is a lossy process
as it reduces a three-dimensional domain to a single

dimension. The loss is an acceptable compromise that ensures
compatibility with devices of limited capabilities or software
that cannot handle the extra complexity associated with a three
channel input. The main challenge is therefore creating an
image that retains the core features of the original one, without
introducing visual abnormalities.

As human vision itself relies on luminance more than
anything else, the most common procedure for grayscale
conversion is weighted sum of the channel values that
represent a particular color in the RGB model. While the end
results are usually satisfactory, due to the fact that chroma and
hue are completely ignored, some conversion scenarios have
the potential of creating confusing outputs. To compensate for
this drawback, modern algorithms usually add additional
processing steps to the original grayscale conversion, aiming
to optimize the result based on a previously defined evaluation
function.

A natural and information preserving conversion is useful
for black and white typographies [1], document analysis, high
performance binarization [2] or segmentation [3], local
(adaptive) and global image processing [4], computer vision,
as the algorithms usually receive as input grayscale images,
which could end up being uniform using a standard color to
grayscale algorithm.

The rest of the paper is organized as follows. The next
section is dedicated to related work. Section 3 contains the
description of the algorithm we propose for grayscale
conversion. The results and interpretation of the results are

provided in Section 4, whereas the last section is reserved for
conclusions and future work.

II. RELATED WORK

Based on how the pixels should be grouped, techniques for
converting color images to grayscale can be roughly
categorized as either global or local [5]. Global algorithms
ensure that identical color pixels generate identical grayscale
values. Local algorithms on the other hand, accomplish the
conversion on small regions of the image, taking into
consideration only the local features of those particular regions
when applying the transformations. Whereas the algorithms in
the first category are relatively fast, they offer poorer results
than the ones based on local mapping. Yet, those in the latter
category are orders of magnitude slower, due to the repetitive
processing of overlapping regions, but produce better results.
The classic conversion based on pixel luminance is perhaps
the best example of global technique.

Another classification splits the conversion methods into
functional and optimizing [6]. Whereas functional conversions
only rely on the actual pixel values to obtain the adequate gray
scale pixel, optimizing methods also take into account more
complex features than can only be obtained by analyzing the
image as a whole. This classification, proposed by Benedetti et
all [6], closely resembles the previous one, with the difference
that it goes into more detail. Functional conversions can be
further divided into trivial, direct methods and chrominance
direct methods. Trivial methods either select a channel to
represent the color, or average the values of the channels.
Direct methods expand on the trivial ones, using weighted
sums of the data channels. Chrominance direct methods aim to
correct the results of direct conversion methods so that they
better reflect human perception, as it illustrated by the
Helmholtz-Kohlrausch effect. The optimizing methods vary
greatly in their approaches [7], but they too can be classified
into three groups. The first group consists of functional
conversions that are then followed by various optimizations
based on the characteristics of the image. The second employ
iterative energy minimization, whereas the last category
consists of various orthogonal solutions that do not fit within
any of the previously enumerated categories.

A different category altogether is the one that includes
algorithms that are meant to code a color image into a
grayscale image in such a way that the color image can be
recovered from the printed grayscale result. One example is

Image Color Reduction
Using Iterative Refinement

Andrei Tigora, Costin A. Boiangiu

C

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 203

[8]. In the proposed paper, the authors firstly convert the color
image to grayscale, in order to make it as intuitive as possible
to the human viewer. The grayscale image is split using
wavelet transforms with a Haar operator. This yields a low
resolution grayscale image and three texture layers (wavelet
resonating factors) which are used to reconstruct the high
resolution image from the low resolution. The process can
repeat in order to split the image in more texture layers
(similar to derivatives in 3 directions and different scales).
Next, they encode the remaining, lost information, inside some
of the texture layers. The image is then combined again. In this
way, portions of texture are lost, but color can be fully
recovered.

Information loss as result of the conversion is expected and
unavoidable. Each of the techniques enumerated has its own
advantages and disadvantages, and produces images that are
best suited for a particular kind of processing (ex: contrast
enhancing [9]) or just preserving the ambiance of the image
[10].

In addition, the more sophisticated algorithm is employed,
choosing a suitable color distance metric [11] is important
when evaluating the result of the image processing operation.

The algorithm we propose is global, and its aim is directed
primarily at converting human generated artificial RGB images
that may become undistinguishable in grayscale. It should be
noted though, that the algorithm is not limited strictly to a
tridimensional color space, or the RGB color model [12].

III. ALGORITHM DESCRIPTION

The input of the algorithm is an NM × matrix of vectors in
the normalized RGB space, such that for each vector v ,

3]1,0[∈v . The output will be a NM × matrix of scalars,

situated in the]1,0[range.

Let there be three scalars]1,0[,, ∈γβα ,

γβα ≥≥ and 1=++ γβα . In this context:

- the module of vector v is zyxv ⋅+⋅+⋅= γβα|| ,

where x , y and z uniquely correspond to red, green or blue

- the virtual module of vectors 1v and 2v is

|21|

|21||21||2,1|

zz
yyxxvv

−⋅
+−⋅+−⋅=

γ
βα

- regarding relation  , it is said that 21 vv  if and only if

2||1| vv < or 2||1| vv = , 21 xx < or 2||1| vv = , 21 xx = ,

21 yy < or 2||1| vv = , 21 xx = , 21 yy = , 21 zz ≤

- an optimum modulo difference of 1v and 2v

()2,1(vvomd) is defined as 2/|)2||1||2,1|(vvvv −+−

if 21 vv  and 2/|)2||1||2,1(| vvvv +− otherwise

Step 1
The first step aims at initializing the data structures

necessary for computation. Compute the modules of all vectors

in the input matrix and store them in matrix A .

Compute matrix BV of () NM ×+1 dimension, storing

the optimum modulo differences of neighboring pixels, for the

vertical direction. Similarly, compute the ()1+× NM BH

matrix storing the optimum modulo differences for the
horizontal direction. All components situated on the edge rows

(i.e. rows 0 and M) of matrix BV and similarly the edge

columns (i.e. columns 0 and N) of BH respectively are 0 ;
this is due to the fact that the original matrix is considered to
be bordered with same value elements as those situated on the
edge of the matrix.

Step 2
For all entries in matrix A , evaluate the difference between

neighboring element. That is, for NjMi ,1,,1 == and

{ } 1,0,1,1, =+−∈ yxyx compute the difference

]][[]][[xjyiAjiAdiff ++−= . Extract this result from

the value stored in either BH or BV that corresponds to the

optimum modulo difference of the vectors situated at ()ji,

and ()xjyi ++ , . This step attempts to determine how large

the gap between the ideal difference and that stored in the
matrix actually is, and use it to correct the situation.

However, the correction is not applied directly; instead, the
correction is added to the structure corresponding to the
original vector that is stored at the same coordinates in the
original matrix. For edge elements, because there is no
neighbor element, the contribution for that particular element
is equal to 0.

Step 3
After all corrections have been accumulated, the correction

is averaged to the number of vectors that contributed to the
correction (the counter stored in the structure). The new
correction is further decreased by a specified quota q then

applied to all values in matrix A that correspond to the vector
value group receiving the correction. The resulting value must
be checked to prevent overflowing or under-flowing, therefore

values are limited to]1,0[.

The specified quota was introduced because changes in A
tended to be radical and far from perfect, and left no place for
improvement in future iterations.

Step 4
The new configuration of matrix A is evaluated, and if it is

better than the previous best alternative it is stored. An error
index is computed based on how far neighboring elements in

matrix A are from the neighboring ideals stored in BH and

BV respectively. The error index is the sum of modulo

differences between neighboring elements in matrix A and

their corresponding values in either BH or BV If the newly
computed error index is smaller than the previous best error

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 204

index, then the current A matrix is a better approximation for
the original matrix and the best matrix is updated. All
corrections in the structures stored in the map are reset. If the
upper limit of expected iterations has not been reached then
Step 2 is run once again.

Here is the pseudocode corresponding to the previously

described algorithm:
/* compute matrices A and G from input
image */
for i : 0..m-1 do
 for j : 0..n-1 do
 G[i][j] = A[i][j] = mod(I[i][j])
 done
done

/* compute BV and BH */
for i : 1..m-1 do
 for j : 0..n-1 do
 BV[i][j] = opt_mod(I[i-1][j],I[i][j])
 done
done

for i : 0..m-1 do
 for j : 1..n-1 do
 BH[i][j] = opt_mod(I[i][j-1],I[i][j])
 done
done

/* initialize the edge elements to 0 */
for j : 0..n-1 do
 BV[0][j] = BV[m][j] = 0
done

for i : 0..m-1 do
 BH[i][0] = BV[i][n] = 0
done

/* initialize best matrix */
for i : 0..m-1 do
 for j : 0..n-1 do
 BM[i][j] = A[i][j]
 done
done
BEI = error_index(A,BV,BH)

iteration = MAX_ITERATIONS
while iteration > 0 do

 /* initialize the accumulator */
 for i : 0..MOD_RANGE do
 ACC[i]=0
 done

 for i : 0..m-1 do
 for j : 0..n-1 do
 ACC[G[i][j]] = get_gap(i,j,A,BV,BH)
 done
 done

 /* adjust matrix A */

 for i : 0..m-1 do
 for j : 0..n-1 do
 A[i][j] += ACC[G[i][j]] * q
 done
 done

 /* compute the error index and update */
 EI = error_index(A,BV,BH)
 if EI < BEI then
 for i : 0..m-1 do
 for j : 0..n-1 do
 BM[i][j] = A[i][j]
 done
 done
 BEI = EI
 done

 iteration -= 1
done

The usage of matrices BH and BV is no more than an
optimization; had they not been used, in determining both the
error index as well as the corrections it would have been
necessary to compute the optimum modulo difference of
various pixels in the image over and over again, which would
have been time consuming. It is a classic instance of storage
versus execution time tradeoff.

IV. RESULTS

The test machine for the algorithm was an Intel Core2Duo,
with 2GB of RAM running 64bit Windows7. The algorithm
was written in C++ using Visual Studio.

The algorithm was tested on two types of images: real-life
photos and artificially generated.

For real-life photos, there is little or no difference between
the grayscale image obtained through simple transformations
and the one obtained through the adaptive algorithm. This may
be due to the fact that a particular pixel value has a wide range
of neighboring values, which means that the applied correction
is neither too high, nor too low. Another reason could be the
actual number of existing values: there are so many pixel
values within a real-life photo that even if some pixels are
transformed, the overall impact on the image is negligible.

Some results obtained in the “real-life photos” test scenario
are presented in Fig. 1, where the proposed algorithm and the
traditional grayscale conversion are presented side by side.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 205

For the artificially created images on the other hand, the

situation could not be more different. For specifically chosen
images, the simple grayscale conversion algorithm creates
images with a single tone of gray, whereas the adaptive
algorithm conversion algorithm produces images with
distinguishable elements. What is also interesting is that if new
elements are added to a color image, and both the original and
modified image are converted to grayscale, regions of the

image that were unmodified in the color image can end up
being different in the final grayscale image, as can be seen in
the first and second row of images in Fig. 2. This is due to the
fact that the new information propagates to all the regions of
the image through the neighboring relations that are constantly
evaluated.

Although the results were satisfactory, the execution time

was hardly so. Therefore, an attempt was made to reduce the
execution time. Based on the experience from the development
stages, it was decided that the quota q should not be a fixed

one, instead it should be dynamically adjusted. The quota

q starts at a maximum level 0q ; with each new iteration, the

value of q is decreased by a constant predefined reduction

factor r . To prevent the quota from becoming too small, at
each new iteration the number of resulting underflow and
overflow values is counted and if it goes beyond a certain

threshold T , q is reset to 0q and the last iteration is

repeated. Under normal circumstances there is no underflow or
overflow. More significant though is the risk of having the
changes become too “jumpy” and unpredictable, so a lower

Fig. 1 Color to grayscale conversion of real-life photos: first row -
original color image, manually edited by applying a response curve

on all RGB channels, curve designed to enhance the appearance
when printing grayscale; second row – original color image

unprocessed; third row – grayscale image obtained using the regular
method of individual pixel luminance; fourth row – grayscale image

obtained using the proposed adaptive algorithm

Fig. 2 Color to grayscale conversion of artificial images: first row -
original color image, manually edited by applying a response curve

on all RGB channels, curve designed to enhance the appearance
when printing grayscale; second row – original color image

unprocessed; third row – grayscale image obtained using the regular
method of individual pixel luminance; fourth row – grayscale image

obtained using the proposed adaptive algorithm

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 206

bound 1q , also has to be imposed on q . This lower bound

allows for more free variation of the matrix values, but it is not
so unpredictable to make recovery from an improbable path
impossible.

Following this change, visually, the resulting images were
basically identical. From the mathematical point of view, there
were slight differences between the images in the natural
images, but within corresponding pixels, the difference was
less than 1%.

As can be seen from Fig. 3, the average number of iterations
drastically decreases by employing the dynamic quota.
However, it did not go as low as it had originally been
estimated. One reason is that in the later iterations the changes
from one image to another are relatively slow, and hardly ever
will influence the resulting integer based representation of the
solution. This was especially true for the natural images, with
high number of pixel values and high number of distinct
neighboring pixel values. An attempt to set a threshold for the
iterations that became increasingly less significant was made,
but fixing a universally acceptable value did not produce
improved results.

V. CONCLUSION OF FUTURE WORK

Future work will concentrate on finding a more efficient
storage mechanism; perhaps instead of using a map entry for
every single possible entry, a group of pixels could be
considered similar enough and be evaluated together. Even so,
the memory requirement for storing all possible values for a
24BPP image in a three dimensional matrix would require
16M structures, with an 4 octets for counter and 4 more for
correction, this leads to a total of 256MB.

Another aim would be to improve execution time by
parallelizing the code; though for most of it this should be
simple, the fact that the algorithm repeatedly updates the
correction value can be a hurdle.

On a completely different note, it would be interesting to
modify the algorithm to take into account more than the
difference between a pixel and its neighbors. Instead, the ideal
reference matrix could be computed based on a smoothed
matrix.

A more radical approach would be to try a local based
iterative solution. For that segmenting the image beforehand
would be necessary, probably by intersecting sets of
segmented areas for each of the channels. The regions that
form the image would impose a correction on the neighboring
regions which would result in corrections applied to the pixels
that form the area. This could either be applied as a unique
processing mechanism or in correlation with the global
correction mechanism.

REFERENCES

[1] C.-A. Boiangiu, I. Bucur, A. Tigora “The image binarization problem
revisited: perspectives and approaches,” The Proceedings of Journal
ISOM, vol. 6, no. 2, December 2012, pp. 419-427.

[2] C.-A. Boiangiu, A. I. Dvornic. “Methods of bitonal image conversion
for modern and classic documents,” WSEAS Transactions on
Computers, vol. 7, no. 7, July 2008, pp. 1081 – 1090.

[3] C.-A. Boiangiu, D.-C. Cananau, B. Raducanu, I. Bucur, “A hierarchical
clustering method aimed at document layout understanding and
analysis,” International Journal of Mathematical Models and Methods
in Applied Sciences, vol. 2, no. 1, 2008, pp. 413-422.

[4] C.-A. Boiangiu, A. Olteanu, A. V. Stefanescu, D. Rosner, A. I. Egner ,
“Local thresholding image binarization using variable-window standard
deviation response,” in Proc. 21st International DAAAM Symposium,
20-23 October 2010, Zadar, Croatia, pp. 133-134.

[5] M. Cui, J. Hu, A. Razdan, P. Wonka, “Color to gray conversion using
ISOMAP,” The Visual Computer, vol. 26, no. 11, pp. 1349-1360.

[6] L. Benedetti, M. Corsini, P. Cignoni, M. Callieri, R. Scopigno, “Color
to gray conversions in the context of stereo matching algorithm: an
analysis and comparison of current methods and an ad-hoc theoretically-
motivates technique for image matching,” Machine Vision and
Applications, vol.23, no. 1, pp. 327-348.

[7] M. Ĉadík, “Perceptual evaluation of color-to-grayscale image
conversions,” Computer Graphics Forum, 2007, vol. 27, pp. 1745-
1754.

[8] R. L. de Queiroz, K. M. Braun, “Color to gray and back: color
embedding into textured gray images,” IEEE Transactions On Image
Processing, June 2006, vol. 15, no. 6.

[9] M. Grundland, N. A. Dodgson, “Decolorize: fast, contrast enhancing,
color to grayscale conversion,” Pattern Recognition, vol. 40, no. 11,
2007, pp. 2891-2896.

[10] A. Gooch, S. Olsen, J. Tumblin, B. Gooch, “Color2Gray: salience-
preserving color removal,” Proceedings of SIGGRAPH '05, 2005, pp.
634-639.

[11] X. Zhuang, N. E. Mastorakis, “The Color Relative Potential Field for
Color Image Segmentation,” in Proc. 16th WSEAS International
Conference on Circuits and Proceedings of the 16th WSEAS
International Conference on Systems (part of CSCC ‘12), Kos Island,
Greece, July 14-17, 2012, pp. 472-479.

[12] A. Tigora, C.-A. Boiangiu, “Image recoloring using iterative
refinement,” in Proc. 1st WSEAS International Conference on Image
Processing and Pattern Recognition (IPPR '13), Budapest, Hungary,
December 10-12, 2013, pp. 204-209.

Fig. 3 Average number of iterations before obtaining the “ideal”

image using the fixed and dynamic quotas

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 207

