
 

 

  
Abstract—The paper presents using of enumerative 

combinatorics for open job shop scheduling problems. Two 
approaches are described – one approach aims to determine a 
schedule that minimizes the total makespan by solution of a single 
optimization task and other that is based on solving in parallel of a 
number of optimization tasks. For the goal, a combinatorial 
optimization modeling is described and corresponding algorithm is 
proposed. The described approach of enumerative combinatorics for 
optimal job shop scheduling is numerically tested for real job shop 
scheduling problem. 
 

Keywords—Open job shop scheduling, mathematical 
programming, minimal makespan, enumerative combinatorics.  

I. INTRODUCTION 
HE scheduling is a key factor for manufacturing 
productivity. Effective manufacture scheduling can 

improve on-time delivery, reduce inventory, cut lead times, 
and improve the utilization of bottleneck resources [1].  

One of the most studied combinatorial optimization 
problems is the job shop scheduling problem. Nevertheless, it 
still remains a challenging problem to solve optimally. From a 
complexity point of view, the problem is NP-hard i.e. it can be 
solved in nondeterministic polynomial time [2], [3]. 

The simplest scheduling problem is the single machine 
sequencing problem [4]. Minimizing the total makespan is one 
of the basic objectives studied in the scheduling literature. The 
shortest processing time dispatching rule will give an optimal 
schedule in the single machine case if the tool life is 
considered infinitely long [5]. The scheduling with sequence-
dependent setups is recognized as being difficult and most 
existing results in the literature focus on either a single 
machine or several identical machines [6]-[9]. The real-life 
scheduling problems usually have to consider multiple no 
identical machines. Most of the processing machines needed 
to process the jobs are available in the manufacturer's own 
factory and are of fixed (finite) number. Sometimes, certain 
details must be ordered to a third party companies to complete 
very specific processing as molding for example. In cases like 
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that, the processing schedules are to be agreed for delivery 
times from the third-party processing. That means generating a 
schedule to process all jobs, so as to minimize the total cost, 
including the satisfaction of the due dates of the jobs [10]. 
Different manufacturing environments induce different 
scheduling constraints, some of which may be very specific to 
the problem under consideration [11]. The classical job shop 
scheduling problem is one of the most typical and complicated 
problems formulated as follows: 1) a job shop consists of a set 
of different machines that perform operations of jobs; 2) each 
job is composed of a set of operations and the operation order 
on machines is prescribed; 3) each operation is characterized 
by the required machine and the processing time. In the last 
two decades, numerous techniques was developed on 
deterministic classical job shop scheduling, such as analytical 
techniques, rule-based approach and meta-heuristic algorithms 
and algorithms using dynamic programming [12]-[16]. 

Approximately up to 2004 the computers have had 
gradually increasing of CPU performance by increasing of 
operating frequency, and the need of multi core systems was 
not so obvious. NVIDIA has invented the graphics processing 
unit (GPU) that became a pervasive parallel processor to date. 
It has evolved into a processor with unprecedented floating-
point performance and programmability and today’s GPUs 
greatly outpace CPUs in performance, making them the ideal 
processor to accelerate a variety of data applications. Today, 
some GPUs have thousands of processing cores and with 
CUDA programming model [17] they offer a new way to use 
the GPU as a general purpose powerful processor. This opens 
up new horizons in development and application of new 
approaches based on parallel algorithms [18].  

The proposed scheduling approach concerns a problem of 
scheduling for multiple details with fixed processing time and 
predetermined order of processing operations over different 
machines. Three general types of open job shop scheduling 
problems are investigated: 1) unconstrained – the processing 
of details is independent of each other; 2) constrained - the 
order of processing of details is given and cannot be changed 
and 3) “semi-constrained” – a group of details have 
predetermined order of processing while other details can be 
processed in any order. The objective in question for these 
open job shop scheduling problems is to determine processing 
schedule that minimizes the makespan in such way that all 
details processing conforms to the given requirements and 
restrictions. The constrained job shop scheduling problems are 
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more easily addressed by combinatorial optimization then 
unconstrained problems [19]. One possible way to deal with 
unconstrained and semi-constrained open job shop scheduling 
problems is by using of enumerative combinatorics. In the 
paper the mixed semi-constrained open job shop scheduling 
problem is investigated as generalization of the other two 
cases. An algorithm with two branches (aggregate 
optimization and parallel optimization) is described. The first 
branch is based on solution of single optimization task that 
takes into account all possible combinations of details 
processing order. The second branch is based on solving in 
parallel of a number of optimization tasks where each task 
corresponds to one of the possible variants of the details 
processing orders [20]. The proposed enumerative 
combinatorics approach for optimal open job shop scheduling 
is numerically tested for a real life example.  

II. PROBLEM DESCRIPTION  
There is a group of details that need to be processed on 

multiple machines. Some of these details are connected with 
each other through given order of processing while other can 
be processed in any order. All details have predetermined 
sequence of operations on particular machines. The processing 
times of details on machines are deterministic and are known 
in advance. The problem is to determine the processing 
schedule with minimal makespan for all details processing 
according to requirements.   

For clarity of presentation the investigated open job shop 
problem will be explained by a real life example for a set of 
six details (jobs) with given sequences of operations that 
should be processed on four different machines with known 
processing time on each machine. All available data are 
summarized in Table I where operations’ designation Oij 
means processing of detail i on machine j and processing 
times are given in hours.  

 
TABLE I 

INPUT DATA FOR DETAILS PROCESSING  

Details 
(Jobs) 

Operations 
Processing 
time on M1 

Processing 
time on M2 

Processing 
time on M3 

Processing 
time on M4  

D1 
O11 8    
O12  6   
O14    6 

D2 
O21 8    
O22  9   
O24    6 

D3 
O31 8    
O33   8  
O32  8   

D4 
O41 4    
O42  2   
O43   2  

D5 
O51 4    
O52  9   
O53   5  

D6 
O61 6    
O63   4  

 
The sequence of operations for each detail are given by 

arrays of indexes of machines where these operations are to be 

performed: O1 = [1, 2, 4], O2 = [1, 2, 4], O3 = [1, 3, 2], O4 = 
[1, 2, 3], O5 = [1, 2, 3] and O6 = [1, 3]. Due their processing 
specifics the details D4, D5 and D6 should be processed in a 
sequential order – i.e. D5 detail to be processed after 
completion of the processing of the detail D4 and D6 is 
processed after the processing of the detail D5. 

All jobs cannot overlap on the machines and one job cannot 
be processed simultaneously by two or more machines. Each 
operation needs to be processed during an uninterrupted 
period of a given length on a given machine.  

Taking all of these considerations into account a details 
processing schedule that minimizes the makespan has to be 
determined. The described problem can be represented as 
machine-oriented Gantt chart that visualizes the sequence of 
details processing on different machines as shown in Fig. 1. 

 

 
Fig. 1. Gantt chart for a processing schedule of 6 details on 4 
machines (D4, D5 and D6 are processed in sequential order)  

III. MATHEMATICAL MODELS FORMULATION  
Most variants of job shop scheduling problem are NP-hard 

in the strong sense and thus defy ordinary solution methods. 
That is why new techniques are required to overcome 
difficulties and to be applied to particular manufacturing job 
shop scheduling problems. The generalized goal of most of 
optimal scheduling problems is to minimize the overall costs. 
Although many costs could be considered for optimization, the 
minimizing of details processing time duration is one of most 
frequently used. It provides the effective machines utilization 
and serves the optimization of details delivering and storage. 
The used enumerative combinatorics for modeling of open job 
shop scheduling is characterized by strong dependence of the 
specifics of the particular problem to be solved. The different 
distributions of operations among machines will require 
different mathematical models. That is why the proposed in 
the paper approach will be illustrated on the example data 
shown in Table I. 

A. Mathematical Model for Aggregate Optimization 
Aggregate optimization approach takes into account 

simultaneously all feasible permutations of the order of 
processing of the details. The formulation of the 
corresponding optimization model is based on data from Table 
I. There are 3 details (D1, D2 and D3) that can be processed in 
any order. The group of dependant details D4, D5 and D6 can 
be considered as one independent detail and the number of all 
possible processing sequences of details can be calculated as 
number of permutations of 4, i.e. 4! = 24. To build a model 
that will choose the best possible processing sequence of 
details, 24 binary integer variables yi are introduced and used 
as decision variable for a group of constraints that correspond 
to particular variant of details processing order. 
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( )endendendendendend xxxxxx ,6,5,4,3,2,1min +++++  (1) 

subject to 
• restrictions for each detail processing order over machines:  

• 81,12,1 ≥− xx   (2) 

• 62,14,1 ≥− xx  (3) 

• 64,1,1 ≥− xx end  (4) 

• 81,22,2 ≥− xx   (5) 

• 92,24,2 ≥− xx   (6) 

• 64,2,2 ≥− xx end   (7) 

• 81,33,3 ≥− xx  (8) 

• 83,32,3 ≥− xx    (9) 

• 82,3,3 ≥− xx end   (10) 

• 41,42,4 ≥− xx   (11) 

• 22,43,4 ≥− xx   (12) 

• 23,4,4 ≥− xx end   (13) 

• 41,52,5 ≥− xx   (14) 

• 92,53,5 ≥− xx  (15) 

• 43,55,5 ≥− xx  (16) 

• 55,5,5 ≥− xx end   (17) 

• 61,63,6 ≥− xx   (18) 

• 43,6,6 ≥− xx end   (19) 

• restrictions for details priority processing order as follows: 
D1 → D2 → D3 → D4 → D5 → D6: 

11,11,21 8)( yxxy ≥−   (20) 

11,21,31 8)( yxxy ≥−   (21) 

11,31,41 8)( yxxy ≥−  (22) 

11,41,51 4)( yxxy ≥−   (23) 

11,51,61 4)( yxxy ≥−   (24) 

12,12,21 6)( yxxy ≥−   (25) 

12,22,31 9)( yxxy ≥−  (26) 

11,32,41 8)( yxxy ≥−  (27) 

12,42,51 2)( yxxy ≥−   (28) 

13,33,41 8)( yxxy ≥−   (29) 

13,43,51 2)( yxxy ≥−   (30) 

13,53,61 5)( yxxy ≥−   (31) 

14,14,21 6)( yxxy ≥−   (32) 

• for processing order D1 → D3 → D2 → D4 → D5 → D6: 

21,11,32 8)( yxxy ≥−  (33) 

21,31,22 8)( yxxy ≥−   (34) 

21,21,42 8)( yxxy ≥−   (35) 

21,41,52 4)( yxxy ≥−   (36) 

21,51,62 4)( yxxy ≥−   (37) 

22,12,22 6)( yxxy ≥−   (38) 

22,22,32 9)( yxxy ≥−  (39) 

21,32,42 8)( yxxy ≥−  (40) 

22,42,52 2)( yxxy ≥−   (41) 

23,33,42 8)( yxxy ≥−   (42) 

23,43,52 2)( yxxy ≥−   (43) 

23,53,62 5)( yxxy ≥−   (44) 

24,14,22 6)( yxxy ≥−   (45) 

• for processing order D2 → D1 → D3 → D4 → D5 → D6: 

31,21,13 8)( yxxy ≥−  (46) 

31,11,33 8)( yxxy ≥−   (47) 

31,31,43 8)( yxxy ≥−   (48) 

31,41,53 4)( yxxy ≥−   (49) 

31,51,63 4)( yxxy ≥−   (50) 

32,12,23 6)( yxxy ≥−   (51) 

32,22,33 9)( yxxy ≥−  (52) 

31,32,43 8)( yxxy ≥−  (53) 

32,42,53 2)( yxxy ≥−   (54) 

33,33,43 8)( yxxy ≥−   (55) 

33,43,53 2)( yxxy ≥−   (56) 

33,53,63 5)( yxxy ≥−   (57) 

34,14,23 6)( yxxy ≥−   (58) 

• for processing order (D4 → D5 → D6 )→ D1 → D2 → D3: 

41,41,54 4)( yxxy ≥−  (59) 

41,51,64 4)( yxxy ≥−  (60) 

41,61,14 6)( yxxy ≥−   (61) 

41,11,24 8)( yxxy ≥−   (62) 

41,21,34 8)( yxxy ≥−   (63) 

42,42,54 2)( yxxy ≥−   (64) 

42,52,14 9)( yxxy ≥−  (65) 

412224 6)( yxxy ≥−  (66) 

42,22,34 9)( yxxy ≥−   (67) 

43,43,54 2)( yxxy ≥−   (68) 

43,53,64 5)( yxxy ≥−   (69) 

43,63,34 4)( yxxy ≥−   (70) 

44,14,24 6)( yxxy ≥−   (71) 

and so on ……………………… 

1
24

1

=∑
=k

ky , yk ∈ {0,1}, k = 1, 2, … 24  (72) 

where xi,j ≥ 0 are integers representing the moments of time 
when processing of detail i on machine j starts. 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 122



 

 

The overall details processing time duration (makespan) can 
be defined as difference between end processing moment of 
the last detail and start processing moment of the first detail 
and if the processing starts at moment zero moment then the 
objective can be minimization of the end processing moment 
of the last detail. It is unknown in advance which of details 
will be processed last. That is why the objective function (1) is 
composed as additive function of end moments for processing 
of all details. In this way minimizing of the sum of end 
processing moments of all details will correspond to minimal 
makespan. 

The group of constraints (2) – (19) represents technological 
order for processing of each of details. For example, the 
constraint (2) describes the fact that the processing of the 
detail 1 on the machine 2 should begin at the earliest after the 
end of processing it on a machine 1 i.e. 8 hours or more later. 
The group of constraints (20) – (32) describes the order of 
processing of the details relative to one another taking into 
account that one machine can process one detail at a time. For 
example, constraint (20) defines that detail 1 should be 
processed before detail 2 or in other words, detail 2 should 
wait at least 8 hours after start of processing of detail 1 on 
machine 1.  

In this aggregated mathematical model for open job shop 
scheduling all 24 variants of details processing order are taken 
into consideration by introduced decision variables yk. To 
determine the minimal makespan schedule via enumerative 
combinatorics a single solution of the formulated above 
optimization task is needed.  

B. Mathematical Model for Parallel Optimization 
Parallel approach is based on assumption that determination 

of one feasible schedule does not depend on determination of 
other feasible schedules. For example, if details processing 
sequence is D1→ D2 → D3 → D4 → D5 → D6, the 
optimization task is formulated as follows:  

( )endendendendendend xxxxxx ,6,5,4,3,2,1min +++++  (73) 

• subject to restrictions for detail processing order over 
machines:  

81,12,1 ≥− xx   (74) 

62,14,1 ≥− xx  (75) 

64,1,1 ≥− xx end  (76) 

81,22,2 ≥− xx   (77) 

92,24,2 ≥− xx   (78) 

64,2,2 ≥− xx end   (79) 

81,33,3 ≥− xx  (80) 

83,32,3 ≥− xx    (81) 

82,3,3 ≥− xx end   (82) 

41,42,4 ≥− xx   (83) 

22,43,4 ≥− xx   (84) 

23,4,4 ≥− xx end   (85) 

41,52,5 ≥− xx   (86) 

92,53,5 ≥− xx  (87) 

43,55,5 ≥− xx  (88) 

55,5,5 ≥− xx end   (89) 

61,63,6 ≥− xx   (90) 

43,6,6 ≥− xx end   (91) 

• subject to restrictions for the details priority processing:  
81,11,2 ≥− xx  (92) 

81,21,3 ≥− xx   (93) 

81,31,4 ≥− xx   (94) 

41,41,5 ≥− xx   (95) 

41,51,6 ≥− xx   (96) 

62,12,2 ≥− xx   (97) 

92,22,3 ≥− xx  (98) 

81,32,4 ≥− xx  (99) 

22,42,5 ≥− xx   (100) 

83,33,4 ≥− xx   (101) 

23,43,5 ≥− xx   (102) 

53,53,6 ≥− xx   (103) 

64,14,2 ≥− xx   (104) 

 0, ≥jix  (105) 

The formulated task (73) – (105) takes into account the 
details processing sequence D1 → D2 → D3 → D4 → D5 → 
D6. To define the minimum makespan for other processing 
sequence this task should be reformulated. The group of 
restrictions for details priority processing (24) to (36) has to be 
changed to correspond to other possible details processing 
sequence. As it was mentioned, there are 3 details (D1, D2 and 
D3) that can be processed in any order. The group of 
dependant details D4, D5 and D6 can be considered as one 
independent detail and the number of all possible processing 
sequences can be calculated as number of permutations of 4, 
i.e. number of different processing sequences that have to be 
evaluated is equal to 4! = 24.  

For example, if details processing sequence is D1 → D3 → 
D2 → D4 → D5 → D6 the restrictions (92) – (94) should be 
reformulated as:  

81,11,3 ≥− xx  (106) 

81,31,2 ≥− xx   (107) 

81,21,4 ≥− xx   (108) 

The objective function (5) and the rest of restrictions remain 
the same.  

If details processing sequence is D2 → D1 → D3 → D4 → 
D5 → D6 the restrictions (93) – (94) have to be changed as: 

81,21,1 ≥− xx  (109) 

81,11,3 ≥− xx   (110) 
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81,31,4 ≥− xx   (111) 

The objective function and the rest of restrictions remain 
the same.  

If the group of details D4, D5 and D6 is to be processed in 
the first place i.e. details processing order is D4 → D5 → D6 → 
D1 → D2 → D3 the restrictions (93) – (104) are transformed to 
the same objective function, modified restrictions: 

41,41,5 ≥− xx  (112) 

41,51,6 ≥− xx  (113) 

61,61,1 ≥− xx   (114) 

81,11,2 ≥− xx   (115) 

81,21,3 ≥− xx   (116) 

22,42,5 ≥− xx   (117) 

92,52,1 ≥− xx  (118) 

61222 ≥− xx  (119) 
92,22,3 ≥− xx   (120) 
23,43,5 ≥− xx   (121) 
53,53,6 ≥− xx   (122) 
43,63,3 ≥− xx   (123) 
64,14,2 ≥− xx   (124) 

The restrictions for detail processing order over machines 
(74) – (91) remain the same.  

In similar way, all possible combinations of detail 
processing sequences reflecting in 24 different modifications 
of basic optimization task (73) – (105) are done.  

In this approach the formulated aggregated optimization 
model is decomposed on number of similar optimization tasks 
corresponding to the permutations for independent details 
processing. Each task solution is independent of other tasks 
solutions and defines some value of makespan. When all of 
these values are defined it is easy to compare them and to 
choose the details processing sequence with minimal 
makespan. The number of tasks to be solved is equal to 
number of details permutations. Each of these optimization 
tasks has not simple structure and can be solved by means of 
modern multicore processors as NVIDIA GPU. 

IV.  GENERALIZED ALGORITHM FOR OPTIMAL OPEN JOB SHOP 
SCHEDULING 

To find the optimal processing schedule that is minimal in 
the sense of shortest makespan, a generalized algorithm for 
optimal job shop scheduling of semi-constrained details 
processing on multiple machines shown in Fig. 2 is proposed. 

The algorithm consists of two general branches – for 
aggregate optimization and for parallel optimization. The two 
first steps of the algorithm are common for both of branches. 
At the first step the number of jobs that can be processed in 
any sequence to each other is determined.  

 

 

 
Fig. 2. Generalized algorithm for open job shop scheduling  

 
If exist dependant jobs (as for details D4, D5 and D6) they 

are considered as one independent job. On the second step all 
possible orderings (permutations) for processing of 
independent details are defined. 

Then depending on the available software and hardware 
capabilities, aggregate or parallel branch can be chosen. If 
there exist linear programming solver characterized by a large 
number of allowable restrictions and variables the aggregate 
branch of algorithm can be used. If a CUDA GPU is available 
its multicore potential can be used by the parallel branch of 
algorithm. It is based on formulation and solution in parallel of 
a variety of optimization tasks for each possible processing 
sequence. Then makespan for all of the details processing 
variants are compared and the schedule corresponding to 
minimal makespan is chosen as the best one. 

V. NUMERICAL EXPERIMENTATION AND DISCUSSIONS 
The two branches of algorithm are numerically tested by 

using the input data from Table I. The all of possible 
processing sequences are visualized in Fig. 3.  

The makespan values for all of the possible variants of 
details processing sequences vary within interval of 65 to 54 
hours. The using of aggregate optimization branch of 
algorithm defines as optimal the processing sequence D1 → 
D4 → D5 → D6 → D2 → D3 with makespan equal to 54 
hours. By using of parallel optimization branch, 4 processing 
sequences shown in Table III have equal makespan with 
duration of 54 hours. 
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Fig. 3. Variants of open job shop schedules of the investigated problem 
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TABLE III 
SOLUTIONS RESULTS  

Optimal processing sequences  Makespan, hours  

D1 → D4 → D5 → D6 → D2 → D3  54 
D2 → D4 → D5 → D6 → D1 → D3 54 
D4 → D5 → D6 → D1 → D2 → D3  54 
D4 → D5 → D6 → D2 → D1 → D3 54 

 
This means that parallel optimization branch supplies more 

informative results. To get the same information by using 
aggregate optimization branch the decision variable for the 
optimal solution has to be equalized to zero and the 
optimization task should be solved again. Then the solution 
will define next processing sequence with makespan equal to 
54 hours. Again the corresponding decision variable should be 
zeroed to get the next processing sequence with makespan of 
54 hours. This procedure is repeated until it is found a 
processing sequence with makespan greater than the 
minimum. 

All formulated optimization tasks are solved by means of 
LINGO solver [21]. Despite the fact that open job shop integer 
problems are difficult to solve (in general they are NP-hard), 
the numerical testing show quite acceptable solution times of 
few seconds for the example in consideration.  

The real-life job shop scheduling problems have their own 
specifics. With this approach the number of restrictions 
increases with increasing of number of variants of ordering of 
details processing. As it was mentioned earlier, the specific of 
problem is essential for scale of this increasing. It can be seen 
that the relationship between the processing details sequence 
and machines occupation have a significant impact on overall 
manufacturing process performance. For the described 
example, it turned out that Machine 1 is the busiest machine 
among the others. One possible approach to shorten the 
overall makespan is to consider more than one machine of 
type 1 and to estimate the influence of machine’s number on 
the total makespan.  

The proposed approach based on generalized algorithm for 
open job shop scheduling can be used for other similar 
problems concerning optimal job shop scheduling.  

VI. CONCLUSION  
The main contribution of the paper is using of the 

enumerative combinatorics approach for deterministic open 
job shop scheduling of unconstrained or semi-constrained 
details processing on multiple machines. The main goal is to 
determine the processing schedule with minimal makespan. 
An algorithm with aggregate optimization branch and parallel 
optimization branch is proposed. The both of branches are 
based on considering of all permutations of independent 
details processing sequences. The execution of the aggregate 
optimization branch provides a single optimal processing 
schedule. The using of parallel optimization branch defines 
schedules for all possible details processing sequences. The 
corresponding makespans are compared and the best schedule 
in sense of minimal makespan is determined. This branch of 

algorithm provides a full picture of all possible processing 
schedules to choose from. Depending on the specific of job 
shop problem it is possible to have a number of processing 
sequences with equal makespan. Parallel branch of the 
algorithm has the advantage of providing this information in a 
direct manner.  

The disadvantage of the proposed enumerative 
combinatorics approach is the need of considering of all 
permutations for possible details processing sequences. This 
restricts the practical application to open job shop scheduling 
problems with relatively small number of independent details. 
When large scale open job shop problems can be decomposed 
on problems with small number of independent details the 
proposed approach can be effectively used. There exist 
effective algorithms for permutations determination and if the 
process of formulation of optimization tasks is automated the 
area of practical application could be extended. This is a 
direction for future investigations. Other direction for 
investigations of described approach is to explore how the 
increasing of the number of identical machines will contribute 
to decreasing of makespan.  
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