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I. INTRODUCTION

THE aim of the paper is to develop the Good Test Analysis
(GTA), which is one of machine learning methods based

on the notion of good diagnostic (classification) test (GCT).
GCT is understood as an approximation of a given classifi-
cation on a given set of objects [1] and serve as a basis for
inferring implicative, functional dependencies and association
rules from datasets.

Denote by M the set of attribute values such that M =
{∪dom(attr), attr ∈ U}, where dom(attr) is the set of all
values of attr and U is a given set of attributes, see an example
in Tab. I. Let G be the set of objects; G = G+ ∪G−, where
G+ and G− are the sets of positive and negative objects,
respectively. Denote by I(B), B ⊆ M, the set of all the
objects in description of which B appears. I(B) is called the
interpretation of B in the power set 2G. If I(B) contains only
G+ objects and the number of these objects more than 2, then
we call B (as a subset of attribute values) a description of
some positive objects and (I(B), B) a test for G+. A pair
(I(B), B) is a good test for G+ if and only if it is a test and
no such subset C ⊂M exists that I(B) ⊂ I(C) ⊆ G+.

It is not difficult to see that if (I(B), B) is a test for positive
objects, then the following implicative dependency is satisfied:
B → G+. In Tab. I, (I({Blond, Hazel}) = {4,6}, {Blond,
Hazel}) is a test for class “not k(+)”, but not good one, and
test (I({Hazel}) = {3,4,6}, {Hazel}) is a good test for the
same class.

Since, however, the task of inferring all good tests for a class
of objects is NP-complete, we introduce the decomposition of
the main task into subtasks for which searching for good tests
is greatly simplified. Some ideas of limiting the search for
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TABLE I
EXAMPLE OF CLASSIFICATION

No Height Color of Hair Color of Eyes KL

1 Low Blond Blue k(+)
2 Low Brown Blue not k(+)
3 Tall Brown Hazel not k(+)
4 Tall Blond Hazel not k(+)
5 Tall Brown Blue not k(+)
6 Low Blond Hazel not k(+)
7 Tall Red Blue k(+)
8 Tall Blond Blue k(+)

association rules by selecting instances that have at least one
common attribute value with all instances in a specific class
in data set are advanced in [2]. Some results in clustering
via partial implications are in [3]. This method significantly
reduce the target data set. A theoretical study of algorithms
for decomposition of numerical semigroup is given in [4].

It would be expedient to include the algorithms of good
classification test mining in the experts reasoning process,
so as this process would be governed by some consecutively
formed goals and sub-goals.

The rest of the paper is organized as follows. Sec.II is de-
voted to defining the characteristic properties of classification
tests and a notion of good maximally redundant tests (GMRTs)
as concepts of the formal concept analysis [5]. Sec.III gives
the decomposition of the main task of inferring GMRTs into
two kinds of subtasks. Sec.IV is devoted to describing the
main algorithm for solving any kinds of considered subtasks.
Some ideas of modeling and optimization of inferring GCT
proposed in [6] are formalized and supplied with an algorithm
based on one of the kinds of subtasks in Sec. V. In Sec.
V and Sec. VI we introduce some effective procedures for
selecting and ordering subtasks, in particular, the evaluation of
the number of subtasks to be solved and the depth of recursion
[6]. Sec. VII describes the application of two kinds of subtasks
for an approach to incremental constructing good maximally
redundant classification tests.

II. GOOD MAXIMALLY REDUNDANT TESTS AS FORMAL
CONCEPTS

Let G = 1, N be the set of objects indices and M =
{m1,m2, . . . ,mj , . . .mm} be the set of attributes values
(objects and values, respectively). Each object is described by
a set of values from M . The object descriptions are represented
by rows of a table the columns of which are associated with
the attributes taking their values in M (see, please, Tab.I).
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Assume A ⊆ G, B ⊆M . Denote by Bi, Bi ⊆M , i = 1, N
the description of object with index i. The Galois connection
between the ordered sets (2G,⊆) and (2M ,⊆) is defined by
the following mappings called derivation operators [7], [8]:
for A ⊆ G and B ⊆ M , A′ = val(A) = {intersection of all
Bi|Bi ⊆M, i ∈ A} and B′ = obj(B) = {i| i ∈ G,B ⊆ Bi}.

Two generalization operations that are closure operators
[9] are introduced in [10]: generalization of(B) = B′′ =
val(obj(B)) and generalization of(A) = A′′ = obj(val(A)).
A set A is closed if A = obj(val(A)). A set B is closed if
B = val(obj(B)). For A ⊆ G and B ⊆ M , a pair (A,B),
A ⊆ G, B ⊆ M , A′′ = A is a formal concept, left (A)
and right (B) parts of which are called extent and intent,
respectively. Let us recall the main definitions of GTA [1].

A Diagnostic Test (DT) for the positive examples G+ is a
pair (A,B) such that B ⊆M , A = B′ 6= ∅, A ⊆ G+, B 6⊆ g′

∀g ∈ G−. Equivalently, B′∩G− = ∅. A diagnostic test (A,B)
for G+ is irredundant if any narrowing B∗ = B \m, m ∈ B
implies that (obj(B∗), B∗)) is not a test for G+. A diagnostic
test (A,B) for G+ is maximally redundant if obj(B∪m) ⊂
A for all m /∈ B and m ∈M . In general case, a set B is not
closed for diagnostic test (A,B), i. e., a diagnostic test is not
obligatory a concept of FCA. This condition is true only for
the maximally redundant tests.

A diagnostic test (A,B) for G+ is good if and only if
any extension A∗ = A ∪ i, i /∈ A, i ∈ G+ implies that
(A∗, val(A∗)) is not a test for G+. If a good test (A,B)
for G+ is maximally redundant (GMRT), then any extension
B∗ = B ∪m, m /∈ B, m ∈M implies that (obj(B∗), B∗) is
not a good test for G+.

Any object description d = g′, g ∈ G in a given classifica-
tion context is a maximally redundant set of values because
for any value m /∈ d, m ∈M, obj(d∪m) is equal to ∅. Denote
by D+ and D− a set of descriptions for g ∈ G+ and g ∈ G−,
respectively.

In Tab.I, ((1, 8), Blond Blue) is a GMRT for k(+) but it is
irredundant one, simultaneously; ((2, 5), {Brown, Blue}) is a
test for not k(+) but not a good one; and ((2, 3, 5), Brown)
is a GMRT for not k(+).

In the paper, we deal only with GMRTs. The fact that every
good irredundant test (GIRT) (as minimal generator) [1] is
contained in one and only one GMRT implies one of the
possible methods of searching for GIRTs for a given class
of objects:

1) find all GMRTs for a given class of objects;
2) for each GMRT, find all GIRTs contained in it.

III. THE DECOMPOSITION OF INFERRING GOOD
MAXIMALLY REDUNDANT TESTS INTO SUBTASKS

Two kinds of subtasks of Inferring GMRTs [7] are described
in the section, for a given set G+ :

1) given a set of values B ⊆ M, obj(B) 6= ∅, B is not
included in any description of negative object, find all
GMRTs (obj(B∗), B∗) such that B∗ ⊂ B;

2) given a non-empty set of values X ⊆ M such that
(obj(X), X) is not a test for positive objects, find all
GMRTs (obj(Y ), Y ) such that X ⊂ Y , Y ⊆M .

The first subtask is useful to find all GMRTs intents of
which are contained in the description of an object g. This
subtask is considered in [11] for fast incremental obtaining
formal concepts.

The object projection of a positive object description t on
the set D+ is defined as follows: proj(t) = {z| z = t ∩ g′ 6=
∅, g ∈ G+ and (obj(z), z) is a test for G+}.

The value projection proj(m) of a given value m on a
given set D+ is defined as follows: proj(m) = {g′, g ∈
G+| (obj(g′) ∩ obj(m) ∩G+) 6= ∅)}.

Algorithm ASTRA, based on value projections, has been
advanced in [12]. Algoritm DIAGaRa, based on object pro-
jections, has been proposed in [13].

The projections define the methods to construct two kinds of
sub-contexts of the main classification context in accordance
with two kinds of subtasks determined in this section. The fol-
lowing theorem gives the foundation of reducing subcontexts
[12].

Theorem 1: Let X ⊆ M, (obj(X), X) be a maximally
redundant test for positive objects and obj(m) ⊆ obj(X), m ∈
M . Then m can not belong to any GMRT for positive objects
different from (obj(X), X).

Proof: Case 1. Suppose that m appears in Y and
(obj(Y ), Y ) is a GMRT for positive objects different from
(obj(X), X). Then obj(Y ) is a proper subset of obj(m).
However we have that obj(m) ⊆ obj(X) and hence obj(Y ) is
a proper subset of obj(X). However it is impossible because
the set of GMRTs is a Sperner system and hence obj(Y ) and
obj(X) does not contain each other [14].

Case 2. Let (obj(X), X) be the maximally redundant test
for positive objects but not a good one. Suppose that there
exists a GMRT (obj(Y ), Y ) such that m appears in Y . Next
observe that obj(Y ) is a proper subset of obj(m) and obj(Y )
is a proper subset of obj(X). Then X ⊂ Y and X is not a
maximally redundant test. We have a contradiction.

Consider some example of reducing subcontext (see,
please, Tab.I). Let splus(m) be obj(m) ∩ G+ or obj(m) ∩
G− and SPLUS be {splus(m)| m ∈ M}. In Tab.I,
we have for values “Hazel, Brown, Tall, Blue, Blond,
and Low”, respectively, SPLUS = obj(m) ∩G− =
{{3, 4, 6}, {2, 3, 5}, {3, 4, 5}, {2, 5}, {4, 6}, {2, 6}}.

We have val(obj(Hazel)) = Hazel, hence ((3, 4, 6),Hazel)
is a test for G−. Then value “Blond” can be deleted from
consideration, because splus(Blond) ⊂ splus(Hazel). Delete
values Blond and Hazel from consideration. After that the
description of object 4 is included in the description of
object 8 of G+ and the description of object 6 is included
in the description of object 1 of G+. Delete objects 4 and
6. Then for values “Brown, Tall, Blue, and Low”, respec-
tively, SPLUS = {{2, 3, 5}, {3, 5}, {2, 5}, {2}}. Now we have
val(obj(Brown)) = Brown and ((2, 3, 5),Brown) is a test for
G−. All values are deleted and all GMRTs for G− have been
obtained.

IV. THE BACKGROUND ALGORITHM ASTRA FOR GMRTS
CONSTRUCTION

The initial information for finding all the GMRTs contained
in a positive object description is the projection of it on current
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set positive objects. It is essential that the projection is a subset
of object descriptions defined on a certain restricted subset
t∗ of values. Let s∗ be the subset of indices of objects the
descriptions of which produce the projection. In the projection,
splus(m) = obj(m) ∩ s∗, m ∈ t∗.

Let STGOOD be the partially ordered set of elements s
satisfying the condition that (s, val(s)) is a good test for D+.
The basic recursive procedure for solving any kind of subtask
consists of the following steps:

1) Check whether (s∗, val(s∗) is a test and if so, then s∗ is
stored in STGOOD if s∗ corresponds to a good test
at the current step; in this case, the subtask is over.
Otherwise the next step is performed.

2) The value m can be deleted from the projection if
splus(m) ⊆ s for some s ∈ STGOOD.

3) For each value m in the projection, check whether
(splus(m), val(splus(m)) is a test and if so, then value
m is deleted from the projection and splus(m) is stored
in STGOOD if it corresponds to a good test at the
current step.

4) If at least one value has been deleted from the projection,
then the reduction of the projection is necessary. The
reduction consists in checking, for each element t of the
projection, whether (obj(t), t) is not a test (as a result
of previous eliminating values) and if so, this element is
deleted from the projection. If, under reduction, at least
one element has been deleted, then Step 2, Step 3, Step
4, and Step 5 are repeated.

5) Check whether the subtask is over or not. The subtask
is over when either the projection is empty or the
intersection of all elements of the projection corresponds
to a test (see, please, Step 1). If the subtask is not over,
then an object (value) in this projection is selected and
the new subtask is formed. The new subsets s∗ and t∗
are constructed and the basic algorithm runs recursively.

The set TGOOD of all the GMRTs is obtained as follows:
TGOOD = {tg| tg = (s, val(s)), s ∈ STGOOD}. Main
recursive algorithm of ASTRA-1 based on the decomposition
of the main problem of inferring GMRTs into subtasks of the
second kind is given in Fig. 1. It consists of DelVal (Fig. 2),
DelObj (Fig. 3), ChoiceOfSubTask and FormSubTask
(Fig. 4). Here, in pseudocode, m ∈ M and g ∈ G are
denoted by Mi and G(i), respectively. ChoiceOfSubTask
generates Mna, which is the attribute value chosen by means
of statistical investigations. In a simple case, it can be the
value appearing in average.

V. EXTRACTING PRIOR KNOWLEDGE OF GMRTS AND
DECREASING THE NUMBER OF SUBCONTEXTS

Algorithms of GMRTs inferring are constructed by the rules
of selecting and ordering subcontexts of the main classification
context. We need the following additional definitions.

Let t be a set of values such that (obj(t), t) is a test for
G+. We say that the value m ∈ M,m ∈ t is essential
in t if (obj(t \ m), (t \ m)) is not a test for a given set of
objects. Generally, we are interested in finding the maximal
subset sbmax(t) ⊂ t such that (obj(t), t) is a test but

Algorithm GenAllGMRTs
Input: G,M
Output: STGOOD // to be modified

1. flag := 1;
2. while true do
3. while flag=1 do
4. DelVal ; // modify M
5. if flag=1 then
6. DelObj ; // modify G+

7. if G+ = ∅ or M = ∅ or M ′ 6⊆ G+ or
G+ ⊆ s,∃s ∈ STGOOD then

8. return ; // exit

9. MSUB , GSUB ,na:=∅;
10. ChoiceOfSubTask ; // form na
11. FormSubTask ; // form GSUB ,MSUB

12. GenAllGMRTs(GSUB ,MSUB) ;
// recursion

13. M :=M\Mna;
14. DelObj;

Fig. 1. Algorithm GenAllGMRTs of ASTRA-1

Algorithm DelVal
Input: G+,M
Output: M,flag

1. flag := 0, i := 1;
2. while i ≤ ‖M‖ do
3. if M ′i ⊆ s,∃s ∈ STGOOD then
4. M := M\Mi;
5. flag := 1;

6. else if (M ′i ∩G+)
′′ ⊆ G+ then

// ((M ′i ∩G+), (M
′
i ∩G+)

′) is a test
7. j :=1 ;
8. while j ≤ ‖STGOOD‖ do
9. if STGOODj ⊆ (M ′i ∩G+) then

10. STGOOD := STGOOD\
STGOODj

11. STGOOD := STGOOD ∪ (M ′i ∩G+);
12. M := M\Mi;
13. flag := 1;
14. i := i++ ;

15. return;

Fig. 2. Algorithm DelVal of GenAllGMRTs

(obj(sbmax(t)), sbmax(t)) is not a test for a given set of
positive objects. Then sbmin(t) = t \ sbmax(t) is a minimal
set of essential values in t.

Let s ⊆ G+, assume also that (s, val(s)) is not a test for
G+. The object with index j ∈ s is said to be an essential
in s if (s \ j, val(s \ j)) proves to be a test for a given set of
positive objects. Generally, we are also interested in finding
the maximal subset sbmax(s) ⊂ s such that (s, val(s)) is not
a test but (sbmax(s), val(sbmax(s)) is a test for a given set
of positive objects. Then sbmin(s) = s \ sbmax(s) is the
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Algorithm DelObj
Input: G+,M
Output: G+, f lag

1. flag := 0, i := 1;
2. while i ≤ ‖G+‖ do
3. if G+(i)

′′ 6⊆ G+ then // Is (G+(i), G+(i)
′)

not a test?
4. G+ := G+\G+(i);
5. flag := 1;

6. i := i++;

7. return;

Fig. 3. Algorithm DelObj of GenAllGMRTs

Algorithm FormSubTask
Input: G+,M
Output: GSUB ,MSUB

1. i := 1;
2. GSUB := M ′na ∩G+;
3. while i ≤ ‖GSUB‖ do
4. MSUB := MSUB ∪ ((GSUB(i))

′ ∩M);
5. i := i++ ;

6. return;

Fig. 4. Algorithm FormSubTask of GenAllGMRTs

minimal set of essential objects in s.
Finding quasi-maximal (minimal) subsets of objects and

values is the key procedures behind searching for initial
content of STGOOD and determining the number of subtasks
to be solved.

A. An Approach for Searching for Initial Content of STGOOD

In the beginning of inferring GMRTs, the set STGOOD is
empty. We need the following procedure to obtain an initial
content of it. This procedure extracts a quasi-maximal subset
s∗ ⊆ G+ which is the extent of a test for G+ (maybe not
good).

We begin with the first index i1 of s∗, then we
take the next index i2 of s∗ and evaluate the function
to be test({i1, i2}, val({i1, i2})). If the value of the function
is “true”, then we take the next index i3 of s∗ and evaluate
the function to be test({i1, i2, i3}, val({i1, i2, i3})). If the
value of the function to be test({i1, i2}, val({i1, i2})) is
“false”, then the index i2 of s∗ is skipped and the function
to be test({i1, i3}, val({i1, i3})) is evaluated. We continue
this process until we achieve the last index of s∗.

The complexity of this procedure is evaluated as the product
of ||s∗|| by the complexity of the function to be test().
To obtain the initial content of STGOOD, we use the set
SPLUS = {splus(m)|m ∈ M} and apply the procedure
described above to each element of SPLUS.

To illustrate this procedure, we use the sets D+ and D−
represented in Tab.II and III (our illustrative example). In these
tables, M = {m1, . . . ,m26} and subsets of values {m8,m9},
{m14,m15} are denoted by m∗ and m+, respectively.

TABLE II
THE SET D+ OF POSITIVE OBJECT DESCRIPTIONS

G D+

1 m1 m2 m5 m6 m21 m23 m24 m26

2 m4 m7 m8 m9 m12 m14 m15 m22 m23 m24 m26

3 m3 m4 m7 m12 m13 m14 m15 m18 m19 m24 m26

4 m1 m4 m5 m6 m7 m12 m14 m15 m16 m20 m21 m24 m26

5 m2 m6 m23 m24

6 m7 m20 m21 m26

7 m3 m4 m5 m6 m12 m14 m15 m20 m22 m24 m26

8 m3 m6 m7 m8 m9 m13 m14 m15 m19 m20 m21 m22

9 m16 m18 m19 m20 m21 m22 m26

10 m2 m3 m4 m5 m6 m8 m9 m13 m18 m20 m21 m26

11 m1 m2 m3 m7 m19 m20 m21 m22 m26

12 m2 m3 m16 m20 m21 m23 m24 m26

13 m1 m4 m18 m19 m23 m26

14 m23 m24 m26

TABLE III
THE SET D− OF NEGATIVE OBJECT DESCRIPTIONS

G D−

15 m3m8m16m23m24

16 m7m8m9m16m18

17 m1m21m22m24m26

18 m1m7m8m9m13m16

19 m2m6m7m9m21m23

20 m19m20m21m22m24

21 m1m20m21m22m23m24

22 m1m3m6m7m9m16

23 m2m6m8m9m14m15m16

24 m1m4m5m6m7m8m16

25 m7m13m19m20m22m26

26 m1m2m3m5m6m7m16

27 m1m2m3m5m6m13m18

28 m1m3m7m13m19m21

29 m1m4m5m6m7m8m13m16

30 m1m2m3m6m12m14m15m16

31 m1m2m5m6m14m15m16m26

32 m1m2m3m7m9m13m18

33 m1m5m6m8m9m19m20m22

34 m2m8m9m18m20m21m22m23m26

35 m1m2m4m5m6m7m9m13m16

36 m1m2m6m7m8m13m16m18

37 m1m2m3m4m5m6m7m12m14m15m16

38 m1m2m3m4m5m6m9m12m13m16

39 m1m2m3m4m5m6m14m15m19m20m23m26

40 m2m3m4m5m6m7m12m13m14m15m16

41 m2m3m4m5m6m7m9m12m13m14m15m19

42 m1m2m3m4m5m6m12m16m18m19m20m21m26

43 m4m5m6m7m8m9m12m13m14m15m16

44 m3m4m5m6m8m9m12m13m14m15m18m19

45 m1m2m3m4m5m6m7m8m9m12m13m14m15

46 m1m3m4m5m6m7m12m13m14m15m16m23m24

47 m1m2m3m4m5m6m8m9m12m14m16m18m22

48 m2m8m9m12m14m15m16
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The set SPLUS0 for positive class of examples is in Tab.IV.
The initial content of STGOOD0 is {(2,10), (3, 10), (3, 8),
(4, 12), (1, 4, 7), (1, 5,12), (2, 7, 8), (3, 7, 12), (1, 2, 12, 14),
(2, 3, 4, 7), (4, 6, 8, 11)}.

Applying operation generalization of(s) = s′′ =
obj(val(s)) to ∀s ∈ STGOOD0, we obtain STGOOD1 =
{(2,10), (3, 10), (3, 8), (4, 7, 12), (1, 4, 7), (1, 5,12), (2, 7,
8), (3, 7, 12), (1, 2, 12, 14), (2, 3, 4, 7), (4, 6, 8, 11)}.

By Th. 1, one can delete value m12 from consideration, see
splus(m12) in Tab.IV. The initial content of STGOOD allows
to decrease the number of using the procedure to be test()
and the number of putting extents of tests into STGOOD.
Apart from this, it helps to find essential objects in the sub-
contexts (projections).

TABLE IV
THE SET SPLUS0

splus(m),m ∈M

splus(m∗)→ {2, 8, 10}
splus(m13)→ {3, 8, 10}
splus(m16)→ {4, 9, 12}
splus(m1)→ {1, 4, 11, 13}
splus(m5)→ {1, 4, 7, 10}
splus(m12)→ {2, 3, 4, 7}
splus(m18)→ {3, 9, 10, 13}
splus(m2)→ {1, 5, 10, 11, 12}
splus(m+)→ {2, 3, 4, 7, 8}
splus(m19)→ {3, 8, 9, 11, 13}
splus(m∗)→ {2, 8, 10}
splus(m13)→ {3, 8, 10}
splus(m16)→ {4, 9, 12}
splus(m1)→ {1, 4, 11, 13}
splus(m5)→ {1, 4, 7, 10}
splus(m12)→ {2, 3, 4, 7}
splus(m18)→ {3, 9, 10, 13}
splus(m2)→ {1, 5, 10, 11, 12}
splus(m+)→ {2, 3, 4, 7, 8}
splus(m19)→ {3, 8, 9, 11, 13}
splus(m22)→ {2, 7, 8, 9, 11}
splus(m23)→ {1, 2, 5, 12, 13, 14}
splus(m3)→ {3, 7, 8, 10, 11, 12}
splus(m4)→ {2, 3, 4, 7, 10, 13}
splus(m6)→ {1, 4, 5, 7, 8, 10}
splus(m7)→ {2, 3, 4, 6, 8, 11}
splus(m24)→ {1, 2, 3, 4, 5, 7, 12, 14}
splus(m20)→ {4, 6, 7, 8, 9, 10, 11, 12}
splus(m21)→ {1, 4, 6, 8, 9, 10, 11, 12}
splus(m26)→ {1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14}

B. The number of subtasks to be solved

This number is determined by the number of essential values
in the set M . The quasi-minimal subset of essential values in
M can be found by a procedure analogous to the procedure
applicable to search for the initial content of STGOOD.

We begin with the first value m1 of M , then
we take the next value m2 of M and evaluate the
function to be test(obj({m1,m2}), {m1,m2}). If
the value of the function is false, then we take
the next value m3 of M and evaluate the function
to be test(obj({m1,m2,m3}), {m1,m2,m3}). If the
value of the function to be test(obj({m1,m2}), {m1,m2})
is true, then value m2 of M is skipped and the function

to be test(obj({m1,m3}), {m1, m3}) is evaluated. We
continue this process until we achieve the last value of M .

As a result of the procedure, we have quasi-maximal subset
sbmax(M), such that (obj(sbmax(M)), sbmax(M)) is not
a test for positive examples. Then subset LEV = M \
sbmax(M) is quasi-minimal subset of essential values in M .

The complexity of this procedure is evaluated as the product
of ||M || by the complexity of the function to be test().
For our example (Tab.II,III), we have the following set (list
of essential values) LEV: {m16,m18,m19,m20,m21,m22,
m23,m24,m26}.

Proposition 1: Each essential value is included at least in
one positive object description.

Proof: Assume that for an object description ti, i ∈ G+,
we have ti ∩ LEV = ∅. Then ti ⊆ M \ LEV. But M \ LEV
is included at least in one of negative object descriptions
and, consequently, ti also possesses of this property. But it
contradicts to the fact that ti is a description of positive
object.

Proposition 2: Assume that X ⊆ M . If X ∩ LEV = ∅,
then to be test((obj(X), X) = false. This proposition is the
consequence of Proposition 1.

For finding all GMRTs containing in a given main classi-
fication context, it is sufficient to solve this problem only for
subcontexts associated with essential values.

Note that the description of t14 = {m23,m24,m26} is
closed because of obj({m23,m24,m26} = {1, 2, 12, 14}
and val({1, 2, 12, 14} = {m23,m24,m26}. We also know
that s = {1, 2, 12, 14} is closed too (we obtained this
result during generalization of elements of STGOOD. So
(obj({m23,m24,m26})), {m23,m24, m26}) is a maximally
redundant test for positive objects and we can, consequently,
delete t14 from consideration. As a result of deleting m12 and
t14, we have the modified set SPLUS (Tab.V).

TABLE V
THE SET SPLUS1

splus(m),m ∈M

splus(m∗)→ {2, 8, 10}
splus(m13)→ {3, 8, 10}
splus(m16)→ {4, 9, 12}
splus(m1)→ {1, 4, 11, 13}
splus(m5)→ {1, 4, 7, 10}
splus(m18)→ {3, 9, 10, 13}
splus(m2)→ {1, 5, 10, 11, 12}
splus(m+)→ {2, 3, 4, 7, 8}
splus(m19)→ {3, 8, 9, 11, 13}
splus(m22)→ {2, 7, 8, 9, 11}
splus(m23)→ {1, 2, 5, 12, 13}
splus(m3)→ {3, 7, 8, 10, 11, 12}
splus(m4)→ {2, 3, 4, 7, 10, 13}
splus(m6)→ {1, 4, 5, 7, 8, 10}
splus(m7)→ {2, 3, 4, 6, 8, 11}
splus(m24)→ {1, 2, 3, 4, 5, 7, 12}
splus(m20)→ {4, 6, 7, 8, 9, 10, 11, 12}
splus(m21)→ {1, 4, 6, 8, 9, 10, 11, 12}
splus(m26)→ {1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13}
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VI. SELECTING AND ORDERING SUBCONTEXTS IN
INFERRING GMRTS

The main question is how we should approach the problem
of selecting and ordering subtasks (subcontexts). Consider
Tab.VI with auxiliary information.The columns of this table
correspond to the essential values, the lines of it correspond
to the objects of the main context in the beginning of finding
GMRTs.

It is clear that if we shall obtain all the intents of GMRTs
entering into descriptions of objects 1, 2, 3, 5, 7, 9, 10,
12 and 13, then the main task will be over because the
remaining object descriptions (objects 4, 6, 8, 11) give, in
their intersection, the intent of already known test (see, please,
the initial content of STGOOD). Thus we have to consider
only the subcontexts of essential values associated with object
descriptions 1, 2, 3, 5, 7, 9, 10, 12, 13. The number of such
subcontexts is 39. But this estimation is not realistic.

TABLE VI
AUXILIARY INFORMATION

No
m16 m18 m19 m20 m21 m22 m23 m24 m26

∑
mij

1 × × × × 4
2 × × × × 4
3 × × × × 4
5 × × 2
7 × × × × 4
9 × × × × × × × 7
10 × × × × 4
12 × × × × × × 4
13 × × × × 4
4 × × × × ×
6 × × ×
8 × × × × ×
11 × × × × ×

∑
di

2 4 3 4 4 3 5 6 8 39

We begin with ordering the set of indices of objects by
increasing the number of their entering into elements of
STGOOD1, see Tab.VII.

TABLE VII
ORDERING THE SET OF OBJECT INDICES IN STGOOD1

Index of object 9 13 5 10 1

The number of entering
in elements of STGOOD1

0 0 1 2 3

Index of object 2 3 12 7

The number of entering
in elements of STGOOD1

4 4 4 5

Now we select the subcontexts (subtasks), based on
proj(t×m), where t is the object description whose index
enters into smallest number of elements of STGOOD and m
is an essential value in t, entering in the smallest number of
object descriptions in proj(t) (the objects 4, 6, 8, 11 are not
considered).

After solving each subtask, we have to correct the sets
SPLUS, STGOOD, and auxiliary information. So, the first
sub-task is t9 × m16. Solving this sub-task, we have not
any new test, but we can delete m16 from t9 and then
we solve the sub-task t9 × m19. As a result, we introduce
s = {9, 11} in STGOOD and delete t9 from consideration
because of m16, m19 are the only essential values in this
object description (because each object description has several
individual minimal subsets of essential values). .

Then we solve subtasks t13×m19 and t13×m18. The result
is introducing s = {13} in STGOOD and deleting t13 because
m18 is the only essential value in this object description.
After deleting t9, t13, we can modify SPLUS and delete from
it splus(m16) = {4, 12} and splus(m18) = {3, 10}. This
means that we delete from consideration values m16,m18.
Tabs VIII and IX contain the modified SPLUS and Auxiliary
information, respectively.

TABLE VIII
THE SET SPLUS2

splus(m),m ∈M

splus(m∗)→ {2, 8, 10}
splus(m13)→ {3, 8, 10}
splus(m1)→ {1, 4, 11}
splus(m5)→ {1, 4, 7, 10}
splus(m2)→ {1, 5, 10, 11, 12}
splus(m+)→ {2, 3, 4, 7, 8}
splus(m19)→ {3, 8, 11}
splus(m22)→ {2, 7, 8, 11}
splus(m23)→ {1, 2, 5, 12}
splus(m3)→ {3, 7, 8, 10, 11, 12}
splus(m4)→ {2, 3, 4, 7, 10}
splus(m6)→ {1, 4, 5, 7, 8, 10}
splus(m7)→ {2, 3, 4, 6, 8, 11}
splus(m24)→ {1, 2, 3, 4, 5, 7, 12}
splus(m20)→ {4, 6, 7, 8, 10, 11, 12}
splus(m21)→ {1, 4, 6, 8, 10, 11, 12}
splus(m26)→ {1, 2, 3, 4, 6, 7, 10, 11, 12}

TABLE IX
AUXILIARY INFORMATION (2)

No
m19 m20 m21 m22 m23 m24 m26

∑
mij

1 × × × × 4
2 × × × × 4
3 × × × 4
5 × × 2
7 × × × × 4
10 × × × 4
12 × × × × × 4
4 × × × ×
6 × × ×
8 × × × × ×
11 × × × × ×

∑
di

1 3 3 2 4 6 6 25

Tab. X illustrates all modeling process of inferring all
GMRTs, some part of which is omitted.

Tab.XI shows the final sets STGOOD and TGOOD. There
are various ways of using the proposed decomposition and
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TABLE X
MODELING PROCESSES OF INFERRING GMRTS BY SEQUENCE OF

SUBTASKS

N Subcontext Extent of
New Test

Deleted
values Deleted

objects

1 t9 ×m16

2 t9 ×m19 (9, 11) t9
3 t13 ×m18

4 t13 ×m19 (13) m16,m18 t13
5 t5 ×m23 m23

6 t5 ×m24 t5
7 t10 ×m20 (8, 10)
8 t10 ×m21

9 t10 ×m26
m∗,m13,
m4,m5

t10

10 t1 ×m21

11 t1 ×m24 m1,m2 t1
12 t2 ×m22 (7, 8, 11) m22

13 t2 ×m22

14 t2 ×m24 t2
15 t3 ×m19 (3, 11) m19

16 t3 ×m24 m24 t12, t7
17 t3 ×m26 t3

extracted initial information about GMRTs [6], but we confine
ourselves to the most important ideas which allow developing
incremental processes of inferring GMRTs contained in a
given classification context.

TABLE XI
THE SETS STGOOD AND TGOOD

N STGOOD TGOOD

1 13 m1m4m18m19m23m26

2 2,10 m4m∗m26

3 3,10 m3m4m13m18m26

4 8,10 m3m6m∗m13m20m21

5 9,11 m19m20m21m22m26

6 3,11 m3m7m19m26

7 3,8 m3m7m13m+m19

8 1,4,7 m5m6m24m26

9 2,7,8 m+m22

10 1,5,12 m2m23m24

11 4,7,12 m20m24m26

12 3,7,12 m3m24m26

13 7,8,11 m3m20m22

14 2,3,4,7 m4m12m+m24m26

15 4,6,8,11 m7m20m21

16 1,2,12,14 m23m24m26

VII. APPROACH TO INCREMENTAL INFERRING GMRTS

Incremental supervised learning is necessary when a new
portion of observations becomes available over time. Suppose
that each new object comes with the indication of its class
membership. The following actions are necessary with arrival
of a new object: 1) checking whether it is possible to perform
generalization of some existing rules (tests) for the class
to which a new object belongs (a class of positive objects,
for certainty); 2) inferring all GMRTs induced by the new
object description; 3) checking the validity of rules (tests) for
negative objects, and, if it is necessary, modifying the tests

Generalization of STGOOD+:
∀s, s ∈ STGOOD+ such that val(s) ⊆ tnew
do s := s ∪ j∗; and ||G+|| := ||G+|| + 1;

Inferring new knowledge
(solving a subtask of the first kind):

to find all X,X ⊆ tnew such that (obj(X), X)
is a GMRT for positive objects;

Correcting knowledge if
∃s, s ∈ STGOOD− such that

Y ∗ ⊆ tnew(val(s) = Y ∗ ⊆ tnew) do sinvalid := s;
delete sinvalid from STGOOD−;

Find all s ⊆ sinvalid
such that (s, val(s)) is a

GMRT for negative objects.

Find all Y , Y ⊆ M such that
Y ∗ ⊆ Y and (obj(Y ), Y ) is
a GMRT for negative objects.

Block 1

Block 2

Block 3

Case 1 Case 2

Fig. 5. Block-scheme of Incremental inferring GMRTs

that are invalid (test for negative objects is invalid if its intent
is included in a new (positive) object description). Thus the
following mental acts are performed:
• Pattern recognition and generalization of knowledge (in-

creasing the power of already existing inductive knowl-
edge);

• Increasing knowledge (inferring new knowledge);
• Correcting knowledge (diagnostic reasoning).

The first act modifies already existing tests (rules). The second
act is reduced to subtask of the first kind. The third act can
be implemented by the following ways. In the first way, we
delete invalid tests (rules) and, by the use of subtask of the
first kind, we must find new GMRTs generated by negative
objects descriptions that have been covered by invalid tests.
In the second way, this act can be reduced to subtask of the
second kind.

An idea of an incremental approach to inferring GMRTs is
described in Fig. 5, where STGOOD+ and STGOOD− are
sets of extents of GMRTs for G+ and G−, respectively. Case
1 and Case 2 are the subtasks of the first and second kind,
respectively.

VIII. CONCLUSION

In the paper, the decomposition of inferring good classi-
fication tests into subtasks of the first and second kinds is
presented. The decomposition allows, in principle, to trans-
form the process of inferring good tests into a “step by step”
reasoning process. A block-scheme of this incremental process
is considered. The rules of forming and reducing sub-contexts
are given, in this paper. Some possibilities of constructing al-
gorithms for GMRTs inferring with the use of both attributive
and object subcontexts are considered depending on the nature
of GMRTs’ features.
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