
 

 

  
Abstract—In this paper we investigate a reduced Cosserat 

continuum. This model was suggested as possible model to describe 
granular materials. Here we get thermodynamic equations for the 
current and reference configuration.  
 

Keywords—continuum, model, thermodynamic.   

I. INTRODUCTION 

IN this work we are aiming to establish a system of 

thermodynamic equations for reduced Cosserat continuum. 
The idea of the reduced Cosserat continuum  as an elastic 
medium is proposed as a model for granular medium as well. 
This type of medium and its behavior is very important in 
different branches of engineering and industrial applications 
such as mining, agriculture, construction and geological 
processes.  

Most of the models suggest that the sizes of solid particles 
are negligible in comparison with typical distances between 
particles. Our model deals with granular materials where 
grain’s size and nearest-neighbour distance are roughly 
comparable. In contrast to solid bodies in granular materials 
there is no “rotational springs” that keep rotations of 
neighbouring grains. For example in the simplest case, solids 
can be modeled as an array of point masses connected by  
Springs [1]. 

Originally an idea of an equal footing of rotational and 
translational degrees of freedom appeared in [2]. In that work 
authors obtained good correspondents between their 
theoretical results with experimental data. We used this work 
as in inspiration in our studies. 
 

There are two well-known theories for described solids: 
moment theory of elasticity (Cosserat Continuum), moment 
theory of elasticity with constrained rotation (Cosserat 
Pseudocontinuum). There exists a vast amount of literature on 
these models, such as [3], [4], [5], [6], [7], [8]. A practical 
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application of these models requires an experimental 
determination of a large number of additional constants in 
constitutive equations. These theories can still be applied to 
granular media although there are many other specific models 
describing this type of media [9], [10], [11], [12], [13]. In 
recent papers [14], [15] more advanced Reduced Cosserat 
Continuum was suggested as possible model to describe 
granular materials.  In this continuum translations and 
rotations are independent, stress tensor is not symmetric and 
couple stresses tensor equal to zero. A feature of this model 
that it has a classical continuum as its static limit. More 
advanced studies of this model were performed quit recently in 
the works [16], [17], [18]. 

In this paper, we further develop results achieved in [19], 
[20], [21] for reduced Cosserat continuum as a suitable model 
for granular medium. In these works we have presented linear 
reduced Cosserat continuum equations, plane wave 
propagation and dispersion curves for an isotropic case. It is 
now very relevant study of thermal problem in the mechanics 
[22], [23], [24]. Here we present thermodynamic nonlinear 
reduced Cosserat continuum equations for the current 
configuration.   
 

II. SYSTEM OF EQUATION FOR THE CURRENT CONFIGURATION. 

In reduced Cosserat continuum each particle has 6 degrees 
of freedom, in terms of kinematics its state is described by 
vector r and turn tensor P. The turn tensor is orthogonal tensor 
that is defined by 3 independent parameters with determinant 
equal to 1. Current position of the body at time t is called the 
current configuration (CC). Let us introduce a basis 

ks
k xtx ∂∂= /),( rr , a dual basis ),( txskr  and a Hamiltonian 

for the CC 
k

k

x∂
∂

=∇ r
.  

In this paper we obtain thermodynamic equations for the 
nonlinear reduced Cosserat continuum as Eulerian description 
for the CC.  

Here we list equations that are necessary to establish the 
system of equations for the CC: 

 
a linear momentum balance equation 

∫∫ ⋅=
SV

dSdV
dt
d τnvρ

                                                       (1)                                                                                                                            
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a kinetic momentum balance equation 

∫∫ ⋅×=×+⋅
SV

dSdV
dt
d

)()( τnrvrωJ ρρ
                          (2)                                                                                                                     

an energy balance equation: 

QdSdV
dt
d

SV

+⋅⋅=Π+⋅⋅+ ∫∫ vτnωJv )
2

1

2

1
( 2 ρρωρ

   (3)                                                                                               
and the Reynolds transport theorem 

∫∫ =
VV

dVAAdV
dt
d

ρρ
                                                        (4)                                                                                                                  

where ρ is density for the CC, τ - stress tensor, v - velocity 

vector )( rv = , r - radius vector for the CC, ω - angular 

velocity vector )( PωP ×= , n - an outward unit normal to the 
surface S, J - mass density of an inertia tensor, Π - mass 

density of the strain energy, 
(...)(...))...(

.
∇⋅+

∂
∂

= v
t  - material 

time derivative, A - arbitrary scalar, vector or tensor field, V - 
volume limited by a surface S, Q - thermal power. To simplify 
calculations we assume that the body forces are equal to zero. 

We shall combine equation (4), Gauss-Ostrogradskii 
theorem and equations (1) and (2). As a result we get motion 
equations for the CC: 

vτ ρ=⋅∇                                                                           (5)                                                                                                                                                          
)( ωJωJωτ ⋅+⋅×= ρx ,                                                   (6)                                                                                                                             

where xτ  denotes a vector invariant of tensor τ . A 
definition of this vector invariant was given by Lurie [25]. 

Equations (5) and (6) are the first two equations in our 
system describing CC. 

Heat Q is sum of a heat coming into the volume V through 
its surface and a heat distributed in volume and can expressed 
as a following formula 

∫∫∫ ⋅∇−=+⋅−=
VVS

dVqqdVdSQ )( hhn ρρ .                (7)                                                                                                        

Here h is a heat flux vector, q is a heat source per unit mass. 
After combining equations (3), (4), (7) and applying an 

identity aAaAaA T ⋅∇⋅+⋅⋅∇=⋅⋅∇ )(   we arrive at 

∫ ∫ ⋅∇−+⋅∇⋅+⋅⋅∇=Π+⋅⋅+⋅
V V

T dVqdV )()()( hvτvτωJωvv ρρ 



.                                                                                              (8) 
Since volume V is an arbitrary volume, than using (8) and 

equation (5) we obtain the following relation 

hωωJvτ ⋅∇−+⋅⋅−⋅∇⋅=Π qT ρρρ )( 

                           (9)                                                                                                             

Now let us apply relation (6) for a second term in the right 
hand side of an equation above. The latter combined with 

0)( =⋅⋅× ωωω J  results 

)()( ωIτωτωωJ ×⋅⋅=⋅=⋅⋅− TT
xρ . 

The equality above was obtained with help of expression 
)()( aBAaBA ×⋅⋅=⋅⋅ x  with  B = I [26]. Now we can rewrite 

the equation (9) in the following form 

hωIvτ ⋅∇−+×+∇⋅⋅=Π qT ρρ )( .                              (10)                                                                                                            

A strain state for reduced Cosserat continuum is described 

by a strain tensor ),( txke . We can define it for the CC as: 
TT PFIe ⋅−= −

,                                                              (11)                                                                                                                                     

where F should satisfy a relation
TRF ∇=−1

 with R as a 
radius vector in the reference configuration. 

Let us differentiate the expression (11) with respect to time, 

using 
TT −− ⋅−∇= FvF  and ωPP ×−= TT



to obtain rhe 
ωIvevωeee ×+∇=⋅∇+×+= D .                                (12)                                                                                                                      

From now we will use this short notation for 

AvAAA ⋅∇+×+= ωD  for an arbitrary tensor A. 
Value AD is shown to be an objective derivative [11].      

The equation (12) is the compatibility equation for the CC. 
And it is number 3 in our system of equations. 

After having introduced strain and stress, it is necessary to 
establish a relation between them. This was done through 
constitutive equations. Let us substitute (12) in (10) and obtain 

heτ ⋅∇−+⋅⋅=Π qDT ρρ                                               (13)                                                                                                                             

One can easily recognize the first law of thermodynamics in 
(13). 

As we know from [25], the second law of thermodynamics 
can be expressed as 

0ln)( ≥∇⋅−⋅∇−− θρηρθ hhq ,                                  (14)                                                                                                          

where ),( θηη e=  is a unit entropy, θ is a temperature. 
Recombination of terms in the expression (13) gives us 

eτh Dq T ⋅⋅−Π=⋅∇− ρρ . 

Let us substitute this into (14) to get 

0ln ≥∇⋅−⋅⋅+Π− θρηρθ heτ DT




 

Further, we use θη−Π=f - the Helmholtz free-energy 
function. With equation above this results in 

0ln)( ≥∇⋅−+−⋅⋅ θηθρ heτ fDT
.                              (15)                                                                                                             

Applying a techniques describing in [26] we can get  

θ
θ


∂
∂

+⋅⋅
∂

∂
=

fDff
T

e
e .                                                     (16)                                                                                                     

Substituting (16) into (15) we obtain 

0ln)()( ≥∇⋅−+
∂
∂

−⋅⋅
∂
∂

− θθη
θ

ρρ he
e

τ 

fDf T

.               (17)                                                                                                       
It is shown in [25] that equation (17) holds only if 

0=
∂
∂

−
e

τ fρ
, 

0)( =+
∂
∂ η
θ

ρ f
, 0ln ≥∇⋅− θh , 

which leads us to the following result 

e
τ

∂
∂

=
fρ

                                                                         (18)                                                                                                                                               

η
θ

=
∂
∂

−
f

                                                                         (19)                                                                                                                                           

In our case a mass density Π is a function of two 
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arguments: a strain state e and a temperatureθ . A partial 

derivative of Π with respect to e  can be transformed in the 
following way 

eeeeeeee ∂
∂

=
∂
∂

−
∂
∂

+
∂
∂

=
∂
∂

∂
∂

+
∂
∂

+
∂
∂

=
∂
Π∂ ffff

)(
θθηθ

θ
θη

,      (20)        

 Here we used definition of f  and expression (19). Using 
this expression (20) and the equation (18) arrive at 

e
τ

∂
Π∂

= ρ
.                                                                        (21)                                                                                                                                        

The expression (21) is the constitutive equation for the CC. 
In order to obtain next equation for the CC we need to refer 

back to the expression (13). For that we introduce 

)( ηθρϕ  +−⋅⋅= fDT eτ - as unit energy dissipation. 

In the elastic medium 0=ϕ , thus the first law of 
thermodynamics has a following simple form 

h⋅∇−= qρηρθ  .                                                           (22)                                                                                                                                             

Since we consider isotropic media θ∇−= kh , where k  
denotes the coefficient of thermal conductivity. 

Time derivative of ),( θηη e= in combination with 
technique describing in [26] results in 

TD )( e
e

⋅⋅
∂
∂

+
∂
∂

=
ηθ

θ
ηη 



. 
And with help of formula (21) we arrive at  

θρηρθθ
θ
ηρθ ∇⋅∇+=⋅⋅

∂
∂

+
∂
∂ kqD T)( e

e
 .                    (23)                                                                                                        

Combining formulas (18) and (19) results in 

θρ
η

∂
∂

−=
∂
∂ τ

e

1

.                                                                 (24)                                                                                                    

Now we introduce θ
ηθχ

∂
∂

=
 - the specific heat capacity of 

constant deformation. 

After substitution of χ and (24) into (23) we arrive to the 
following equation 

TDkq )( e
τ

⋅⋅
∂
∂

+∇⋅∇+=
θ

θθρθρχ  .                             (25)                                                                                                                  

The last equation is a heat conductivity equation for the CC 
and it is the fifth equation in our system. 

The system of equation for the CC will not be full without 
the mass conservation law [25]  

0=⋅∇+ vρρ .                                                                 (26)        

III. SYSTEM OF EQUATION FOR THE REFERENCE 

CONFIGURATION. 

Now let us obtain the system of equation for the 
reference configuration (RC). Usually RC is selected as a 
known position of the body at the initial time t = 0. 

Let )()0,( ss xx Rr = . We introduce the 

basis ks
k xx ∂∂= /)( RR , the dual basis )( sk xR  and the 

Hamiltonian in the RC  s
s

x∂
∂

=∇ R


. 

To write down the system of equation for the RC we need to 
use tensors and vectors in a basis for the RC. 

For the RC we need to use “rotated” velocities vector 

vPV ⋅= T                                                                            (27) 

ωPΩ ⋅= T                                                                            (28) 
The vector Ω is used in rigid body dynamic [27]. There it 

was called the right angular velocity vector and is defined by 
the equation 

ΩPP ×= ,                                                                           (29) 

where (...))...(
.

t∂
∂

= . 

For the CC tensor J was defined as follows 
TPJPJ ⋅⋅= 0 [27], where 0J  is the known mass density of an 

inertia tensor for the RC. The stress state for the RC for the 
reduced Cosserat continuum is described by the stress tensor 
[26] 

PτFT ⋅⋅= −10

ρ
ρ

,                                                                (30) 

where 0ρ  is a density in RC, TrF


∇= . 

The strain state for the RC is described by the strain tensor 
[26] 

IPFE −⋅= T                                                                       (31) 
This strain tensor is identically equal to zero when body 

moves as rigid. 
Define 0V as a volume for the RC which changes in V for 

the CC. Volumes V and 0V  consist of the same particles. 

The Nanson’s formula is necessary to establish the system of 
equation for the RC [25]: 

0
10 dSdS −⋅= FNn

ρ
ρ

,                                                          (32) 

where N is an outward unit normal to the surface 0S . 

 So we shall combine equation (1), (32) and Gauss-
Ostrogradskii theorem.  

Because 0V  is arbitrary, we get 

s

T
sT

x∂
∂

⋅⋅+⋅⋅∇=
P

TRPTv


0ρ .                                           (33) 

To be able to write down motion equations and compatibility 
equations we need an additional tensor K . 

TT PKP ×−=∇


.                                                                 (34) 

Hence T
ss

T

x
P

PK ×−=
∂
∂

,                                                   (35) 

 because K  satisfies a relation s
sKrK = . 

Now let us apply relation (35) for a second term in the right 
hand side of an equation (33). The latter combined with 

T
xx AA −= and k

k
x

T KARKA ×⋅=⋅ )( , that is valid for any 

tensor A, results 
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T
x

TT
s

s

T
s

s
s

T
s

x
PTKPKTR

PKTR
P

TR

⋅⋅=⋅×⋅−=

=×⋅⋅−=
∂
∂

⋅⋅

)()(

)(
                                (36) 

Then we shall transform term in the left hand side of an 
equation (33).  

TPVΩVVPVΩPVPv ⋅×+=⋅+⋅×=⋅= )()()( 


               (37) 

Let us return to the equation (33) and multiply it by the 
tensor P on the right. After combining equations (33), (36) and 
(37) we obtain a local form of the linear momentum balance 
equation for the RC 

)()( 0 VΩVTKT ×+=⋅+⋅∇ 



ρx
T                                        (38) 

The equation (38) is the first motion equation for the RC. 
Further we shall combine equation (2), (28), (30), (32) and  

Gauss-Ostrogradskii theorem. Since volume 0V  is an arbitrary 

volume, than we get 

k
TkT rPTRrPTvrJP ×⋅⋅−×⋅⋅∇−=×+Ω⋅⋅ )())()(( 00





ρ                                            

                                                                                             
(39) 

Now let us transform a second term in the left hand side of 
an equation above. 

TPVΩVrvr ⋅×+×=× )()( 
 .                                             (40) 

Than we transform the first term in the left hand side of an 
equation (39). 

)()( 000 ΩJΩΩJPΩJP ⋅×+⋅⋅=⋅⋅                                     (41) 

Now let us apply relation (36) for the first term in the right 
hand side of an equation (39). 

T
x

TT PTKTrrPT ⋅⋅+⋅∇×−=×⋅⋅∇ ))(()(


.                      (42) 

Then we apply equation (31) for a second term in the right 
hand side of an equation (39). 

x
T

k
Tk ))(( TIEPrPTR ⋅+⋅−=×⋅⋅ .                                (43) 

So after combining equations (38), (40), (41), (42, (43) we 
arrive at a local form of the kinetic moment balance equation 
for the RC. 

)())(( 000 ΩJΩΩJTIE ⋅×+⋅=⋅+ ρx
T .                             (44) 

The equation (44) is a second motion equation for the RC.  
Equations (38) and (44) are the first two equations in our 

new system describing RC. 
Now let us obtain compatibility equations for the RC. 
For the RC basis does not depend on time. So after using the 

opportunity to reshuffle t∂∂ / and x∂∂ /  we get  

vF


 ∇=T .                                                                            (45) 
We shall differentiate with respect to time equation (31). 

As we know 0=I .  Using equations (27), (29), (45) we 
obtain 

ΩPFPE ×⋅+⋅∇= T


 .                                                         (46)  
Now let us apply relation (27), (34) for the first term in the 

right hand side of an equation (46). 

VKV

vPKVvPPvP

×+∇=

=⋅×+∇=⋅∇−⋅∇=⋅∇




TT)(
                    (47) 

 
Further let us apply relation (31) for a second term in the 

right hand side of an equation (46). So we get  

ΩIEVKVE ×++×+∇= )(


 .                                            (48) 

The equation (48) is the first compatibility equation for the 
RC. And it is number 3 in our new system of equations. 

Now let us obtain equation relating K and Ω. We shall 
transpose both sides of the equation (29). We arrive at  

)( T
s

sT

s

T
sTT

x

PKΩRPΩ

PΩRPΩP

××+×∇−=

=
∂
∂

×−×∇−=∇







                                   (49) 

Now let us transform a second term in the right hand side of 
an equation (49). The latter combined 
with AbaAabAba ××+××=×× )()()( , which is valid for 

any a, b, A [27] results 

TTTT PΩKPΩKPΩP ××−××+×∇−=∇ )()(


                (50) 

Than let us differentiate with respect to time expression (33), 
so we get 

)()( TTT PΩKPKP ××+×−=∇ 



                                      (51) 

For the RC basis does not depend on time, which leads to 

)()( 



TT PP ∇=∇ . 

As we can see the left hand side of an equation (50) is equal 
to the left hand side of an equation (51). We obtain the 
following relation 

TT PΩKΩPK ××+∇=× )(


 . Hence 

ΩKΩK ×+∇=


 .                                                               (52) 
The equation (52) is the second compatibility equation for 

the RC. And it is number 4 in our new system of equations. 
Further let us return to an energy balance equation (3). For 

RC it can be expressed as a following formula: 

QdSdV
dt
d

SV

+⋅⋅=Π+⋅⋅+ ∫∫
00

00000
2

0 )
2

1

2

1
( VTNΩJΩV ρρρ

                                                                                             (53)    

Thermal power is  0

0

0 )(

0

dVqQ
V
∫ ⋅∇−= Hρ  for the RC, where 

H is a heat flux vector for RC and hJFH 1 ⋅= − .               
Applying a techniques describing above for CC we can get 

HΩJVTVVT ⋅∇−+⋅Ω⋅−∇⋅⋅+⋅−⋅∇=Π
0

000

0

0

0

0 )()( qT ρρρρ 

and than 

HΩIEVVKT
0

⋅∇−+×++∇+×⋅⋅=Π
0

00 ))(( qT ρρ  .    (54) 

An expression in brackets in the right hand side of an 

equation (54) is E . So we can easily get 
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HET ⋅∇−+⋅⋅=Π
0

00 qT ρρ  .                                              (55) 

The second law of thermodynamics for RC can be expressed 
as 

0ln)(
00

00 ≥∇⋅−⋅∇−− θρηθρ HHq .                                 (56) 

Let us substitute (55) to (56) and use ),( θEff = - the 

Helmholtz free-energy function to get 

0ln)(
0

0 ≥∇⋅−+−⋅⋅ θηθρ HET 
 fT                                   (57) 

The latter combined with θ
θ





∂
∂

+⋅⋅
∂

∂
=

fff
T

E
E

 results 

 

0ln)()(
0

00 ≥∇⋅−+
∂
∂

−⋅⋅
∂
∂

− θθη
θ

ρρ HE
E

T 


ff T .              (58) 

As we say earlier equation (58) holds only if 

00 =
∂
∂

−
E

T
fρ , 0)(0 =+

∂
∂ η
θ

ρ f
, 0ln

0
≥∇⋅− θH , 

which leads us to the following result 

E
T

∂
∂

=
f

0ρ .                                                                     (59)                                                       

One can easily recognize that an equation (20) can be 
expressed as 

EEEEEEEE ∂
∂

=
∂
∂

−
∂
∂

+
∂
∂

=
∂
∂

∂
∂

+
∂
∂

+
∂
∂

=
∂
Π∂ ffff

)(
θθηθ

θ
θη        (60) 

for RC.  
 Using this expression (60) and the equation (59) arrive at 

E
T

∂
Π∂

= 0ρ .                                                                    (61)                                                                                                                                        

The expression (61) is the constitutive equation for the RC. 
Now let us introduce unit energy dissipation for the RC 

)(0 ηθρϕ  +−⋅⋅= fT ET .                                                   (62) 

In the elastic medium 0=ϕ , thus the first law of 
thermodynamics for the RC has a following simple form 

H⋅∇−=
0

00 qρηθρ  .                                                       (63) 

Applying a techniques describing for the CC we can get 

Tq E
T

H 
 ⋅⋅

∂
∂

+⋅∇−=
θ

θρθχρ
0

00 .                                       (64) 

Since we consider isotropic media θ
0

1 ∇⋅−= −GH k , where 

)(1 IEEEEJG +++= − TT . 

Now we arrive to the following equation 

Tkq E
T

G 
 ⋅⋅

∂
∂

+∇⋅⋅∇+= −

θ
θθρθχρ

0
1

0

00 .                           (65) 

The last equation is a heat conductivity equation for the RC 
and it is the sixth equation in our system. 

                                                                                                                                     

IV. CONCLUSION 

Here we gather all the equation in our system. 
For the CC: 

motion equations                

vτ ρ=⋅∇ ,                                                                                                                                                                                                            
)( ωJωJωτ ⋅+⋅×= ρx , 

the compatibility equation                 
ωIvevωee ×+∇=⋅∇+×+ , 

the constitutive equation   

e
τ

∂
Π∂

= ρ
,      

the heat conductivity equation         

TDkq )( e
τ

⋅⋅
∂
∂

+∇⋅∇+=
θ

θθρθρχ  ,                                                                                                                                       

the mass conservation law            
0=⋅∇+ vρρ . 

The system for the CC consists of 26 equation and depends 
on the following unknown functions: 9 stresses τ , 9 strains e , 

6 velocities v ,ω , temperature θ  and density ρ. As a result we 
have 26 unknown functions. The problem becomes fully set 
after adding the boundary and initial conditions. 

For the RC: 
motion equations                

)()( 0 VΩVTKT ×+=⋅+⋅∇ 



ρx
T ,                                                                                                                                                                                                            

)())(( 000 ΩJΩΩJTIE ⋅×+⋅=⋅+ ρx
T , 

the compatibility equation                 

ΩIEVKVE ×++×+∇= )(


 , 

ΩKΩK ×+∇=


 , 
the constitutive equation   

E
T

∂
Π∂

= 0ρ ,      

the heat conductivity equation         

Tkq E
T

G 
 ⋅⋅

∂
∂

+∇⋅⋅∇+= −

θ
θθρθχρ

0
1

0

00 .                                                                                                                                       

 
The system for the RC consists of 34 equation and depends 

on the following unknown functions: 9 stresses T, 9 strains E, 

6 velocities V, Ω , temperature θ  and 9 components of the 
additional tensor K. As a result we have 34 unknown 
functions. 

The main advantage of our work is that our description as 
for the CC as for the RC does not contain kinematic unknown 
r, P as well as strain gradient F. Unknowns r, P can be found 

by integrating equations rv = , PωP ×=  after solving the 
system of equation.  
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