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The method of discrete singularities in the
diffraction problem on a closed cylindrical
surface (the case of H-polarization)

Y.Bakhmat

Abstract— 2-D problem of monochromatic electromagnetic
waves diffraction by a perfectly conducting closed cylindrical surface
(the case of H-polarization) has been considered. The mathematical
model of the diffraction problem above has been built. A new
approach of the transition to discrete mathematical model has been
considered. The discrete mathematical model is based on the method
of the discrete singularities. The numerical experiment has been
made.
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logarithmic kernel.

I. INTRODUCTION

T HE purpose of the work is to construct the discrete
mathematical model of the diffraction problem H-
polarization electromagnetic waves by a perfectly conducting
closed cylindrical surface. Vector and scalar potentials have
been used for constructing the mathematical model of this
problem [1]. The method of discrete singularities has been
applied for constructing the discrete mathematical model of
this problem. The numerical method has been made in some
cases where directivity patterns modulus of the complex
amplitude of the scattering field has been built.

Il. VECTOR AND SCALAR POTENTIALS

We introduce the Cartesian coordinate system (Xi, X», X3).
Let us consider a perfectly conducting cylinder which is
infinite along axis xs;. The intersection has been made by plane
parallel to the plane X;0X,. To denote L, the simple smooth
contour, is the directrix of a cylindrical surface.

Vectors of the electromagnetic field have been represented
as[2]:

E(x,t)=E(x)-e'“t, 1
H(X,t)=H(x)-e'“t, )
where
H(®)=(0, 0, Hy (X)) Hy, =u(x), 3)
E(x)=(Ey,. Ex,. 0)
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There is exterior boundary value problem. u(x) is unknown

function and all components of the electromagnetic fields are
expressed by this function.

" % 4)

We have considered the Maxwell equations in the
differential form:
rotE=-2 8, )
ot
rotH=-25. (6)
ot
D=¢E, (7)
B=uH, (8)

where ¢ is the dielectric permittivity of the medium,  is the
permeability of the medium.

Since
divB =0,
then, as known, vector B is represented as
B = rotH , )
then from (8):
7 =LroA- (10)
y7i

Taking into account the equality (10), substituting (8) to (5),
we obtain:

rotE = —iwuH , (11)
rotE = —iwrotA , (12)
rot(E +iwA)=0. (13)
As known,
rot(grad )=0, (14)
so from (13), taking into account (14), we obtain:
—grady =E +iw A, (15)
E=—grady—iowA. (16)
So vector A and electrodynamics scalar potential y are
related with E and H relations (10), (16).
As known,
rot{rotﬂ}: grad {divﬂ}—vzﬁ. a7
Substitute (10) and (16) to (6)
rot{l rotA} =iwe{-grady —ioA) (18)

Y7
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Taking into account (17), we obtain:
grad {divﬂ}— V2A = ia)g,u{— grady — iwﬂ}- (19)
We finally have:
V2A+k?A = grad {iwsuy + divA}, k = wyfeu - (20)
As A uniquely defined, so the condition is imposed:

iweuy +divA =0, (21)
Then we obtain equation:
VZA+k?A=0. (22)

The solution of Gelmgolt‘s equation is vector potential [3]:
exp ikL
/1 .[ MN }dsM ,
Lmn

where Ly, is the dlstance from the integration point M to
the observation point N.

Now to imagine scalar potential in the form of an integral
over the surface S. the density of the current j(m) is defined
by points, that belong to the surface. Substitute (23) to (21),
also assuming, that observation point N does not belong to the
surface S, than have divergence operator under the integral
sign. Taking into account:

divia-p}=a-gradg+¢-diva,
we obtained the scalar potential:

L e L

(23)

(24)

I1l. OUTPUT THE BOUNDARY INTEGRAL EQUATION

The tangential component of the intensity vector of the total
electric field by the surface becomes equally 0. This is
boundary condition:

[E°.n°|=—E, n°]. (26)
[Eo,ﬁon—NlLrnM{l’ Lgrady (N)|+io[i® AN | M es
(27)

We introduced curvilinear coordinate system (, 7,z for
convenience, so that surface S coincides with the part of the
coordinate  surface  g=(g=const. Point M has
coordinates X; =&, Xp =77, X3 =¢ .

As the directrix of the cylindrical surface in this case is
ellipse, then parametric surface has the form:

X1 = a-cost,
Xp =a-sint,
X3 =2, te [O, 27[), Ze (—oo;+oo).
(28)
Let T0 is the basis vector of the variable 7 in the point M,

flux density is present in the form of

iM)=]t¢)=j, (t.g)T%+j,(t¢) 20 (29)
i, (t.¢) j,(t,¢) are respectively transverse and

longitudinal components of the vector on the point M.

As we have seen H-polarized field, then the surface currents
are only transverse
jT (t)

im)

where

_ f0.

(29.1)
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In this case the boundary condition has the form:

hl Y LA (N)=EQ, q=aqo, te[o,27):  (30)
_ (9@, (02 ())? 32
=[O (2] e

Considered the scalar potential (25). As

(grad fool i) "J L0 2 o),
LmnN I(t) ot VIV
2 2
.ay:J[agfﬂj +(@ﬁ;“f] , (34
oo €XPL —i VX2 +12
H 82) (x)= — J‘ { . } dt (35)
—o0 X~ +t
then we obtained finaIIy
*7. _f iz k (k Ly )dt - (36)

Then considered the vector potentlal and found A_(N). As

A (N)= (20, A(N)), (37)
We obtained
2z
A= g T M L) O )
0
St.2) () x(r) oxa(t) oxa(r). (40)
’ dt dr dt dr

In (30) the point N can be omitted on the contour L, if we
understand the integral in the principal value sense. In order to
obtain an integro-differential equation, we must substitute the
representation for the scalar potential (36) and the © —
component of the vector potential at the boundary condition.

Thus we have the boundary integral equation:

-1 9 H@ L) j, ()dt +

2
lim ==
(7 )ws an;o or J- ot

ey ot ) HD (ko) i, (et - E2
(41)
Lo =yla )= () +(e-x () (42

+(x2(d0,t)—x2(a,7))*
(43)
PE (44)
where (X1(qo,t) and X»(qe,t)) are coordinate points, which
belong to the contour, (Xi(q, t) and x»(qg, 7)) are coordinate
points, which belong to the contour of the normal to the
surface. Under the limit ¢ — qo, we understand that research
point is raised above the contour and then that point falls along
the normal to the contour.
After we have allocated hypersingular and logarithmic
features, finally we have obtained the integral equation:

L(@,t,7) = y(x1(q0,t) - x¢ (0, 7))

k=w
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i 27 (t)dt |k I(c) 27 t—z) .
o J SinZ[t—?Tj . J' Insm( 5 j jr (t)dt+ )
Tt it = 1(6),
0
Qe =~ 2Pl
Sin ( 5 j (46)
2;; [(xl'(r))2+(x2'(r) j Insm(t;Tj +
kb ()0 40 ()3 ) HP K Lo )+
+k (( '(1))2+(x2’(r)) jiilnsin t;T ,
f(c)=4l(r)we E? (47)

IV. THE DISCRETE MATHEMATICAL MODEL OF THE PROBLEM

For the construction of the discrete model we have
formulated the problem for the approximate solution in the
form of the interpolating polynomials. We have replaced all
smooth function in (47) by corresponding trigonometric
interpolation polynomials [4]:

zi,,zf( th)(t )dt .k2|( I'”S'”[tz j P05, Yo+
0 sin [?Tj
+2.fr(P th '[ (Pn Xt dt*( éz)fkr),
0
(48)
2n+ ( : (i,n))
- (.n)\ 2 7% ) (a9)
( gX(p) 2n+1zg( SInE((p w(ln))
o = pf =22n—’f':1, k=0,1,..,2n; (50)
‘/’gz'n)=<ﬂ81=%n, j=0,1,...2n- (51)

We have used interpolation quadrature formula with special
set of points as nod. We have obtained the system of linear
algebraic equations where unknown vectors are current density

values ( jf(t)) in special set of points:

((pOJ ¢|’2) n~sin[n+%)(¢)8j—

n
in? =
2

2n S

4

er(

2n+1/7 21

n

N 1
%J Px SIS \Poj —

ZJ (o )[Inz ”C"Sp((/’gi_‘”'?)}

2 p
((ﬂ )Q((pk cooj) f((poj) j=0,1,..,2n-(52)

N
—

sin

_ik?I(z)

27

T
2n+1

2n

ZJ

27
2n +1)
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V. THE DIRECTIVITY PATTERN OF SCATTERED FIELD

Consider the case, when the directrix of the cylinder is
ellipse, whose center is at the origin. Then the parametric
representation of the contour directrix can be written as
follows:

{xl =a-cost, (53)
X =b-sint, telo, 27).
And let
{yl =r-cost, (54)
yo =r-sint, telo, 27).

As y e CQ, we have assumed, that r >>R.
Asymptotic behavior of the Hankel functions at infinity [5] is

2 |(Z V*—zj
2. 2 4)
Tz

The directivity pattern of scattered field is determined by the
formula [6]

~ (55)

Z— 40"

HP ()

, 56
Dy (to)= lim U(ri’t())” )
r—+o0 5 i(kl’—fj
‘e 4
\zr
Urty)= Lf’ xl(t —rcostg _X/(t)xz(t)—rsinto '
07 ai o Lmn ' LmN
KLy —2-2
~/#e ( "2 4jjr(t)dt.
7k LMN
(57)

Thus, finding limit (56), we have got directivity diagram of the
complex amplitude of the scattered field:

27
Dy (tO):E g(— Xo (t)costo +Xo (t)sinto). (58)
-eik(x(t)costy+xy(t)sinty) | i (©)dt.
To denote
glt.tg)= (— x5 (t)costy + X, (t)sintg ),eik(Xl(t)COSt0+x2(t)sinto)

(59)
Replacing g(t,ty) and j, (t) the corresponding interpolation

functions by trigonometric polynomials, using appropriate
quadrature formula, we have finally obtained

Dy (tg) = 22+129(¢k f/’o)J ((PE)' (60).

VI.
Thus, mathematical and discrete mathematical models

CONCLUSION

_of the diffraction problem H-polarization electromagnetic

89

waves by the perfectly conducting closed cylindrical surface
had been built. The numerical experiment had been made. The
directivity pattern of the scattered field module complex
amplitude had been built. The method of discrete singularities
is based on the special quadrature formulas of interpolation
that guarantees high accuracy and high rate convergence of the
algorithm.



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

1m0
150
oo 12
20
Mo

Fig.1. The directivity diagram of the complex amplitude of the scattered field,
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directrix is circle, R=1, gg=—.

Fig.2. The directivity diagram of the complex amplitude of the scattered field,
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directrix is ellipse, a=—, b= a? -1, a=—.

110

150

E'ﬂ 120 =

210

Fig.3. The directivity diagram of the complex amplitude of the scattered field,
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