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Abstract—In many real-world optimization problems, a wide range
of uncertainties have to be taken into account. Therefore, real-world
optimization problems can be regarded as uncertain optimization
problems. In uncertain optimization problems, objective function
values observed are corrupted by noise. A number of evolutionary
algorithms reported to solve uncertain optimization problems use
the average of randomly sampled values as an estimate of the true
objective function value. In this paper, a predicted upper bound of
the noisy objective function’s values is used to evaluate the quality
of solutions of uncertain optimization problems. This is because we
should prepare for the worst possible pass in real-world optimiza-
tion problems. In accordance with the new criterion of solutions,
uncertain optimization problems are formulated as worst-case value
minimization problems in which the predicted upper bound of the
noisy objective function’s values is minimized. An extended variant
of a recently-developed evolutionary algorithm, namely Differential
Evolution (DE), is also proposed to solve the worst-case value
minimization problems effectively. In order to allocate the computing
budget to promising solutions, the extended DE adopts two pruning
techniques, namely prediction interval and cutoff point, which can
judge and discard hopeless solutions only by a single sampling.

Keywords—Uncertain optimization problem, probabilistic method,
prediction interval, evolutionary algorithm, differential evolution.

I. INTRODUCTION

IN MANY real-world optimization problems, a wide rangeof uncertainties have to be taken into account. Therefore,
they can be regarded as uncertain optimization problems.
In uncertain optimization problems, objective function values
observed are corrupted by noise. A number of Evolution-
ary Algorithms (EAs) have been reported to solve uncertain
optimization problems [1], [2], [3], [4], [5]. Conventional
EAs for uncertain optimization problems use the average of
randomly sampled values as an estimate of the true objective
function value. However, because noise is inevitable in real-
world optimization problems, we should prepare for the worst
possible pass in uncertain optimization problems [6], [7].
In this paper, we provide a new class of uncertain opti-

mization problems. First of all, we suppose that the objective
function is subject to noise, and the underlying distribution of
noise also depends on the decision variables. Therefore, the
new class of uncertain optimizations problem can be regarded
as a general form of the noisy problem in which the robustness
of solutions is required too. We also define a new criterion
of solutions based on the statistical estimation of the worst
objective function value. In accordance with the new criterion
of solutions, we formulate uncertain optimization problems as
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worst-case value minimization problems in which a predicted
upper bound of the noisy objective function’s values is mini-
mized. Multiple sampling is a well-knownmethod to overcome
noisy and robust problems [1], [2]. Multiple sampling suggests
evaluating the same solution for N times and approximating
the true objective function value by averaging. On the other
hand, we use the set of randomly sampled N values to predict
the worst value of the noisy objective function.
Differential Evolution (DE) [8], [9], [10] is a recently-

developed EA. DE is arguably one of the most powerful
stochastic real-parameter optimization algorithms in current
use. Due to its simple but powerful searching capability, DE
has been used successfully in many scientific and engineering
applications [11], [12], [13], [14], [15]. As well as other EAs,
DE attracts attention as a method not only for deterministic
optimization problems, but also for uncertain optimization
problems because of is characteristics of
1) direct optimization method that uses only objective
function values,

2) stochastic search for global optimization,
3) self-averaging nature of population-based search.
Consequently, a number of variants of DE have been re-

ported for conventional uncertain optimization problems as we
will mention those variants later [3], [4], [5], [16], [17].
In this paper, an extended DE is proposed for solving

new uncertain optimization problems, namely worst-case value
minimization problems, in which the predicted worst value
of noisy objective function is minimized. The worst value
is predicted by multiple sampling that evaluates the same
solution N times. In order to allocate the computing budget
to promising solutions, the extended DE adopts two pruning
techniques, namely prediction interval and cutoff point. Due
to the two pruning techniques, the extended DE can judge and
discard hopeless solutions only by a single sampling.
The organization of this paper is as follows. After this

introduction, Section II attempts to provide an overview of
the related work. Conventional uncertain optimization prob-
lems are categorized into four classes. Existing approaches
to addressing different uncertainties are also presented and
discussed. Section III provides the fundamentals of mathe-
matical statistics for deriving the prediction interval of noisy
objective function’s value, followed by the formulation of a
new class of uncertain optimization problems, namely worst-
case value minimization problems. Section IV describes the
cardinal DE that can be applied directly to the worst-case value
minimization problem too. Section V proposes an extended DE
that adopts prediction interval and cutoff point to allocate the
computing budget to promising solutions. Through numerical
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experiments conducted on various benchmark problems, the
performance of the extended DE is demonstrated in Section
VI. Finally, concluding remarks are made in Section VII.

II. RELATED WORK

Evolutionary Algorithms (EAs) often used to solve various
optimization problems in the presence of a wide range of
uncertainties. Generally, uncertain optimization problems can
be categorized into the following four classes [2].

• Noisy problem: The objective function of the optimiza-
tion problem is subject to noise. Noise in objective
function may come from many different sources such as
sensory measurement errors or randomized simulations
[1], [3], [4], [5], [18]. Mathematically, a noisy objective
function can be described as followes:

F (�x) = f(�x) + ε, (1)

where �x ∈ �D is a vector of decision variables that
can be changed by the algorithm, f(�x) ∈ � is a time-
invariant objective function, ε is additive noise which is
often assumed to be normally distributed with zero mean
and variance σ2: ε ∼ N (0, σ2). Therefore, the noisy
objective function F (�x) ∈ � is also normally distributed
with mean μ(�x) = f(�x) and variance σ2 as

F (�x) ∼ N (μ(�x), σ2). (2)

Ideally, EAs should work on the expected objective
function f(�x) and not be failed due to the presence of
noise. However, during optimization, the only measurable
objective function value is stochastic F (�x) = f(�x) + ε.
Therefore, in practice, the the expected objective function
value f(�x) is often approximated by an averaged sum of
a number of random samples as follows:

F (�x, N) =
1
N

N∑
n=1

(f(�x) + εn), (3)

where N is the number of samples.
• Robust problem: The decision variables are subject to
perturbations or changes after the optimal solution has
been determined. This kind of uncertainties concerns pro-
duction tolerances and limitations, or actuator imprecision
acting directly on the decision variables [19], [20], [21].
A common requirement is that a solution �x ∈ �D should
still work satisfactorily when the design variables change
slightly. Therefore, in this class of uncertain optimization
problems, an objective function can be described as

F (�x) = f(�x + �ε), (4)

where the probability distribution of the possible distur-
bance �ε = (ε1, · · · , εD) ∈ �D are often assumed to
be independent of each other and normally distributed.
Because an analytical closed form of the effective objec-
tive function in (4) is usually not available, it is often
approximated using Monte Carlo integration as

F (�x, N) =
1
N

N∑
n=1

f(�x + �εn). (5)
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Fig. 1. Image of noisy objective function (D = 1)

• Surrogate problem: When the objective function is
very expensive to evaluate, or an analytical function is
not available, objective functions are often approximated
based on data generated from experiments or simulations
[16], [22]. The approximated objective function is often
known as meta-model [23]. A meta-model is usually used
together with the original objective function.

• Dynamic problem: The objective function is determin-
istic at any point in time, but is dependent on time. As a
consequence, the optimum also changes over time. Thus,
optimization algorithm should be able to continuously
track the changing optimum rather than requiring a re-
peated restart of the optimization process [17], [24], [25].
The challenge here is to reuse information from previous
environments to speedup optimization after a change.

III. PROBLEM FORMULATION

A number of real-world applications can be formulated as a
real-parameter optimization problem. In an orthodox optimiza-
tion problem, the global optimal solution is a D-dimensional
real-parameter vector �x = (x1, · · · , xj , · · · , xD) ∈ �D that
minimizes a deterministic objective function value. However,
in many real-world optimization problems, objective function
values observed are corrupted by noise. For many real-world
optimization problems, we can suppose that the noisy objective
function value F (�x) is distributed normally as

F (�x) ∼ N (μ(�x), σ(�x)2), (6)

where both the mean μ(�x) and the variance σ(�x)2 of the
normal distribution depend on the solution �x ∈ �D.
In noisy problems, the variance σ2 of noisy objective

function values usually takes a constant. Fig. 1 shows an image
of the new noisy objective function F (�x) in (6). As you can see
in Fig. 1, not only the mean μ(�x) but also the variance σ 2(�x)
need to be minimized for improving the quality of solutions
�x ∈ �D. Thus, the definition of F (�x) in (6) can be regarded
as a general form of noisy objective functions in (2).
Now, we think about any solution �x ∈ �D. A prediction

interval for a future observation F ∈ � of F (�x) is calculated
statistically for a given significant level α as

μ(�x) − zα/2 σ(�x) ≤ F ≤ μ(�x) + zα/2 σ(�x), (7)
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where zα/2 denotes the α/2-quantile of the standard normal
distribution N (0, 1) for which the probability becomes

P

(
−zα/2 ≤ F − μ(�x)

σ(�x)
≤ zα/2

)
= (1 − α). (8)

Therefore, the future observation F of F (�x) falls in the
prediction interval in (7) with the probability (1 − α).
Because the mean μ(�x) and the variance σ(�x)2 are usually

unknown in real-world applications, we have to use the sample
mean and the sample variance instead of them. First of all,
we take a sample set {F1, · · · , Fn, · · · , FN} of the observed
F (�x) values. Thereby, the sample mean is calculated as

F (�x, N) =
1
N

N∑
n=1

Fn, (9)

where F (�x, N) is used as estimate for the mean μ(�x).
The sample variance is also calculated as

s(�x, N)2 =
1

N − 1

N∑
n=1

(Fn − F (�x, N))2, (10)

where s(�x, N)2 is used as estimate for the variance σ(�x)2.
As shown in (6), the underlying distribution is the normal

distribution. By using the sample mean and the sample vari-
ance instead of the mean and the variance, the normal distribu-
tion can be approximated by Student’s t-distribution [26]. We
have already obtained the sample set {F1, · · · , Fn, · · · , FN}.
Let FN+1 be the (N +1)-th sample, or the future observation
of F (�x). Then, the following ancillary statistic yields Student’s
t-distribution with N − 1 degrees of freedom:

FN+1 − F (�x, N)

s(�x, N)
√

1 +
1
N

∼ T (N − 1). (11)

In the same way with (7), the prediction interval in which
FN+1 will fall can be derived from (11) as follows [27]:

L(�x, N) ≤ FN+1 ≤ U(�x, N), (12){
L(�x, N) = F (�x, N) − β s(�x, N),
U(�x, N) = F (�x, N) + β s(�x, N),

(13)

β = t(N − 1, α/2)

√
1 +

1
N

, (14)

where t(N−1, α/2) denotes the α/2-quantile of the Student’s
t-distribution with N −1 degrees of freedom, which is derived
from a significant level α and the number of samples N .
The probability of FN+1 falling in the prediction interval

described in (12) is (1 − α). For example, if we want to
calculate the 95% prediction interval for the future observation
FN+1, we choose the significant level as α = 0.05 in (14).
In conventional noisy or robust problems [1], [2], the sample

mean F (�x, N) in (9) is minimized for the optimal solution
�x ∈ �D . However, we consider the worst possible value of
F (�x) caused by �x ∈ �D because noise is inevitable in real-
world optimization problems. Therefore, we seek a solution
�x ∈ �D that minimizes the upper bound U(�x, N) of the
prediction interval in (12). Besides, we suppose that each of

the decision variables xj ∈ � is limited to the range between
the lower xj and the upper xj bounds. Thereby, the worst-case
value minimization problem is formulated as[

minimize U(�x, N),
subject to xj ≤ xj ≤ xj , j = 1, · · · , D,

(15)

where, to calculate the upper bound U(�x, N), a significant
level α and the number of samples N are given in advance.

IV. DIFFERENTIAL EVOLUTION (DE)
DE can be applied directly to the optimization problem in

(15). Like other EAs, DE holds NP tentative solutions of the
optimization problem, which are referred to as individuals, in
the population P. The i-th individual �x i ∈ P is represented
by a vector of decision variables xj,i ∈ � as follows:

�xi = (x1,i, · · · , xj,i, · · · , xD,i), (16)

where xj ≤ xj,i ≤ xj , j = 1, · · · , D, and i = 1, · · · , NP .
Let randj [0, 1] be the random number generator that returns

a uniformly distributed random number in the range [0, 1].
Thereby, an initial population �xi = (x1,i, · · · , xD,i) ∈ P is
generated randomly within the range [x j , xj ] as

xj,i = randj [0, 1] (xj − xj) + xj , (17)

where j = 1, · · · , D and i = 1, · · · , NP .
In order to generate a candidate for a new individual of

the population P, DE uses a unique strategy. The strategy of
DE is defined by a series of three genetic operators, namely
reproduction selection, differential mutation, and crossover [8].
Even though various strategies have been proposed [10], a
basic strategy named “DE/rand/1/exp” is used.
First of all, each individual �xi ∈ P is assigned to the “target

vector” in turn. Except for the target vector, three other distinct
individuals, say �xr1, �xr2, and �xr3 ∈ P (i �= r1 �= r2 �= r3),
are selected randomly from the population P. By using the
above three individuals, the differential mutation generates a
new vector �v ∈ �D called the “mutated vector” as

�v = �xr1 + SF (�xr2 − �xr3), (18)

where the scale factor SF ∈ � is a control parameter.
In the basic strategy of DE, exponential crossover between

the mutated vector �v and the target vector �x i generates a
candidate for an individual �u ∈ �D called the “trial vector”.
Each component uj of the trial vector �u ∈ �D is inherited
from either the mutated vector �v or the target vector �x i.
Algorithm 1 provides the pseudo-code describing the proce-

dure of the basic strategy of DE, i. e., “DE/rand/1/exp”. The
subscript jr ∈ [1, D] at the 1st line is selected randomly,
which ensures that �u differs from the existing �xi ∈ P for at
least one component ujr ∈ �. In lines 2-5 of the pseudo-
code, some elements of the trial vector �u is generated by
the differential mutation as shown in (18). The crossover rate
CR ∈ [0, 1] at the 6th line is also a control parameter. In
lines 6-8 of the pseudo-code, the other elements of the trial
vector �u is inherited from the target vector �x i ∈ P. Finally, if
a component uj of the trial vector �u is made out of the range
[xj , xj ], it will be returned to the range in lines 10-17.
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Algorithm 1 : STRATEGY (DE/rand/1/bin)
1: j := jr;
2: repeat
3: uj := xj,r1 + SF (xj,r2 − xj,r3);
4: j := (j mod D) + 1;
5: until randj [0, 1] < CR ∧ j �= jr;
6: while j �= jr do
7: uj := xj,i;
8: j := (j mod D) + 1;
9: end while
10: for j := 1 to D do
11: if uj < xj then
12: uj := xj,r1 + randj [0, 1] (xj − xj,r1);
13: end if
14: if uj > xj then
15: uj := xj,r1 + randj [0, 1] (xj − xj,r1);
16: end if
17: end for

Algorithm 2 : DIFFERENTIAL EVOLUTION (DE)
1: for i := 1 to NP do
2: �xi := RANDOMLY GENERATE();
3: U(�xi, N) := EVALUATE N TIME(�xi);
4: end for
5: repeat
6: for i := 1 to NP do
7: �u := STRATEGY(�xi, �xr1, �xr2, �xr3 ∈ P);
8: U(�u, N) := EVALUATE N TIME(�u);
9: if U(�u, N) ≤ U(�xi, N) then
10: �xi := �u;
11: U(�xi, N) := U(�u, N);
12: end if
13: end for
14: until a termination condition is satisfied;
15: Output �xb ∈ P with the minimum U(�xb, N);

Algorithm 2 provides the pseudo-code of the cardinal DE
applied directly to the worst-case value minimization problem
in (15). First of all, in lines 1-4 of the pseudo-code, an initial
population �xi ∈ P (i = 1, · · · , NP ) is generated randomly
as shown in (17). Besides, the value of U(�xi, N) is evaluated
for each �xi ∈ P by taking N samples of F (�xi) values.
By using the strategy shown in Algorithm 1, the trial vector

�u is generated in the 7th line. DE evaluates all individuals
based on the upper bound of the prediction interval. Therefore,
to calculate the value of U(�u, N) for �u in the 8th line, the
noisy function F (�u) has to be evaluated for N times.
The newborn trial vector �u is compared to the existing target

vector �xi ∈ P in the 9th line. If �u is not worse than �xi ∈ P,
�xi ∈ P is replaced instantly by �u in lines 10-11. Otherwise,
the trial vector �u is discarded. Consequently, the excellent trial
vector �u can be used soon to generate offspring.
The procedure in lines 5-14 is repeated until a termination

condition is satisfied. As the termination condition, the total
number of noisy function’s observations is usually used.
Finally, the individual �xb ∈ P with the minimum U(�xb, N)

value is obtained as the best solution for the worst-case value
minimization problem in the 15th line of Algorithm 2.

V. EXTENDED VARIANTS OF DE
Since multiple sampling of noisy function values could be

very expensive in most of the applications, it is desired to
reduce the number of samples. In order to obtain solutions
for worst-case value minimization problems effectively, we
propose an extended DE. First of all, in order to explain
the principal techniques used by the extended DE, namely
prediction interval and cutoff point, we present two immature
versions. After that, we describe a complete version.

A. DE with Prediction (DE-P)
The first extended DE is called DE with Prediction (DE-P).

DE-P uses the prediction interval in (12) to skip the multiple
sampling for the trial vector �u. As well as DE, DE-P generates
a new trial vector �u by the strategy. However, DE-P evaluates
F (�u, 1) instead of U(�u, N) for �u. From (9), F (�u, 1) denotes
a single sample value of the noisy function F (�u). Then DE-P
compares the trial vector �u with the target vector �x i. If the
value of F (�u, 1) doesn’t fall in the prediction interval made
from �xi, �u must be different from �xi in short odds. Besides,
if F (�u, 1) > U(�xi, N) holds, �u is inferior to �xi. Therefore,
DE-P can omit to evaluate the value of U(�u, N).
Algorithm 3 provides the pseudo-code of DE-P. First of all,

in lines 1-4 of the pseudo-code, an initial population �x i ∈ P is
generated randomly and evaluated in the same way with DE.
By using the strategy shown in Algorithm 1, the trial vector �u
is generated in the 7th line. The value of F (�u, 1) is evaluated
only by a single sample of the noisy function in the 8th line.
If F (�u, 1) ≤ U(�xi, N) holds in the 9th line, the value of
U(�u, N) is evaluated for �u by taking N samples of F (�u) in
the 10th line. After that, the trial vector �u is compared to the
target vector �xi ∈ P in the same way with DE.

Algorithm 3 : DE WITH PREDICTION (DE-P)
1: for i := 1 to NP do
2: �xi := RANDOMLY GENERATE();
3: U(�xi, N) := EVALUATE N TIME(�xi);
4: end for
5: repeat
6: for i := 1 to NP do
7: �u := STRATEGY(�xi, �xr1, �xr2, �xr3 ∈ P);
8: F (�u, 1) := EVALUATE ONE TIME(�u);
9: if F (�u, 1) ≤ U(�xi, N) then
10: U(�u, N) := EVALUATE N TIME(�u);
11: if U(�u, N) ≤ U(�xi, N) then
12: �xi := �u;
13: U(�xi, N) := U(�u, N);
14: end if
15: end if
16: end for
17: until a termination condition is satisfied;
18: Output �xb ∈ P with the minimum U(�xb, N);
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Algorithm 4 : DE WITH CUTOFF (DE-C)
1: for i := 1 to NP do
2: �xi := RANDOMLY GENERATE();
3: F (�xi, 1) := EVALUATE ONE TIME(�xi);
4: if F (�u, 1) ≤ γ then
5: U(�xi, N) := EVALUATE N TIME(�xi);
6: else
7: U(�xi, N) := ∞;
8: end if
9: end for
10: repeat
11: for i := 1 to NP do
12: �u := STRATEGY(�xi, �xr1, �xr2, �xr3 ∈ P);
13: F (�u, 1) := EVALUATE ONE TIME(�u);
14: if F (�u, 1) ≤ γ then
15: U(�u, N) := EVALUATE N TIME(�u);
16: if U(�u, N) ≤ U(�xi, N) then
17: �xi := �u;
18: F (�xi, 1) := F (�u, 1);
19: U(�xi, N) := U(�u, N);
20: end if
21: else
22: if F (�u, 1) ≤ F (�xi, 1) then
23: �xi := �u;
24: F (�xi, 1) := F (�u, 1);
25: U(�xi, N) := ∞;
26: end if
27: end if
28: end for
29: until a termination condition is satisfied;
30: Output �xb ∈ P with the minimum U(�xb, N);

B. DE with Cutoff (DE-C)

The second extended DE is called DE with Cutoff (DE-C).
DE-C uses a new control parameter called cutoff point γ ∈ �
(γ > 0) to skip the multiple sampling for many individuals.
Fundamentally, DE-C uses a single sample value F (�xi, 1) for
handling every individual �xi ∈ P. Besides, if some excellent
individuals �xi satisfy the condition F (�xi, 1) ≤ γ, DE-C
evaluates the values of U(�xi, N) for them.
Algorithm 4 provides the pseudo-code of DE-C. In lines 1-9

of the pseudo-code, an initial population �x i ∈ P is generated
randomly. Then the values of U(�xi, N) are evaluated only
for the superior ones �xi ∈ P that satisfy the condition
F (�xi, 1) ≤ γ. For the other ones �xi ∈ P, U(�xi, N) are
initialized to infinity (∞). By using the strategy, the trial
vector �u is generated in the 12th line. The value of F (�u, 1) is
obtained only by a single sample of the noisy function F (�u) in
the 13th line. If F (�u, 1) ≤ γ holds in the 14th line, U(�u, N)
is evaluated for �u by taking N samples of F (�u) in the 15th
line. After that, the trial vector �u is compared to the target
vector �xi ∈ P in the same way with DE. On the other hand,
if F (�u, 1) > γ holds in the 14th line, the trial vector �u is
compared to the target vector �xi ∈ P in lines 22-26. The
inferior trial vector �u has a chance to survive if it can beat the
target vector �xi ∈ P such as F (�u, 1) ≤ F (�xi, 1).

Algorithm 5 : DE WITH PREDICTION & CUTOFF (DE-PC)
1: for i := 1 to NP do
2: �xi := RANDOMLY GENERATE();
3: F (�xi, 1) := EVALUATE ONE TIME(�xi);
4: if F (�u, 1) ≤ γ then
5: U(�xi, N) := EVALUATE N TIME(�xi);
6: else
7: U(�xi, N) := ∞;
8: end if
9: end for
10: repeat
11: for i := 1 to NP do
12: �u := STRATEGY(�xi, �xr1, �xr2, �xr3 ∈ P);
13: F (�u, 1) := EVALUATE ONE TIME(�u);
14: if F (�u, 1) ≤ γ then
15: if F (�u, 1) ≤ U(�xi, N) then
16: U(�u, N) := EVALUATE N TIME(�u);
17: if U(�u, N) ≤ U(�xi, N) then
18: �xi := �u;
19: F (�xi, 1) := F (�u, 1);
20: U(�xi, N) := U(�u, N);
21: end if
22: end if
23: else
24: if F (�u, 1) ≤ F (�xi, 1) then
25: �xi := �u;
26: F (�xi, 1) := F (�u, 1);
27: U(�xi, N) := ∞;
28: end if
29: end if
30: end for
31: until a termination condition is satisfied;
32: Output �xb ∈ P with the minimum U(�xb, N);

C. DE with Prediction & Cutoff (DE-PC)

The third extended DE is called DE with Prediction & Cut-
off (DE-PC). DE-PC is the complete version of the extended
DE proposed in this paper. DE-PC is a good combination
between DE-P and DE-C. Therefore, as well as DE-C, the
proposed DE-PC also uses the cutoff point γ ∈ � (γ > 0)
to skip the multiple sampling for many individuals. DE-PC
evaluates the values of U(�xi, N) only for the excellent ones
�xi ∈ P that satisfy F (�xi, 1) ≤ γ. DE-PC is almost the same
as DE-C. However, DE-PC differs from DE-C in the way to
evaluate the trial vector �u. For evaluating U(�u, N), DE-PC
demands the trial vector �u to satisfy both of the two conditions,
namely F (�u, 1) ≤ γ and F (�u, 1) ≤ U(�xi, N).
Algorithm 5 gives the pseudo-code of DE-PC. First of all,

in lines 1-9 of the pseudo-code, an initial population �x i ∈ P
is generated randomly and evaluated in the same way with
DE-C. By using the strategy shown in Algorithm 1, the trial
vector �u is generated in the 12th line. The value of F (�u, 1) is
obtained only by a single sample of the noisy function F (�u)
in the 13th line. If F (�u, 1) ≤ γ holds in the 14th line, the
trial vector �u is compared to the target vector �x i ∈ P in
the same way with DE-P. Therefore, as stated above, the trial
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vector �u has to satisfy two conditions, namely F (�u, 1) ≤ γ
and F (�u, 1) ≤ U(�xi, N), before U(�u, N) is evaluated for �u.
On the other hand, if F (�u, 1) > γ holds in the 14th line, the
trial vector �u is compared to the target vector �x i ∈ P in lines
24-28. As well as PD-C, the inferior trial vector �u still has the
chance to survive if F (�u, 1) ≤ F (�xi, 1) holds.
The procedure in lines 10-31 of the pseudo-code of DE-PC

is repeated until a termination condition is satisfied. Finally,
the individual �xb ∈ P with the minimum U(�xb, N) value
is obtained as the best solution for the worst-case value
minimization problem in the bottom line of Algorithm 5.

VI. NUMERICAL EXPERIMENTS
A. Benchmark Problems
By using deterministic functions fp(�x) and g(�x), an instance

of noisy objective function F (�x) in (6) is defined as

Fp(�x) = fp(�x) + κ g(�x) ε, (19)

where κ (κ > 0) is a gain factor and additive noise ε is
normaly distributed such as ε ∼ N (0, 1).
For the first deterministic function fp(�x) in (19), we employ

the well-known test functions shown in Appendixes A and B
[9]. Appendix A provides four uni-modal test functions: f p

(p = 1, · · · , 4). On the other hand, Appendix B provides four
multi-modal test functions: fp (p = 5, · · · , 8).
The second deterministic function g(�x) in (19) is given as

g(�x) =
1
D

D∑
j=1

sin
(

π

(
xj − xj

xj − xj

))
. (20)

From (20), g(�x) is an uni-modal function such as

g(�x) =

⎧⎪⎨
⎪⎩

0, if ∀ j : xj = xj ,

1, if ∀ j : xj = (xj + xj)/2,

0, if ∀ j : xj = xj .

(21)

Consequently, the noisy objective function Fp(�x) defined
by (19) is also distributed normally as follows:

Fp(�x) ∼ N (fp(�x), κ2 g(�x)2), (22)

where both the mean fp(�x) and the variance κ2 g(�x)2 of the
normal distribution depend on the solution �x ∈ �D.
For calculating the objective function Up(�x, N) of the

worst-case value minimization problem defined in (15) from
the observed values Fn (n = 1, · · · , N ) of Fp(�x), the
significant level α and the number of samples N in (14) are
chosen, respectively, as α = 0.05 and N = 30. Besides, the
dimension of the solution �x ∈ �D is chosen as D = 20.

B. Experimental Setup
The control parameters of all algorithms, namely DE, DE-

P, DE-C, and DE-PC, are chosen as SF = 0.5, CR = 0.9,
and NP = 100, 200. A cutoff point γ = 50 is chosen for
DE-C and DE-PC. As the termination condition, the total
number of noisy function’s observations is limited to 3× 10 5.
Thereby, all the algorithms are applied, respectively, to each
of benchmark problems 30 times. Incidentally, all algorithms
are coded by Java and executed on a personal computer (CPU:
Intel CoreTMi7@3.33[GHz]; OS: Microsoft Windows 7).

TABLE I
UPPER AND LOWER BOUNDS BY BEST SOLUTION (NP = 100)

(a) Sphere function: f1
κ DE DE-P DE-C DE-PC

1.0
U 371.718 3.709 3.198 2.780
L 367.590 −0.575 −1.096 −1.212

2.0
U 338.214 7.043 5.651 5.659
L 329.955 −1.644 −2.245 −2.779

4.0
U 393.355 13.595 11.504 11.219
L 376.844 −3.474 −5.368 −5.965

(b) Hyper-Ellipsoid function: f2
κ DE DE-P DE-C DE-PC

1.0
U 54.291 3.281 2.994 2.661
L 50.293 −0.882 −1.137 −1.257

2.0
U 55.895 6.183 5.687 5.259
L 47.894 −2.125 −2.691 −2.795

4.0
U 58.564 12.058 10.755 10.617
L 42.614 −4.265 −4.994 −5.887

(c) Rosenbrock function: f3
κ DE DE-P DE-C DE-PC

1.0
U 75.996 19.289 18.971 18.273
L 71.920 15.061 14.942 14.156

2.0
U 77.009 22.573 22.311 21.363
L 65.077 14.357 13.987 13.259

4.0
U 81.377 28.925 28.683 27.608
L 65.077 12.913 11.990 10.961

(d) Schwefel’s Ridge function: f4
κ DE DE-P DE-C DE-PC

1.0
U 3500.078 4.203 6.556 3.221
L 3496.388 0.183 2.414 −0.904

2.0
U 3472.947 8.183 8.907 6.128
L 3465.581 0.014 0.554 −2.170

4.0
U 3340.477 15.056 14.404 11.723
L 3325.674 −1.696 −2.157 −4.280

(e) Ackley function: f5
κ DE DE-P DE-C DE-PC

1.0
U 19.811 17.787 19.811 17.787
L 16.147 14.099 16.147 14.099

2.0
U 23.068 22.844 23.068 22.844
L 19.481 19.729 19.481 19.729

4.0
U 23.427 23.104 23.427 23.104
L 19.937 20.077 19.937 20.077

(f) Griewank function: f6
κ DE DE-P DE-C DE-PC

1.0
U 7.404 3.847 3.986 3.815
L 3.279 −0.146 −0.131 −0.414

2.0
U 9.740 6.669 6.858 6.559
L 1.490 −1.236 −1.618 −1.884

4.0
U 15.757 12.447 12.819 11.630
L −0.722 −4.071 −4.267 −4.580

(g) Rastrigin function: f7
κ DE DE-P DE-C DE-PC

1.0
U 126.694 14.225 16.402 5.213
L 122.942 9.982 12.294 1.059

2.0
U 129.076 22.145 20.333 11.499
L 121.597 14.005 12.150 3.451

4.0
U 131.566 35.800 29.739 22.589
L 116.572 19.999 13.030 6.033

(h) Salomon function: f8
κ DE DE-P DE-C DE-PC

1.0
U 7.261 5.555 7.261 5.555
L 3.187 1.401 3.187 1.401

2.0
U 10.503 9.409 10.503 9.409
L 2.419 0.973 2.419 0.973

4.0
U 17.316 15.791 17.316 15.791
L 1.520 0.544 1.520 0.544
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C. Results

Table I shows the results of experiments conducted on the
benchmark problems from test functions fp (p = 1, · · · , 8).
The population size is chosen as NP = 100 for all algorithms,
namely DE, DE-P, DE-C, and DE-PC. Table I describes the
upper (U ) and the lower (L) bounds in (12) calculated from
the best solution �xb ∈ P obtained by respective algorithms.
The results in Table I are averaged over 30 independent runs
per the function fp and per the gain factor κ used in (19).
Besides, the best result in each case is described in bold.
From Table I, the smallest upper bound is obtained by the

proposed DE-PC in every case. On the other hand, the largest
upper bound is provided by DE in every case. The effect of
prediction interval can be confirmed by comparison of DE
and DE-P. The effect of cutoff point can be also confirmed by
comparison of DE and DE-C. Furthermore, the great effect of
the combination between the prediction interval and the cutoff
point can be confirmed by the excellent performance of DE-
PC. From Table I, the cutoff point seems to be more effective
than the prediction interval for uni-modal test functions except
one test function: f4. On the other hand, the prediction interval
seems to be more effective than the cutoff point for multi-
modal test functions except one test function: f7.
Table II shows the results of experiments conducted on the

benchmark problems from test functions fp (p = 1, · · · , 8)
too. The population size is chosen as NP = 200 for all
algorithms. Table II describes the upper (U ) and the lower
(L) bounds calculated from the best solution obtained by
respective algorithms in the same way with Table I. The
results shown in Table I and Table II resemble each other. The
smallest upper bound is obtained by the proposed DE-PC in
every case. The largest upper bound is also provided by DE in
every case. The effect of prediction interval can be confirmed
by comparison of DE and DE-P. The effect of cutoff point
can be also confirmed by comparison of DE and DE-C. From
Table II, the cutoff point is more effective than the prediction
interval for all uni-modal test functions: fp (p = 1, · · · , 4).
However, the prediction interval is also effective for many
multi-modal test functions except one test function: f7.
Fig. 2 shows some examples of the convergence of the

upper bound U(�xb, N) achieved by the best solution �xb ∈ P
in the population for different algorithms and for benchmark
problems in which the gain factor κ = 1.0 is used. The
population size is chosen as NP = 100 for all algorithms. The
vertical axis in Fig. 2 denotes the value of U(�xb, N), while
the horizontal axis denotes the number of noisy function’s
observations. The values plotted in Fig. 2 are averaged over
30 independent runs. Fig. 3 also shows some examples of the
upper bound U(�xb, N) achieved by the best solution �xb ∈ P
in the population in the same way with Fig. 2, where the
population size is chosen as NP = 200 for all algorithms.
From Fig. 2 and Fig. 3, the effectiveness of the proposed

two techniques can be confirmed in uni-modal functions: f 1,
f2, f3, and f4. The best solution obtained by DE-C converges
quickly in the early stage of the search. Therefore, the cut-off
point is very effective to accelerate the extended DE. However,
the cut-off point becomes ineffective in the middle of the

TABLE II
UPPER AND LOWER BOUNDS BY BEST SOLUTION (NP = 200)

(a) Sphere function: f1
κ DE DE-P DE-C DE-PC

1.0
U 4877.076 53.183 6.301 3.903
L 4873.060 48.888 2.140 −0.183

2.0
U 4790.676 67.114 9.222 7.146
L 4782.641 58.837 0.955 −1.233

4.0
U 4789.448 81.077 14.530 12.813
L 4773.375 63.964 −2.624 −3.290

(b) Hyper-Ellipsoid function: f2
κ DE DE-P DE-C DE-PC

1.0
U 839.263 17.795 5.468 3.567
L 835.506 13.807 1.325 −0.305

2.0
U 746.969 22.527 8.322 6.814
L 739.420 14.369 0.058 −1.498

4.0
U 914.192 32.631 14.052 12.235
L 899.032 16.829 −2.337 −3.495

(c) Rosenbrock function: f3
κ DE DE-P DE-C DE-PC

1.0
U 407.159 27.696 22.637 19.970
L 403.338 23.455 18.591 15.845

2.0
U 414.639 33.189 25.863 23.552
L 407.030 24.830 17.159 15.226

4.0
U 391.586 43.293 31.184 29.896
L 376.231 26.244 14.815 13.293

(d) Schwefel’s Ridge function: f4
κ DE DE-P DE-C DE-PC

1.0
U 8176.660 88.494 15.258 5.186
L 8173.404 84.423 11.269 1.137

2.0
U 8164.842 93.784 16.932 9.430
L 8158.319 85.827 9.075 1.396

4.0
U 8067.288 105.167 21.421 16.172
L 8054.371 88.344 5.964 −0.237

(e) Ackley function: f5
κ DE DE-P DE-C DE-PC

1.0
U 21.814 21.349 21.814 21.349
L 18.740 17.966 18.740 17.966

2.0
U 23.285 23.076 23.285 23.076
L 19.363 19.371 19.363 19.371

4.0
U 24.720 24.182 24.720 24.182
L 18.557 19.033 18.557 19.033

(f) Griewank function: f6
κ DE DE-P DE-C DE-PC

1.0
U 46.016 6.404 6.781 4.688
L 41.999 2.177 2.592 0.648

2.0
U 49.000 10.744 9.166 8.196
L 40.973 1.963 0.958 −0.331

4.0
U 49.927 17.582 15.299 14.638
L 33.833 1.181 −1.158 −2.992

(g) Rastrigin function: f7
κ DE DE-P DE-C DE-PC

1.0
U 168.667 49.838 26.991 18.938
L 165.124 45.693 22.809 14.803

2.0
U 172.310 60.147 28.768 23.884
L 165.169 51.935 20.674 15.498

4.0
U 181.734 76.588 35.459 33.560
L 167.701 61.221 19.278 16.799

(h) Salomon function: f8
κ DE DE-P DE-C DE-PC

1.0
U 11.239 8.275 11.239 8.275
L 7.302 4.241 7.302 4.241

2.0
U 14.839 12.622 14.839 12.622
L 7.107 4.646 7.107 4.646

4.0
U 21.131 19.660 21.131 19.660
L 6.196 4.576 6.196 4.576
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(a) Sphere function: f1 (e) Ackley function: f5

(b) Hyper-Ellipsoid function: f2 (f) Griewank function: f6

(c) Rosenbrock function: f3 (g) Rastrigin function: f7

(d) Schwefel’s Ridge function: f4 (h) Salomon function: f8

Fig. 2. Convergence of the upper bound achieved by the best solution in the population (NP = 100)
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(a) Sphere function: f1 (e) Ackley function: f5

(b) Hyper-Ellipsoid function: f2 (f) Griewank function: f6

(c) Rosenbrock function: f3 (g) Rastrigin function: f7

(d) Schwefel’s Ridge function: f4 (h) Salomon function: f8

Fig. 3. Convergence of the upper bound achieved by the best solution in the population (NP = 200)
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search. Contrary to DE-C, the best solution obtained by DE-
P converges slowly but steadily until the end of the search.
Therefore, the prediction interval is effective in the whole of
the search. Consequently, the proposed DE-PC using both of
the two techniques outperforms DE-P and DE-C in all uni-
modal functions. On the other hand, the best solution obtained
by DE is hard to converge in all uni-modal functions.
As well as uni-modal functions, the effectiveness of the

proposed two techniques can be confirmed in some multi-
modal functions: f6 and f7. However, for the other multi-
modal functions: f5 and f8, the effectiveness of the proposed
techniques is not able to be confirmed enough. Since both f 5

and f8 have a huge number of local minima, the proposed
techniques might fail to prune away those local minima.

VII. CONCLUSION
Since noise is inevitable in real-world applications, they can

be regarded as uncertain optimization problems. In order to
prepare for the worst possible pass in real-world optimization
problems, a new class of uncertain optimization problems, i.e.,
the worst-case value minimization problem, was formulated in
this paper. In the worst-case value minimization problem, a
predicted upper bound of the noisy objective function’s values
was minimized by tuning decision variables.
For solving the worst-case value minimization problem

effectively, an extended DE named DE-PC was proposed.
The cardinal DE could be applied directly to the worst-case
value minimization problem. However, in order to evaluate
each solution based on the upper bound of noisy objective
function’s values, multiple sampling was required. Therefore,
DE-PC adopted two pruning techniques, namely prediction
interval and cutoff point, both of which could judge and
discard hopeless solutions only by a single sampling.
In order to verify the effects of the pruning techniques, two

immature versions of DE-PC, namely DE-P and DE-C, were
also presented. DE-P adopted only prediction interval, while
DE-C adopted only cutoff point. From the results of numerical
experiments conducted on eight benchmark problems derived,
respectively, from four uni-modal and four multi-modal test
functions, it could be confirmed that both DE-P and DE-
C were more efficient than the cardinal DE. Furthermore, it
was shown that the proposed DE-PC always outperformed the
cardinal DE, DE-P, and DE-C in all benchmark problems.
The main drawback of the proposed DE-PC is that it needs

a new control parameter, namely the cutoff point γ. Therefore,
further research is required to suggest an appropriate γ value
for a wide range of worst-case value minimization problems.
Another interesting aspect which will be considered is to create
an adaptive control technique of the cutoff point γ.

APPENDIX A
UNI-MODAL TEST FUNCTIONS

Uni-modal test functions have a single minimum.
• Sphere function

f1(�x) =
D∑

j=1

x2
j ,

− 100 ≤ xj ≤ 100, j = 1, · · · , D.

• Hyper-Ellipsoid function

f2(�x) =
D∑

j=1

2j x2
j ,

− 5.12 ≤ xj ≤ 5.12, j = 1, · · · , D.

• Rosenbrock function

f3(�x) =
D−1∑
j=1

(100 (xj+1 − x2
j )

2 + (xj − 1)2),

− 2.048 ≤ xj ≤ 2.048, j = 1, · · · , D.

• Schwefel’s Ridge function

f4(�x) =
D∑

k=1

⎛
⎝ k∑

j=1

xj

⎞
⎠

2

,

− 65.536 ≤ xj ≤ 65.536, j = 1, · · · , D.

APPENDIX B
MULTI-MODAL TEST FUNCTIONS

Multi-modal test functions have more than one local mini-
mum, where one of them is a global minimum.

• Ackley function

f5(�x) = − 20 exp

⎛
⎝−0.2

√√√√ 1
D

D∑
j=1

x2
j

⎞
⎠

− exp

⎛
⎝ 1

D

D∑
j=1

cos(2 π xj)

⎞
⎠ + 20 + e,

− 32.768 ≤ xj ≤ 32.768, j = 1, · · · , D.

• Griewank function

f6(�x) =
1

4000

D∑
j=1

x2
j −

D∏
j=1

cos
(

xj√
j

)
+ 1,

− 600 ≤ xj ≤ 600, j = 1, · · · , D.

• Rastrigin function

f7(�x) =
D∑

j=1

(x2
j − 10 cos(2 π xj) + 10),

− 5.12 ≤ xj ≤ 5.12, j = 1, · · · , D.

• Salomon function
f8(�x) = − cos(2 π y) + 0.1 y + 1,

y =

√√√√ D∑
j=1

x2
j ,

− 100 ≤ xj ≤ 100, j = 1, · · · , D.
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