
 

 

  
Abstract—When simulation models are validated against 

experimental data, model adequacy and accuracy are evaluated using 
performance indexes that quantify distances between simulated and 
measured data vectors: amplitude, derivatives, slopes, peaks and 
valleys, etc. are all possible curve features. Performance indexes have 
appeared in the literature from different fields of science and are 
tested for suitability to problems involving electric networks. Indexes 
are evaluated for sensitivity to typical signal characteristics and the 
capability of detecting usual differences; tests are performed on 
synthetic and real cases. 
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I. INTRODUCTION 
UMERIC models are being used more and more often for 
the assessment of system performance, reliability, safety 

in normal and exceptional conditions and configurations for a 
wide range of systems. Correspondingly, any simulation model 
needs a verification and validation process, that establishes its 
performance for the field of application [1]. Even limiting our 
scope to engineering and to electrical networks [2], control, 
operation, functionality, sizing, stability and distortion may all 
be analyzed in steady and transient conditions [3][4]. The first 
step is always to define the intended use and the required level 
of detail for the models and simulator building blocks, 
depending on the required task and objectives. Focusing on a 
specific type of electric networks, i.e. electric transportation 
systems, and on the phenomena usually evaluated for electrical 
interoperability, performance and electrical safety assessment, 
the required behavior is presented in the working documents of 
the CENELEC committee C20 [5]. The scope of this 
committee and its activities is the definition of a validation 
framework for railway simulators, recognizing different model 
categories, including mechanical and electrical infrastructure 
elements, a train electromechanical model, traffic information 
and the possibility of static and dynamic simulations. All these 
characteristics are subdivided between optional and required 
ones for different model categories, form category 1 to 
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category 4, the most complete. The use of numerical models is 
also suggested by the EU Directives on interoperability [6] and 
related standards for the evaluation of electrical 
interoperability [7]. 

For railway systems (and by extension any other electric 
transportation system) the relationship between safety and 
electromagnetic interference brings to very complex, 
expensive and time consuming assessment procedures. The 
latter benefit from, or are even unpractical without, adequate 
models of the system. This is readily explained if the 
possibility is considered of analyzing extreme system 
configurations and parameter values, and evaluating the 
statistical distributions of network response. 

The verification of a model is the evaluation of the 
correspondence to the requirements, even for single modules 
during their development. The validation of a simulation 
model aims at verifying that it meets its intended use, in terms 
of overall requirements and user’s expectations. The 
verification phase reviews intermediate elements, by means of 
static analysis techniques (inspections and reviews) and 
possibly dynamic techniques (execution of test runs of the 
simulator modules, maybe assisted by synthetic data). The 
whole validation process begins with the determination of the 
model type, its basic attributes and the relations with the 
system to be modeled. Then, when the model is being 
formulated and implemented, the model is validated by itself 
considering the expected model behavior. But the most 
relevant part of the validation process is represented by the 
characterization of the model accuracy with respect to the 
reference data. The validation of a simulator using dynamic 
techniques is performed by executing test runs on reference 
cases. 

When using experimental data as reference, we must first 
consider that the data themselves are affected by measurement 
errors and are thus characterized by uncertainty. The term 
“error” is to be intended with a broad meaning, including 
internal and external noise, offsets and fluctuations, etc. that 
may affect the data and cause various types of aberrations and 
outliers. 

The second relevant aspect is the completeness of the 
description of the physical system in terms of the selected data. 
This is related to the accessibility of system variables (that at a 
different level of abstraction corresponds to system 
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observability) and to the identification of the relevant ones. 
Third, it is worth noting that additional sets of variables and 

parameters may be included in the validation, because of their 
“added value”, related to a more accurate and extended 
coverage of system dynamics, therefore increasing the detail of 
the system representation and of the validation outcome. 

The data and simulator outputs mentioned so far are the 
electrical quantities of the system (namely voltage, current, 
impedance), taking the shape of time- or frequency-domain 
curves [8]. Curves in both domain have some distinct features, 
such as peaks and valleys, so positive and negative slopes, may 
be strictly positive (e.g. amplitude spectra) or crossing the zero 
axis (e.g. periodic time-domain signals), and might have a zero 
mean value. Time-domain signals are in general real valued, 
while spectra in frequency domain may be characterized in 
terms of amplitude and phase response. 

When comparing simulated and experimental data of this 
kind several features normally capture the observer’s eye and 
may be used to quantify the degree of similarity. This work is 
focused on the suitability of known indexes of performance 
derived from other field of science. These indexes are applied 
to the simulation output comparing it to reference experimental 
results, that for our purpose are assumed accurate and 
characterized by a negligible uncertainty. The indexes that are 
considered and evaluated here were described in [9]; the 
objective is to evaluate the agreement or discrepancies 
between different indexes and methods, their applicability to 
the typical “signals” (indicating with this term both time-
domain signals and frequency-domain spectra), the sensitivity 
to various types of errors between simulated and experimental 
results as differences in amplitude and displacement factor, for 
time domain models, and differences in amplitude, peaks 
position, peaks number, slope in frequency domain models. 

To this aim errors and differences are artificially injected 
into synthetic signals, varying dc value, scale, phase 
differences, curve discontinuities, number of points. 

II. PROBLEM FORMULATION 
This work focuses on the indexes used to evaluate model 

adequacy and the degree of similarity between simulation and 
experimental data, where “similarity” indicates a quantitative 
evaluation of the distance between the two vectors o 
(simulation output) and m (measured data). Different distance 
metrics may be selected and applied as they appear in the 
indexes considered in the following: absolute deviation, 
maximum absolute deviation, root mean square, amplitude and 
slope difference, etc. Such metrics may be applied to the 
curves (point values) or to the first-order derivatives (slopes) 
or even to higher-order derivatives. The concepts of distance 
and correlation may be used to establish similarity between 
vectors. However, from a general viewpoint, when evaluating 
the correctness and adequacy of a simulation model, the 
judgment is based on the visualization of many output results. 
Inspecting visually the results and basing the judgment upon 
this has its strong and weak sides: 

− the eye concentrates on peak positions and ignores 
both the effective correlation of intensities and intervals 
with lower values; 
− yet, visual evaluation selects the most relevant 
behavior and trend (such as slopes, peaks, curvature 
and convexity), rejecting many details with adverse 
influence (noise terms of different nature); 
− an objective comparison between different groups of 
experts proofed to be difficult, so that potentially the 
method is not 100% reliable; 
− the amount and organization of data may be too 
large and complex to be compared visually with ease 
and in this case selection and feature extraction shall be 
implemented. 

 
The five performance indexes, selected in [10] for the 

validation of the simulation model of 25 kV ac railway traction 
systems, are considered. They are tested, first, against 
synthetic signals with injected artificial errors and differences 
and, then, in sec. 4, they are evaluated with real case studies. 
The aim is to establish quantitatively the range of variation for 
the indexes, how to set their constants, which signal features 
are detected and evaluated best and worst by each index, and if 
the indexes have some weakness or inaccuracy with respect to 
some signal feature or class of signals. 

A. Theil inconsistency coefficient [11] 
The Theil inconsistency coefficient U is expressed in the 

following form: 
1 1 12 2 2
0 0 0

( )N N N
j j i ij j j

U o m o m− − −

= = =
 = − +  

∑ ∑ ∑  (1) 

U is limited between 0 and 1: the lower its value, the more 
consistent the two data vectors. 

It is a classical root mean square error, normalized by the 
rms values of the o and m data vectors. It is very similar to the 
concept of normalized covariance of two distributions. 

The Theil index is an amplitude-only index: by inspection of 
(1) it may be said that it has no singular points and that dc 
value and scale are not affecting its operation. 

 

B. Zanazzi & Jona correlation factor [12] 
Zanazzi and Jona correlation factor has been used in X-ray 

diffraction and surface crystallography and was designed to 
accentuate the slopes rather than the amplitudes, by comparing 
the first and second derivatives. 
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where C is the ratio of averages to adjust the scale and RZJ is 
normalized to 1 for uncorrelated o and m vectors. 

As it will be pointed out later on, the C coefficient is the 
weak point of the formulation, being exposed to zero mean 
data vectors (the mean value of o is at the denominator); in (5) 
also the mean value of m is at the denominator. So both 
equations are not definite for zero mean vectors. 

Further susceptibility is of course related to the calculation 
of the first and second derivatives and to noise and 
discontinuities. No singular points of the denominator of (4) 
exist, because the max( ) term ensures that there is always a 
strictly positive value. 

C. Pendry correlation factor [13] 
The Pendry correlation factor is used instead when the two 

sequences have many variations (i.e. “peak and valleys”). The 
objective in [13] was to locate small peaks around large peaks, 
where the former could be masked by background noise; when 
transferred to electric networks this situation occurs when 
estimating highly damped non-dominant poles in the presence 
of strong resonances, or when identifying small narrowband 
components in the presence of a large fundamental or its main 
harmonics. By taking the fractional (or normalized) first 
derivative L x x′=  of either the model output o or the 
experimental data m, the expression Y is built around it 

1

2 2( )
LY

L K

−

−
=

+
 (6) 

where K is a constant derived from the physical nature of 
the phenomenon and in general might be adjusted to trim the 
range of variation of L. The Pendry reliability index is thus 
defined in our case by distinguishing the Y calculated with 
model output Yo and the one calculated with experimental 
results Ym: 

1 1
2 2 2

0 0
( ) ( )

N N

P o m o m
i i

R Y Y Y Y
− −

= =

= − +∑ ∑  (7) 

where the denominator normalizes the index again equal to 
1 for uncorrelated o and m vectors. 

Unlike RZJ, the RP factor only requires the first derivative, 
making it less susceptible to small or rapid changes; this 
feature is useful for analyzing noisy sequences. 

D. Modified Pendry correlation factor [14] 
The use of the Pendry reliability factor RP is strictly 

connected to the choice of the value to assign to the K constant 
(see (6)) furthermore, this index has no evident upper bound 
that establishes a range of values and a truly quantitative 
indexing of the goodness of fit for a certain class of problems. 

To solve such problems a linear expression of the Pendry 
correlation factor, RPL, is proposed that limits the maximum 
variation of the index to 1, assuming a K constant equal to 0 

 

RPL = Lo − Lm
i=0

N −1

∑ Lo + Lm
i=0

N −1

∑   (8) 

E. Van Hove correlation factor [15] 
The Van Hove correlation factor is probably the most 

popular, with five different indexes to evaluate the position 
and width of the sequence peaks, the shape of the peaks and 
the valleys, their number and their amplitude. 
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The five indices are synthesized in an overall indicator that 
takes the root square of the sum of the squares, without using 
any specific weighting of the single index: 

 2 2 2 2 2
1 2 3 4 5V V V V V VR R R R R R= + + + +  (14) 

This index suffers the same weakness related to the C 
coefficient commented in sec. II.B for the Zanazzi and Jona 
index. The other terms at denominator are all safe from a null 
value, because of the absolute values or square operators. It 
will be pointed out how the calculation of the number of slopes 
may lead to some discrepancy, being quite susceptible to 
approximations and round-offs at the extreme of the domain 
interval, when the number of peaks is small (and thus the 
number of positive and negative slopes). Furthermore, the 
algorithm needs a robust method to count the number of 
slopes, that at the moment is implemented using the 
findpeaks( ) function in Matlab. 

F. IELF (integrated log-frequency) [16] 
Going to problems of electromagnetic simulation, much 

closer to our topic, the Integrated against Error Log Frequency 
(IELF) index computes the difference between two traces in 
logarithmic horizontal scale and it is mostly suitable for 
frequency domain data. Its modified version is normally used, 
that takes the reference points halfway of each frequency bin 
and improves the approximation. 

1 1
1

2 2
0

0

ln ln

ln ln

i i i i
N

f f f f
i i

i

N

o m
IELF

f f

+ −
−

+ +

=

 − − 

−

∑
 (15) 

This index is extremely simple and thus quite reliable and 
stable. It has no numerical criticality. 

III. TEST OF PERFORMANCE INDEXES 
Quantitative tests have been made using a set of synthetic 

signals that possess the following characteristics: variable 
average value, constant and variable first derivative and 
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discontinuities of the first derivative. The signals are all 
without added noise because it is commonly accepted and 
understood that the calculation of the first and higher order 
derivatives cannot be implemented satisfactorily if additive 
noise is present and curve smoothing is usually applied to 
prevent this. 

The first test set is made of periodic signals that may be 
interpreted as signals in time domain: a sinusoid (case S) and a 
triangular (case T) signal of unitary amplitude, sampled at 200 
kS/s, are used; the data vector are made of 10000 points. The 
differences between the reference vector m and the evaluated 
vector o are artificially obtained by shifting the two signals 
(“injected phase difference”, IPD); being periodic, a shift of 
half period creates two signals with opposite amplitude values 
and slopes that represent the most different vectors. Phase is 
changed progressively from 45°, 90° to 180°. 

Also the effect of an amplitude shift is considered and it was 
obtained by adding an offset (“injected offset”, IOF). In this 
case an offset of 1 is added to bring the curve in the positive 
quadrant. This was done for two reasons: to test the effect of 
offsets, that do not change the scale but increase the maximum 
value, and to remove the problem of the zero mean on the 
coefficient C, that is common to the Zanazzi-Jona and Van 
Hove indexes; also for the Pendry index an offset is necessary 
because a zero mean brings the L coefficient to infinite. 

When testing the frequency response of synthetic dynamic 
systems (that represent a large class of simulated systems), the 
changes applied to the pole values are of the parametric type, 
affecting the curve shape in its entirety and not only locally. 

To this aim the frequency domain response of a dynamic 
system (case D) with two complex conjugate poles with 
resonance frequency fn=7000 Hz and damping factor ξ=0.2 
was used. Then the dynamic system underwent a parametric 
change, moving the poles by given quantities obtained by 
adding or subtracting to the real and imaginary part a 
percentage of the absolute value (the undamped resonant 
frequency). This method is “dynamic system deterministic”, or 
DD, and applies in the specific case a variation of the pole in 
six step, summing and subtracting, to the real and imaginary 
part of the pole, 1, 1/2, 1/4 of the 1 or 10% of his absolute 
value. Moreover, in order to verify the dependence of the 
indexes to the absolute value of the curves this was changed 
using a static gain of 2 and 4.) 

A more complete evaluation is then performed with a 
statistical approach, or DS, applying a random change of the 
pole values by Monte Carlo analysis; the random pole 
movement was set to a Gaussian distribution with zero mean 
value and dispersion of 1 and 10% of the pole absolute value 
(again the resonant frequency fn, or pulsation 2πfn). The results 
are displayed as histograms of the probability density function 
(pdf), together with the estimation of the mean value µ and 
standard deviation σ of the sample. 

The resulting performances are reported in the following 
subsections for each index. 

A. Theil 
As evidenced in Table 1 the value of the index is strongly 

influenced by the amplitude of the curves: the statement that 
the range of variation of the index is at most between 0 and 1 
is true if the mean value of the curves to compare is zero, so 
that the dc component must be removed from the data vector 
before comparison. However, the index values are consistent 
with the injected difference, decreasing uniformly for 
decreasing phase difference. 

Table 1. Theil index for the sinusoidal and triangular curves 
test 

 ph.displ.=π ph.displ.=π/2 ph.displ.=π/4 

 off=0 off=2 off=0 off=2 off=0 off=2 

S 1.00 0.23 0.71 0.16 0.38 0.09 
T 1.00 0.38 0.70 0.26 0.40 0.10 

 
The Theil inconsistency index has no scale problems and is 

independent on the amplitude of the curves, as shown in Table 
2. 

Table 2. Theil index for the dynamic system deterministic test 
(DD) 

 1% ωn 10% ωn 

pole 
step 

G0=2 G0=4 G0=2 G0=4 

+1 0.013 0.013 0.098 0.098 
-1 0.014 0.014 0.191 0.191 

+1/2 0.006 0.006 0.056 0.056 
-1/2 0.007 0.007 0.078 0.078 
+1/4 0.003 0.003 0.030 0.030 
-1/4 0.003 0.003 0.036 0.036 

 
The Theil index is linear, hence its distribution is the result 

of the quadrature composition of the two Gaussian 
distributions for the real and imaginary part of the poles: the 
resulting pdf is a Rayleigh as it appears from Fig. 1 and Fig. 2. 
The linearity is confirmed by the ten times larger mean and 
dispersion values when the 10% random variation is applied. 

 
Fig. 1. Theil pdf for 1% DS (µ=0.0153, σ=0.0089) 
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Fig. 2. Theil pdf for 10% DS (µ=0.171, σ=0.139) 

B. Zanazzi-Jona 
This index needs a strong customization to the specific 

problem before being used satisfactorily. The original index is 
quite related to the class of problems for which it was 
conceived: the scaling factor C shown in (2) prohibits to 
evaluate curves with zero mean value, like most of periodic 
time domain signals and oppositely to the previous Theil 
index; the index is also unsuitable for curves with 
discontinuities in the first derivative or second derivative, as 
the triangular test signal. This problem may occur also in 
frequency domain data when a spectrum shows a resonance 
peak with quite a small damping. When the frequency 
resolution is constrained by practical issues, even moderate Q 
factors may cause numeric discontinuities for particularly 
unlucky distributions of the frequency axis points with respect 
to the original continuous frequency resonance. 

Furthermore, this index has no evident upper bound that 
establishes a range of values and a truly quantitative indexing 
of the goodness of fit for a certain class of problems: it 
indicates simply how close or far are two data vectors and the 
index can only be used to establish which data vector o of a set 
is more similar to the reference data vector m. To this aim the 
index may be scaled assigning 1 to the worst value obtained 
for the least fit vector of the set. Zanazzi & Jona propose to 
normalize the index with respect to the mean of N vectors, 
even obtained by random variations around an original vector, 
obtaining what he calls “Reduced Reliability Index” [12]. 

Table 3. Zanazzi-Jona index for the sinusoidal and triangular 
curves test 

 ph.displ.=π ph.displ.=π/2 ph.displ.=π/4 

 off=1 off=2 off=1 off=2 off=1 off=2 

S 8.34 103 4.17 103 4.42 103 2.22 103 1.18 103 0.59 103 
T 2.53 103 1.52 103 1.33 103 0.80 103 1.33 103 0.80 103 

 
Also the Zanazzi-Jona reliability index RZJ is not scale 

sensitive, as shown in Table 4. 

Table 4. Zanazzi-Jona index for the dynamic system 
deterministic test (DD) 

 1% ωn 10% ωn 

pole 
step 

G0=2 G0=4 G0=2 G0=4 

+1 8.41 10-6 8.41 10-6 5.09 10-4 5.09 10-4 
-1 9.27 10-6 9.27 10-6 13.7 10-4 13.7 10-4 

+1/2 2.15 10-6 2.15 10-6 1.69 10-4 1.69 10-4 
-1/2 2.26 10-6 2.26 10-6 2.76 10-4 2.76 10-4 
+1/4 0.55 10-6 0.55 10-6 0.49 10-4 0.49 10-4 
-1/4 0.56 10-6 0.56 10-6 0.62 10-4 0.62 10-4 

 
The Zanazzi-Jona index applied to the synthetic curves is 

insensible to the static gain variation of them. The index 
however recognize the curves closer to the reference one even 
if, as said above, the absence of a sure interval of variation of 
the index make it useful only for relative, and not absolute, 
assessment. 

The Monte Carlo analysis is repeated also for the Zanazzi-
Jona index, that is known to be non-linear. The output passing 
from the 1% to the 10% applied perturbation spread 
dramatically and for the largest perturbation the pdf is 
displayed on a log distributed abscissa. 

The statistical analysis shows the non linearity of the 
Zanazzi-Jona index and the unsuitability to distinguish curves 
with large differences between them. The spread of index 
values for just a 10% standard deviation of the Gaussian 
random variable is amazing, yet with misleading limited values 
of the mean and dispersion of the index. 

 
Fig. 3. Zanazzi-Jona pdf for 1% DS (µ=9.12 10-6, σ=9.22 10-6) 
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Fig. 4. Zanazzi-Jona pdf for 10% DS (µ=0.051, σ=1.87) 

C. Pendry 
The use of the Pendry reliability factor RP is strictly 

connected to the choice of the value to assign to the K constant 
(see (6)). The index is undefined for curves with zero data 
samples; this does not occur for the curves for which it was 
originally conceived and may thus be applied to the vast class 
of frequency domain spectra, provided that only the amplitude, 
and not the phase, is evaluated. 

The application of this index for the validation of 
electromagnetic models was investigate in [17], where the K 
factor was omitted, simplifying a lot (6); eq. (7) thus becomes 
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The authors in [17] indicate a range of variation between 0 
and 1, but as shown in Table 5 the index assumes in reality 
also values larger than one! 

Removing the factor K, however, has the drawback that the 
index now depends strongly on the data vector amplitude. 
Furthermore, it also does not allow the comparison of curves 
for which the first derivative is zero, even for a fraction of 
their domain. 

Using RPL (8) saturation to unity for extremely different 
curves is assured, as shown in Table 5. 

Table 5. Pendry and modified Pendry indexes for the 
sinusoidal and triangular curves test 

  ph.displ.=π ph.displ.=π/2 ph.displ.=π/4 

  off=0 off=2 off=0 off=2 off=0 off=2 

S 
RP 
RPL 

1.84 
1.00 

1.94 
1.00 

1.07 
0.72 

1.03 
0.71 

0.35 
0.40 

0.31 
0.39 

T 
RP 
RPL 

1.92 
1.00 

1.97 
0.38 

1.02 
0.59 

1.01 
0.55 

0.55 
0.32 

0.51 
0.29 

 
The modified Pendry index RPL works fine with a smoother 

and more proportional change depending on the injected phase 
difference; the maximum is 1 whatever the amplitude of the 
curves, increasing its reliability and the applicability. 

Table 6. Pendry and modified Pendry indexes for the dynamic 
system test (DD) 

  1% ωn 10% ωn 

 pole 
step 

G0=2 G0=4 G0=2 G0=4 

R
P 

+1 5.16 10-6 2.05 10-4 2.84 10-4 1.11 10-3 
-1 5.99 10-6 2.38 10-5 13 10-4 5.33 10-3 

+1/2 1.34 10-6 5.31 10-5 0.97 10-4 0.39 10-3 
-1/2 1.44 10-6 5.73 10-5 2.07 10-4 0.82 10-3 
+1/4 0.34 10-6 0.13 10-5 2.89 10-4 0.12 10-3 
-1/4 0.35 10-6 0.14 10-5 4.22 10-4 0.17 10-3 

R
PL

 

+1 0.0223 0.0248 0.2057 0.2328 
-1 0.0227 0.0251 0.2489 0.2695 

+1/2 0.0112 0.0124 0.1079 0.1209 
-1/2 0.0113 0.0125 0.176 0.1289 
+1/4 0.0056 0.0062 0.0551 0.0615 
-1/4 0.0056 0.0063 0.0575 0.0634 

 
Observing the Pendry index values calculated for the 

synthetic curves and reported in Table 6, it is evident the 
dependency of the index on the overall amplitude of the curves 
(static gain): the larger the gain the larger the index, yet with a 
moderate sensitivity. 

The modified Pendry index has quite a consistent behavior 
by indicating similar values for changes in poles of opposite 
sign but equal amplitude. It is moreover proportional to the 
amplitude of the step change, doubling while passing from 1/4 
to 1/2 and then 1. Analogously when the fractional change 
passes from 1% to 10% we observe an increase of an order of 
magnitude in the RPL index. The original Pendry index has 
much larger variations and is quite susceptible to scale 
changes, while the modified version shows a modest variation 
of less than 10% when the static gain doubles. 

 
Fig. 5. Modified Pendry RPL pdf for 1% DS (µ=0.0283, 

σ=0.0165) 
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Fig. 6. Modified Pendry RPL pdf for 10% DS (µ=0.277, 

σ=0.162) 

The modified Pendry index is linear and, as for Theil index 
the resultant distribution is similar to a Rayleigh distribution. 
The linearity is confirmed by the exact ten times larger mean 
and dispersion. The shape of the pdf is however deviates 
slightly from the expected Rayleigh for the largest 
perturbation: the reason might be related to the statistical 
significance of the 10000 samples for the Monte Carlo analysis 
or to second order effect of the proposed RPL index. This 
aspect is still under investigation. 

D. Van Hove index 
Van Hove separates the evaluation of various features of the 

curves by assigning a different index of a set of five: absolute 
deviation of amplitude, mean square error of amplitude, slope 
change, absolute deviation of the first derivative and mean 
square error of the first derivative. In this way the differences 
between the input data vectors are better evaluated. The 
overall index RV is built around the square root of the sum of 
the squares of the five indexes. The author does not propose 
any weighting of an index with respect to another, keeping 
them all with a unity multiplying coefficient. 

Much similar curves in slope and amplitude may differ for 
local artifacts of the first derivative, resulting in this way quite 
different if the overall index alone is taken. This is shown 
better looking at RV4 and RV5 indexes in Table 7; hence if just 
only one of the sub-indexes assumes wrong or weird values, 
the overall index give a unreliable indication of large 
difference of the compared curves. 

In order to widen the applicability of the Van Hove index, in 
particular when periodic/oscillatory signals are evaluated, it is 
proposed to calculate the RV1 and RV2 sub-indexes removing 
any signal offset, limiting the value of the sub-indexes to unity; 
the other sub-indexes may still be calculated on the original 
signals. 

When there is only one peak in the curves, the RV3 index 
cannot be calculated; in general, with a reduced number of 
peaks, missing one peak at the extreme of the frequency 
interval, strongly influence the result. The RV3 index has 

turned out to be quite unreliable and was for this reason 
omitted from the calculation of the overall index, that is thus 
made only of RV1, RV2, RV4 and RV5. 

Table 7. Van Hove index for the sinusoidal and triangular 
curves test 

  ph.displ.=π ph.displ.=π/2 ph.displ.=π/4 

  off=1 off=2 off=1 off=2 off=1 off=2 

S 

RV 
RV1 
RV2 
RV3 
RV4 
RV5 

4.84 
1.27 
1.33 

0 
2.00 
4.00 

4.50 
0.42 
0.21 

0 
2.00 
4.00 

2.70 
0.90 
0.67 
0.20 
1.41 
2.00 

2.48 
0.30 
0.11 
0.20 
1.41 
2.00 

1.10 
0.49 
0.20 

0 
0.77 
0.59 

0.98 
0.16 
0.03 

0 
0.77 
0.59 

T 

RV 
RV1 
RV2 
RV3 
RV4 
RV5 

4.71 
1.00 
1.00 
0.45 
2.00 
4.00 

4.50 
0.14 
0.03 
0.45 
2.00 
4.00 

2.42 
0.75 
0.50 
0.25 
1.00 
2.00 

2.25 
0.11 
0.01 
0.25 
1.00 
2.00 

1.24 
0.44 
0.16 
0.25 
0.50 
1.00 

1.15 
0.06 
0.00 
0.25 
0.50 
1.00 

 
Regarding the linearity and the sensitivity to the curve scale, 

for the Van Hove index we may say that: as for the Zanazzi-
Jona index the amplitude of the synthetic curves does not 
influence the index value; the index is non-linear with respect 
to the applied changes, but its behavior is consistent, making 
correspond increase with increase in a moderately proportional 
way. 

In Table 8 the results for the tests performed with the 
simulated dynamic system are shown; as anticipated the 
overall index RV is calculated excluding RV3. As for the 
modified Pendry index there is consistent behavior with equal 
or much similar values for changes in poles of opposite sign 
but equal amplitude. Also it is proportional to the amplitude of 
the step change, doubling while passing from 1/4 to 1/2 and 
then 1. When the fractional change passes from 1% to 10% 
there is an increase of the index value of about 12 rather than 
the expected 10. Finally, the index is not sensitive to the curve 
scale, as it is demonstrated doubling the static gain. 
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Table 8. Van Hove index for the dynamic system deterministic 
test (DD) 

  1% ωn 10% ωn 

 pole 
step 

G0=2 G0=4 G0=2 G0=4 

R
V 

+1 0.0739 0.0739 1.2334 1.2334 
-1 0.0731 0.0731 0.9544 0.9544 

+1/2 0.0367 0.0367 0.4386 0.4386 
-1/2 0.0365 0.0365 0.4089 0.4089 
+1/4 0.0183 0.0183 0.1931 0.1931 
-1/4 0.0182 0.0182 0.1879 0.1879 

R
V1

 

+1 0.0170 0.0170 0.1291 0.1291 
-1 0.0182 0.0182 0.2506 0.2506 

+1/2 0.0087 0.0087 0.0751 0.0751 
-1/2 0.0090 0.0090 0.1042 0.1042 
+1/4 0.0044 0.0044 0.0406 0.0406 
-1/4 0.0044 0.0044 0.0478 0.0478 

R
V2

 

+1 0.0004 0.0004 0.0256 0.0256 
-1 0.0005 0.0005 0.0887 0.0887 

+1/2 0.0001 0.0001 0.0086 0.0086 
-1/2 0.0001 0.0001 0.0160 0.0160 
+1/4 0.0000 0.0000 0.0025 0.0025 
-1/4 0.0000 0.0000 0.0034 0.0034 

R
V4

 

+1 0.0714 0.0714 0.7819 0.7819 
-1 0.0703 0.0703 0.6491 0.6491 

+1/2 0.0356 0.0356 0.3692 0.3692 
-1/2 0.0353 0.0353 0.3414 0.3414 
+1/4 0.0177 0.0177 0.1806 0.1806 
-1/4 0.0177 0.0177 0.1739 0.1739 

R
V5

 

+1 0.0087 0.0087 0.9448 0.9448 
-1 0.0085 0.0085 0.6472 0.6472 

+1/2 0.0022 0.0022 0.2244 0.2244 
-1/2 0.0021 0.0021 0.1989 0.1989 
+1/4 0.0005 0.0005 0.0551 0.0551 
-1/4 0.0005 0.0005 0.0523 0.0523 

 

 
Fig. 7. Van Hove RV pdf for 1% DS (µ=0.0681, σ=0.0365) 

 
Fig. 8. Van Hove RV pdf for 10% DS (µ=1.066, σ=0.873) 

Observing the histogram of the Van Hove overall index RV, 
it can be noticed a slight non-linearity, getting worse with the 
increase of the applied perturbation. 

E. IELF 
The analysis of IELF index for periodic signals shows its 

insensibility to the amplitude of the curves. When tracked with 
respect to the injected difference, whilst for the triangular 
signal the behavior is monotonic, for the sinusoidal curve the 
largest difference is detected when the phase difference is π/2. 
Inspecting the IELF formulation given in (14) does not show 
any clue. A mutual effect between the phase reversal of the 
difference and the logarithmic distribution of points around 
singularities may be identified as a possible cause; nothing 
relevant, however, was resulting from the first tests. 

Table 9. IELF index for the sinusoidal and triangular curves 
test 

 ph.displ.=π ph.displ.=π/2 ph.displ.=π/4 

 off=0 off=2 off=0 off=2 off=0 off=2 

S 0.722 0.722 0.921 0.921 0.617 0.617 
T 0.800 0.800 0.427 0.427 0.221 0.221 

 

Table 10. IELF index for the dynamic system deterministic test 
(DD) 

 1% ωn 10% ωn 

pole 
step 

G0=2 G0=4 G0=2 G0=4 

+1 0.0105 0.0209 0.0785 0.1571 
-1 0.0113 0.0225 0.1649 0.3298 

+1/2 0.0053 0.0107 0.0458 0.0916 
-1/2 0.0055 0.0110 0.0657 0.1314 
+1/4 0.0027 0.0054 0.0249 0.0497 
-1/4 0.0027 0.0055 0.0298 0.0595 

 
As for the modified Pendry index, there is a consistent 

behavior with equal or much similar values for changes in 
poles of opposite sign but equal amplitude. Also the IELF 
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index is proportional to the amplitude of the step change, 
doubling while passing from 1/4 to 1/2 and then 1. When the 
fractional change passes from 1% to 10% there is an increase 
of the index value of about 7 rather than the expected 10 (it is 
thus slightly non-linear as the Van Hove index). Here, 
doubling the static gain doubles the index value, so indicating 
sensitivity to the curve scale. 

 
Fig. 9. IELF pdf for 1% DS (µ=0.021, σ=0.0116) 

 
Fig. 10. IELF pdf for 10% DS (µ=0.254, σ=0.256) 

As for Van Hove overall index RV, also the IELF index has a 
slight increase “larger than expected” of the 
dispersion, that however keeps under control. 

IV. APPLICATION TO REAL CASE STUDIES 
As already pointed out in the Introduction, noise always 

affects measurement results, causing random fluctuations, 
outliers, local waveshape aberrations: several forms of filtering 
and smoothing are necessary, provided that they do not cause 
information loss or uncertainty increase. When using indexes 
based on the estimation of the first or second derivative, noise 
removal is particularly important and compulsory. 

Moreover, measured and simulated data shall be made 

homogeneous for representation, number of samples, sample 
rate and so on, to allow a direct comparison. 

Two railway lines are considered as an example: the first 
one is a test ring in Czech Republic used for rolling stock 
homologation in Europe and was studied extensively for some 
days leading to quite an accurate model; the second one is part 
of the Italian high-speed network and the information is 
limited to design documents and general characteristics of 
devices and apparatus. 

A. Velim test ring, Czech Republic 
In this case it was possible to evaluate the influence on 

model accuracy of some second-order parameters. The study 
was performed within the European Project EUREMCO, 
undergoing two days of preliminary measurements of the 
electrical characteristics of the test ring, testing open and short 
circuit configurations. 

The Velim test centre has two test rings: the smaller one has 
a length of 6 km and is surrounded by the bigger one that is 
about 13.2 km long. The inner ring is not included in the 
model because during the measurement it was sectioned, but it 
might influence the outer ring subject to measurements 
because of coupling through the return circuit. The big test 
ring is composed of six conductors along its length. 

Rails are connected together (transversal bonding) every 
300 m, except in the track circuit testing area between 
chainage 10.672 and 11.672; the two catenary (positive) 
feeders are connected with the contact line and messenger 
every 120 m 

Low voltage measurements were performed to characterize 
the test ring, using two different configurations (open-circuit, 
OC, and short-circuit, SC) to fit the 1-day time slot available. 
In the ideal case of an ideal transmission line the responses for 
the two configurations may be calculated one from the other. A 
railway line has frequency-dependent losses and inductance of 
the return circuit, small non-linearities and its response is 
influenced by connected equipment (e.g. power transformers) 
and leakage to earth, including the coupling to other earthed 
installations (as it is the case for the small ring partially 
coupled to the big ring). Moreover, the substation and the 
feeding cable need their own modeling, as well as the circuit 
used during the test to feed the excitation signal. Last, 
inductive coupling by nearby overhead transmission lines 
worsens the measured signal quality at very low frequency, 
thus requiring to set the lowest frequency above the supply 
fundamental at 50 Hz. 

The tested frequencies are between 100 Hz and 20 kHz, 
with a suitable frequency step; the excitation signal is swept 
over this frequency interval and the relevant quantities 
(voltages and currents) are acquired by means of data 
acquisition systems. The frequency analysis is done with a 
Fourier transform approach, using a Hann smoothing window 
to reduce the frequency leakage and a preliminary estimate of 
the exact applied frequency to allow for synchronous 
extraction of the time epoch Tw to transform. A first 
instantaneous frequency estimate, made using an approximate 
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Tw based on the nominal frequency value, allows the fine 
adjustment of Tw trimming the number of samples N, with a 
time resolution given by the inverse of the sampling frequency. 
Symmetric zero-padding is used to artificially improve the 
frequency resolution during the Fourier analysis. 

The visual comparison is made first on the simulated values 
using standard values of network elements and parameters, 
such as rail impedance, losses and parasitics of the circuit 
setup, rail-to-earth conductance. Then the model is refined, 
including measured values for some parameters, and 
sensitivity analysis is performed when assigned parameter 
values are variable or uncertain. The identified parameters 
suitable for sensitivity analysis are: supply cable capacitance 
Cc and losses, identified with the transversal conductance Gc; 
rail-to-earth conductance Gr; rail longitudinal resistance Rr. 
The nominal values used as reference are derived from 
datasheets (e.g. normal values for cables of the same cross-
section and same rated voltage) or by published measurements 
[18][19]. 

Besides a general check on the voltage and current levels to 
match simulated and measured values, the line input 
impedance is used for the validation, ruling out any amplitude 
error in the fine adjustment of the feeding voltage and resulting 
current (as already explained in [8][10]). The input impedance 
curves for the SC and OC configurations are shown in Fig. 11 
and Fig. 12 for different parameter settings. The performance 
indexes for the same curves are evaluated and results reported 
in Table 11 and Table 12.  

 
Fig. 11. SC configuration: (light gray) Gr=50 µS/m, 

Cc=130 pF/m, (dark gray) Gr=500 µS/m, (black) 
Gr=100 µS/m, halved Rr, (black dots) measured values 

 
Fig. 12. OC configuration: (light gray) Gr=50 µS/m, 

Cc=130 pF/m, (dark gray) Gr=500 µS/m, (black) 
Gr=100 µS/m, halved Rr, (black dots) measured values 

In Fig. 11, the dark gray and black curves were obtained in 
an attempt to include the effect of the internal ring that 
couldn’t be tested or measured. The return circuits are 
connected through the soil and the earthing system thus 
lowering the rail equivalent longitudinal resistance and 
increasing the rail-to-earth conductance. 

Considering the anti-resonance of the SC impedance at 10 
kHz, the larger simulated value indicates a larger longitudinal 
resistance, that is larger losses in the running rails model. It is 
however to be underlined that losses in the rails at such a large 
frequency are subject to huge variations in any case from 
sample to sample, because electric losses are not controlled as 
a qualifying parameter during the production of rails. There 
are only half a dozen works in one century on this topic, only 
three if audiofrequency is considered; in [19] the spread of 
measured values for a single rail sample is already in the order 
of 20%, but between different rails even of the same gauge and 
type it might be much larger. 

The same considerations are true also for Fig. 12 where the 
results for the open circuit configuration are shown. It is 
underlined that at low frequency, below about 400 Hz, the 
input current is very small and the recorded signal is quite 
noisy, causing data corruption, seen as the extremely low 
impedance values at the beginning of the curve. For this reason 
the frequency interval up to 400 Hz is displayed but excluded 
from the comparison and calculation of indexes. 

For both configurations a visual analysis concludes that the 
simulated curves including the effects of the internal ring in 
parallel are the closest to the measured results. 

In Table 11 and Table 12 we report the performance 
indexes calculated for the different parameter combinations; 
the Pendry index Rp couldn’t be calculated because of a null 
derivative in at least one point. 
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Table 11. Short Circuit configuration: index values for the 
three simulation cases of Fig. 11 

 Gr=50 µS/m Gr=500 µS/m 
Gr=50 µS/m 

Rr=50% 

Theil 0.2470 0.1592 0.1949 

P
en

d
ry

 

RP - - - 

RPL 0.6791 0.6856 0.6865 

V
an

 H
ov

e 

RV 1.3132 1.1817 1.2338 

RV1 0.3278 0.2160 0.2521 

RV2 0.1588 0.0869 0.1193 

RV3 0 0 0 

RV4 0.8550 0.7774 0.8187 

RV5 0.9277 0.8590 0.8800 

Z-J 18.096 19.211 18.835 

IELF 115.23 94.3788 110.688 
 

Table 12. Open Circuit configuration: index values for the 
three simulation cases of Fig. 12 

 Gr=50 µS/m Gr=500 µS/m 
Gr=50 µS/m 

Rr=50% 

Theil 0.1723 0.1719 0.1823 

P
en

d
ry

 

RP    

RPL 0.8479 0.8449 0.8571 

V
an

 H
ov

e 

RV 1.4231 1.4229 1.4204 

RV1 0.1924 0.1883 0.1827 

RV2 0.1120 0.1104 0.1050 

RV3 0 0 0 

RV4 0.9903 0.9910 0.9891 

RV5 0.9975 0.9975 0.9974 

Z-J 5.9e3 6.0e3 6.3e3 

IELF 127.19 128.01 153.12 
 

Observing the results listed in table the second impedance 
curve, with an increased conductance seems to be the best fit 
to the measurement, followed by the third curve. 

Van hove indexes shown that the main differences between 
measurements and simulation are in first derivative terms, 
while a good agreement is reached for punctual values of the 
amplitude of the curves and a perfect match is obtained 
regarding the number of the peaks. 

Zanazzi Jona index, that consider also second derivatives 
terms, give some discordant indication respect the other 
indexes because it indicate the closest curve as the first one 
both for open circuit and short circuit configurations. In case 
of short circuit configuration also the IELF index indicate the 
first curve as the best. 

The two indexes that can be considered for absolute 
considerations, because they have a limit in value, are 
discordant: Theil index is very low, indicating that the curves 
are close to the measurement one. Modified Pendry index 

however is over the 0.5 and this fact indicates that the curves 
are not so close. Considering Theil index for the best fit curve 
in both configurations it can be noticed that short circuit 
simulation fits measurement better than open circuit 
simulation. This behavior is confirmed observing Modified 
Pendry index for the same curves; however the difference of 
values of this index is higher than for Theil index and it 
indicate a major difference between derivative terms of open 
circuit simulation and measurement. 

In Table 13 the maximum absolute error, the mean absolute 
error and the root mean square between measurement and 
simulated curves are presented. 

Table 13. Classical errors for the Short Circuit and Open 
Circuit configurations: maximum absolute error (max), mean 

absolute error (mean)and root mean square error (rms) 

  Gr=50 µS/m Gr=500 µS/m 
Gr=50 µS/m 

Rr=50% 

sh
or

t 
ci

rc
u

it
 max 2840 1670 2040 

mean 113.3 91.3 106.3 

rms 325.3 211.0 265.2 

op
en

 
ci

rc
u

it
 max 1500 1470 1420 

mean 144.1 144.4 159.4 

rms 236.0 236.6 268.7 

B. Italian high-speed line (Turin-Milan) 
A more complicate system response is considered as real 

study case. Test runs of a locomotive were made on the Italian 
2x25 kV high-speed line to verify the line influence on the 
rolling stock conducted emissions. The study was performed 
within the European Project EUREMCO as a contribution to 
CENELEC activities of standardization of the testing and 
evaluation of rolling stock disturbance to signaling circuits. 

Several sources are present in a real line, including 
substations besides rolling stock, all in different and varying 
operating conditions. Again the pantograph impedance (the 
ratio of the pantograph voltage and current [8]) is selected as 
the reference quantity for the validation. This is a real case 
with partial information and is used for the evaluation of the 
performance indexes and simulator performance. 

Raw measured data were sampled at 50 kS/s and Fourier 
transformed over Tw=100 ms windows, again using a Hann 
window and 50% of overlap for a total of 9 windows over a 
time interval of 0.5 s, which is used for averaging, to reduce 
the measurement noise (uncorrelated noise). When calculating 
the pantograph impedance by rationing voltage and current 
spectra, only odd harmonics of the 50 Hz fundamental are 
used, that are known to be characteristic harmonics: among 
them, the low order ones are normally influenced by the 
supply, while above about 1 kHz rolling stock influence is 
much more relevant. 

The model of the line was based on technical drawings and 
nominal values of devices and elements, without the possibility 
of dedicated tests. It is thus expected that the fitting is worse, 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 143



 

 

and this shows up as inaccuracy in peak location and – as 
before in the first case – inaccurate estimation of losses (see 
Fig. 13). The attention is focused as in a real situation on the 
most important elements that are approximately known (see 
the rail parameters discussed before); other infrastructure 
variations are more difficult to track, if they are not 
documented and inspected one by one. The considered 
parameters and their intervals of variation are the following: 

− Length of feeding cables between substation and 
line; all substations are quite directly connected to the 
line, but differences of less than 50 m were found 
relevant; the cables are normally arranged as two in 
parallel; so 75, 150, 225 and 300 m of length with two 
cables in parallel are tested with rail-to-earth 
conductance of 500 µS/m (cases L1, L2 and L3 in 
Table 14) 
− Rail-to-earth conductance should be lower because 
the line is relatively new, but even the change of 
moisture between day and night might have a 
significant effect; the 500 µS/m value assumed above is 
quite a large value, justified by some leakage through 
the sleepers typical of that part of the Italian network; 
however, lower values are more likely to occur, such as 
G1=5 µS/m and G2=50 µS/m, fixing the length of the 
feeding cables to 150 m (see Table 15). 

The indexes are thus calculated, taking as reference the 
measurement impedance curve. 

Focusing on a visual analysis looking at Fig. 13 the 
difficulty is evident to choose the best simulation curve, due to 
the numerous peaks and valleys in the 5-10 kHz frequency 
interval that can match one or the next simulated response. 
However, the curves for 150 m and 225 m seem to be the 
closest ones to the measured curve. 

The analysis of the indexes values listed in Table 14 
evidences discrepancies of the indexes indications. For 
example: IELF and Theil indexes indicate the fourth curve as 
the close to measurement, while Zanazzi-Jona, Pendry and 
Van Hove indexes prefer the first one. Looking at the values of 
Theil and Pendry indexes, that give indication of the similarity 
of the curves in absolute way, it is evident a good but not 
perfect match between the curves. Values of modified Pendry 
index are over 0.58, due to the differences between first 
derivative terms of the curve to compare, while Theil 
coefficient has a value under 0.36 that indicate a good match 
between the curves absolute values. 

 
Fig. 13. Pantograph impedance for different values of feeding 

cables length (from light gray to black: l1=75 m, l2=150 m, 
l3=225, l4=300 m) 

Table 14. Indexes for different length of supply feeding cables 
(l1=75 m, l2=150 m, l3=225 m, l4=300 m) 

 l1 l2 l3 l4 
Theil 0.3521 0.3470 0.3407 0.3380 

P
en

d
r

y 
RP 0.6771 0.7001 0.7053 0.6967 
RPL 0.5892 0.6077 0.6151 0.5961 

V
an

 H
ov

e 

RV 5.0077 5.4114 5.4165 5.1516 
RV1 0.5068 0.5149 0.4768 0.4529 
RV2 0.4881 0.5044 0.4643 0.4569 
RV3 0.0444 0.0667 0.0242 0.0167 
RV4 1.5808 1.6701 1.6677 1.5439 
RV5 4.6993 5.0965 5.1102 4.8725 

ZJ 0.2012 0.2364 0.2474 0.2311 
IELF 98.099 94.401 88.504 84.950 
 

In Table 15 the maximum absolute error, the mean absolute 
error and the root mean square between measurement and 
simulated curves are presented; such values indicate the third 
simulated impedance curve as the closest to the measurement 
one. 

Table 15. Classical errors between curves (maximum absolute 
error, mean absolute error and root mean square) with respect 

to feeding cables length 

 l1 l2 l3 l4 

max 3490 3480 3470 3490 

mean 167.8 159.1 147.4 152.5 

rms 377.5 369.8 364.4 371.7 
 

The simulated curves have several peaks (resonances) and 
valleys (anti-resonances) that, if not matching accurately the 
measured data, may increase the error terms and bias the 
overall index value. For this reason the frequency interval has 
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been divided in smaller sub-intervals, calculating an index 
separately for each of them. In this way small and larger errors 
are more easily recognizable and quantifiable. The sub-
intervals are seven, each with at least one peak and one valley: 
#1 50-1350 Hz, #2 1350-3050 Hz, #3 3050-6750 Hz, #4 6750-
8850 Hz, #5 8850-10550 Hz, #6 10550-12250 Hz, #7 12250-
15000 Hz. The values of the indexes for each sub-interval are 
calculated and plotted in Fig. 14 to 19, distinguishing the 
variations of the parameter related to supply feeder length. 

Regarding the error between the individual values of the 
data points, evaluated with the Theil coefficient, the worst 
intervals are #1, #2 and #5, where there is disagreement in the 
height of the resonance peaks. It is also observed that the 
simulated curves in #2 and #6 are more influenced by the 
feeding cable length. 

Regarding the differences between the first derivatives, that 
is the slope of the curves, the Pendry and modified Pendry 
indexes indicate central intervals as the worst one, in 
agreement with Van Hove correlation factor. These intervals 
are those suffering most the shift of the curves and spread of 
values while changing the feeding cable length. 

About differences in the second derivatives of the curves, 
measured by the Zanazzi-Jona correlation factor, the worst 
intervals are #1 and #2, but the reason is to be sought in noisy 
measurements and some weird data points (already 
commented, due to the influence of supply harmonics); also 
this index is susceptible to the variation of the feeding cables 
length. 

 
Fig. 14. Theil inconsistency coefficient for intervals #1 to #7 

and different feeding cable lengths: l1=75 m “cross”, l2=150 m 
“circle”, l3=225 m “square”, l4=300 m “star”) 

 
Fig. 15. Zanazzi & Jona correlation factor for intervals #1 to 

#7 and different feeding cable lengths: l1=75 m “cross”, l2=150 
m “circle”, l3=225 m “square”, l4=300 m “star”) 

 
Fig. 16. Pendry correlation factor for intervals #1 to #7 and 
different feeding cable lengths: l1=75 m “cross”, l2=150 m 

“circle”, l3=225 m “square”, l4=300 m “star”) 
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Fig. 17. Modified Pendry correlation factor for intervals #1 to 
#7 and different feeding cable lengths: l1=75 m “cross”, l2=150 

m “circle”, l3=225 m “square”, l4=300 m “star”) 

 
Fig. 18. Van Hove correlation factor for intervals #1 to #7 and 

different feeding cable lengths: l1=75 m “cross”, l2=150 m 
“circle”, l3=225 m “square”, l4=300 m “star”) 

 
Fig. 19. IELF for intervals #1 to #7 and different feeding cable 

lengths: l1=75 m “cross”, l2=150 m “circle”, l3=225 m 
“square”, l4=300 m “star”) 

V. CONCLUSION 
Several indexes (called in the literature “performance” or 

“reliability”, followed by the words “index” or “factor”), used 
to assess the similarity between two curves of data, have been 
considered and evaluated against typical examples: first 
synthetic examples of curves typical of time and frequency 
domain vectors are used and then the simulation of two electric 
traction lines is considered. The usefulness of these indexes is 
recognized for the validation of simulation models against 
experimental data. To this aim the desirable properties of the 
index are: a known range of its output value in order to assess 
the optimality of a curve in an absolute, rather than relative 
way; insensitivity to small curve defects, such as 
discontinuities that affect on the contrary the calculation of 
derivatives; wide applicability including zero-mean curves; 
definite behavior with respect to linearity, differences in peaks 
and slopes between curves, etc. 

The indexes were evaluated using a sinusoidal and a 
triangular signal (by injecting differences such as phase 
difference and offset) and a dynamic system frequency 
response (for which the pole pair was moved by both 
deterministic and random quantities). 

Some indexes cannot be used with zero-mean curves (Van 
Hove, Zanazzi-Jona) or on the contrary require the removal of 
any offset (Theil). Pendry index cannot be calculated if even 
one point only of the curves is zero. The resulting 
performances clearly identify some indexes (Zanazzi-Jona, 
Van Hove, modified Pendry and IELF) that do not suffer scale 
changes, keeping the same value whatever the amplification of 
the curves. Linearity was tested for increasing defects tracking 
the change of index value; we may distinguish between truly 
linear (Theil, modified Pendry,), approximately linear (Van 
Hove, IELF) and non-linear (Zanazzi-Jona, Pendry) indexes. 

Applying the calculation of the indexes to real case studies 
some considerations can be added. There is a general 
sensitivity to noise when derivatives are calculated; all the 
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authors agree in a preliminary smoothing of curves to remove 
noise and small artifacts. 

As it is common when considering the modeling of complex 
systems with uncertain parameters, some deviations are 
accepted by experts provided that the shape and the main 
features are in agreement between simulations and 
experimental data used for validation. It is however true that 
when the considered curves have one or few localized 
deviations, such errors bias the estimation and then the indexes 
are useless to evaluate the similarity over the rest of the 
interval. To this aim curves were split in smaller intervals and 
for each of them indexes calculated separately, demonstrating 
a better interpretation of the degree of fitness of the curves and 
the influence of parameters on curve characteristics. 
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