
 

 

  
Abstract— Insurance companies are affected by many different 

kinds of risks. In the case of life insurance there are two main risks: 
the investment risk and the demographic risk. The latter can be split 
into insurance risk due to the random deviation of the number of 
deaths from its expected value, and longevity risk deriving from the 
improvement in mortality rates. 

 Numbers of stochastic models have been developed to analyse 
the mortality improvement. We compare three stochastic models 
explaining improvements in mortality in the Czech Republic. This 
paper focuses on Lee-Carter and Cairns-Blake-Dowd models. We use 
data on males deaths and exposures for the Czech Republic from the 
Human Mortality Database. We write the code associated with 
models in R. 

We show graphical comparison of the model fits. We find that an 
extension of the Cairns-Blake-Dowd model that incorporates a cohort 
effect fits the Czech Republic males data best. 
 

Keywords— Cairns-Blake Dowd model, cohort effect, force of 
mortality, Lee-Carter model. 
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I. INTRODUCTION 
HE mortality of the population in developed countries has 
improved rapidly over the last thirty years (see e.g. [3], 

[9]) and this has important financial implications for the 
insurance industry, since several important classes of liability 
are sensitive to the direction of future mortality trends. This 
uncertainty about the future development of mortality gives 
rise to longevity risk. Longevity risk (we refer to [11]) plays a 
central role in the insurance company management since only 
careful assumptions about future evolution of mortality 
phenomenon allow the company to correctly face its future 
obligations. Longevity risk represents a sub-modul of the 
underwriting risk module in the Solvency II framework. The 
most popular and widely used model for projecting longevity 
is the well-known Lee-Carter model. 

This paper follows on article Gogola [6]. The paper deals 
with Lee-Carter and Cairns-Blake-Dowd models.  

Most stochastic mortality models are constructed in a 
similar manner. Specifically, when they are fitted to historical 
data, one or more time-varying parameters (κt) are identified. 
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By extrapolating these parameters to the future, we can 
obtain a forecast of future death probabilities and consequently 
other demographic quantities such as life expectancies 
(beneficial examples in [4]). They are important for 
quantifying longevity in pension risks and for constructing 
benchmarks for longevity-linked capital markets. 

II. DATA AND NOTATION 

We use data on male deaths and exposure to risk between 
1960 and 2011 from the Human Mortality Database 
(www.mortality.org) [7]. We consider the restricted age range 
from 60 to 90, the range of interest to providers of pensions. 

Let calendar year t runs from exact time t to exact time 
t+1 and let txd , be the number of deaths aged x last birthday in 
the calendar year t. We suppose that the data on deaths are 
arranged in a matrix ( )txd ,=D . In a similar way, the data on 

exposure are arranged in a matrix ( )txe ,=E  where txe ,  is a 
measure of the average population size aged x last birthday in 
calendar year t, the so-called central exposed to risk. We 
suppose that ( )txd ,  and ( )txe ,  are each ya nn × matrices, so 

that we have an  ages and yn  years. 
We denote the force of mortality (or hazard rate) at exact 

time t for lives with exact age x by tx,µ . The force of mortality 
can be thought as an instantaneous death rate, the probability 
that a life subject to a force of mortality tx,µ  dies in the 

interval of time )d,( ttt +  is approximately ttx d, ⋅µ  where 
td  is small. 

The force of mortality tx,µ  for human populations varies 

slowly in both x and t and a standard assumption is that tx,µ  is 
constant over each year of age, i.e., from exact age x to exact 
age x+1, and over each calendar year, i.e., from exact time t to 
exact time t+1. Thus, 

txvtux ,, µµ =++  for ,10,10 <≤<≤ vu      (1) 

and so tx,µ  approximate the mid-year force of mortality 

5.0,5.0 ++ txµ . 

We suppose that txd ,  is a realization of a Poisson 

variable txD , : 
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txD , ~ ( )txtxePo ,, µ⋅ ,                            (2) 

The expected values are the product of exposures txe ,  and the 

force of mortality tx,µ . 

Assumption (2) leads us to the estimates of tx,µ  as 

       
tx

tx
tx e

d

,

,
, =µ ,                                (3) 

or in a matrix form 
E
D

=μ , that means element-wise division 

in R. 
We also consider the mortality rate txq , . This is the 
probability that an individual aged exactly x at exact time t will 
die between t and t +1. 
We have the following relation between the force of mortality 
and the mortality rate: 

txesq stsxtx
,1dexp1

1

0
,,

µµ −
++ −≈










−−= ∫ .      (4) 

 

III. THE MORTALITY MODELS 

We use the following conventions for our models: 
• The )1(, xx βα  coefficients will reflect age-related effects. 

• The )1(
tκ , )2(

tκ  coefficients will reflect time-related 
effects. 

• The cγ  coefficients will reflect cohort effects, where 
xtc −= . 

Our models are fitting to historical data. 
 

a) Lee-Carter model 

The Lee-Carter model was introduced by Ronald D. Lee and 
Lawrence Carter in 1992 with the article [10]. The model grew 
out of their work in the late 1980s and early 1990s attempting 
to use inverse projection to infer rates in historical 
demography. The model has been used by the United States 
Social Security Administration, the US Census Bureau and the 
United Nations.  It has become the most widely used mortality 
forecasting technique in the world today. 

Lee and Carter proposed the following model for the force 
of mortality: 

)1()1(
,log txxtx κβαµ ⋅+= ,          (5) 

with constraints 

1
1

)1( =∑
=

an

x
xβ ,         (6) 

0
1

)1( =∑
=

yn

t
tκ .         (7) 

The second constraint implies that, for each x, the estimate 

for xα  will be equal (at least approximately) to the mean over 

t of the tx,log µ . 
By the equation (5) the log of the force mortality is 

expressed as the sum of an age-specific component xα  that is 
independent of time and another component that is the product 
of a time-varying parameter )1(

tκ  reflecting the general level 

of mortality and an age-specific component )1(
xβ  that 

represents how rapidly or slowly mortality at each age varies 
when the general level of mortality changes. 

Interpretation of the parameters in Lee-Carter model is quite 
simple: )( xexp α is the general shape of the mortality schedule 
and the actual forces of mortality change according to overall 
mortality index )1(

tκ  modulated by an age response )1(
xβ  (the 

shape of the )1(
xβ  profile tells which rates decline rapidly and 

which slowly over time in response of change in )1(
tκ ). 

 
b) Cairns-Blake-Dowd model (C-B-D model) 

The original C-B-D model was published in Cairns et. al. 
[2].  

The model fits mortality rates txq , : 

)(logit )2()1(
, xxq tttx −+= κκ ,  (8) 

where 







−
=

x
xx

1
loglogit , )1,0(∈x , 

and x  is the mean age in the sample range ( x = 75). 
This model has no constraints. 
 
We calculate the likelihood for all models based on the 

tx,µ . For a given model we use φ to represent the full set of a 

parameters and the notation for tx,µ is extended to )(, φµ tx , to 
indicate its dependence on these parameters.  

For both models the log-likelihood is: 

=),;( EDφl  

( )∑ −⋅−⋅⋅
tx

txtxtxtxtxtx deed
,

,,,,,, )!log()()](log[ φµφµ , (9) 

and estimation is by maximum likelihood (MLE). 
 
The Lee-Carter model deals with the force of mortality 

tx,µ , whereas the C-B-D model with the mortality rate txq , . 
To ensure a valid comparison between the different models, 
our analysis of the models for txq ,  involves an additional step. 

For a given set of parameters we calculate the txq ,  then we 
transform these into force of mortality using the identity 

)1log( ,, txtx q−−=µ  which comes from (4). ( xlog  means 
natural logarithm of x throughout the article) 
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We can calculate the likelihood for all models consistently 
based on the tx,µ .  

For a model with txq ,  we use notation )(,, φtxtx qq =  and 
we define 

( ))(1log)( ,, φφµ txtx q−−= ,      (10) 

For practice the fitting of a model is usually only the first 
step and the main purpose is the forecasting of mortality. A 
number of forecasting models have been proposed in the past. 
We are influenced by papers [5] and [8]. For forecasting-time 
series we use an ARIMA approach. We apply the R package 
Forecast - methods and tools for displaying and analysing 
univariate time series forecasts including automatic ARIMA 
modelling. The estimated parameters ( )1(

tκ , )2(
tκ ) create a 

bivariate vector time-series and it is modelled by a multivariate 
approach.  

The estimated age parameters, )1(, xx βα , are assumed 
invariant over time. This last assumption is certainly an 
approximation but the method has been very thoroughly tested 
in Booth at al. [1] and found to work. 

IV. LEE-CARTER AND C-B-D MODELS 
We perform main part of our results by a graphical output. 

In the Figure 1. we have plotted the maximum likelihood 
estimates for the parameters of the Lee-Carter model, using 
Czech Republic males data, aged 60 - 90 from the period year 
1960 - 2000. 

Parameters xα  show their linear nature with respect to age, 

as has been proposed by Gompertz. xα  is a measure of 
average log(mortality) by age. 

 
Fig. 1 Parameter Estimates for Lee-Carter model, Degree of 

freedom: 101 = 2 · na + ny – 2. Source: Own Processing 
 
In the Figure 3. we have plotted cross-section of previous 

3D graphs for selected ages. Figure 3. shows observed force of 
mortality and the model fits (on logarithmic scale). The 
observed mortality data are shown as open circles, whereas 
model fits are shown as a dashed line.  

From the middle of 80´s mortality has been declining for all 
ages. But the declines have been volatile. This suggests that 
future mortality will be uncertain and this needs to be taken 
into account when forecasting. 

 

 
Fig. 2  3D plots of force of mortality: observed (left) and 

fitted by Lee-Carter model (right). Source: Own Processing 
 

1960 1970 1980 1990 2000

-3
.9

-3
.7

-3
.5 log_mu in age 60

Observed
Fitted

1960 1970 1980 1990 2000

-3
.1

-2
.9

-2
.7

log_mu in age 70

Observed
Fitted

1960 1970 1980 1990 2000

-2
.3

-2
.1

-1
.9

log_mu in age 80

Observed
Fitted

1960 1970 1980 1990 2000
-1

.3
0

-1
.2

0
-1

.1
0

log_mu in age 90

Observed
Fitted

 
Fig. 3  The µlog  for selected ages. Source: Own 

Processing 
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Fig. 4  The µlog  in selected years. Source: Own 

Processing 
 
Figure 4. shows validity of the Gompertz law. Gompertz 

(1823) observed that the force of mortality is approximately 
linear in age (on log scale) over most of adult life. If we look 
at the vertical scale of both graphs we can see improvement of 
mortality for each ages from1960 to 2000. 
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Fig. 5 Forecasted values of µlog  for selected for Lee 

Carter model. Source: Own Processing 
 
We used Box-Jenkins approach to fitting an ARIMA model 

and used it to predict force of mortality for years 2001-2020 
using data from 1960-2000. The comparison between the 
observed values for 2001-2011 and our predicted values 
provides a test of our results.  

Figure 5. shows the forecasted log(mortality) at selected 
ages under the Lee-Carter approach. We can see that the Lee-
Carter model has predictions for younger (60 years old) which 
is more pessimistic as the tested data from years 2001-2011 
show. 

The confidence intervals indicate a high level of uncertainty 
in the future direction of mortality. 

 

 
Fig. 6 Parameter Estimates for C-B-D model,  

DF: 82 = 2 · ny. Source: Own Processing  
 
In the Figure 6. we have plotted the maximum likelihood 

estimates for the parameters of the Cairns-Blake-Dowd model, 
using Czech Republic male’s data, aged 60 - 90 from the 
period year 1960 - 2000. 
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Fig. 7  3D plots of mortality rates: observed (left) and fitted 

by C-B-D model (right).  
Source: Own Processing 
 
Similarly as before we used Box-Jenkins approach to fitting 

an ARIMA model and using it forecasting mortality rates for 
years 2001-2020 using data from 1960-2000. The comparison 
between the observed values for 2001-2011 and our predicted 
values provides a test of our results.  

Figure 8. shows the forecasted logit(mortality) at selected 
ages under the Cairns-Dowd-Blake model. 
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Fig. 8  Forecasted value of  logit q  for selected for C-B-D 

model. Source: Own Processing 
 
In the Figures 9.-11. we have plotted the maximum 

likelihood estimates for the parameters for both models (Lee-
Carter and C-B-D) in different range of years. 
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Figure 9. shows that the parameter )1(
tκ  values from the 

Lee-Carter model changes if new data are considered. 
This is because: 

• When one more year of data is included, the maximum 
likelihood estimates of all model parameters, that is, 
αx, βx and κt for all x and t will be updated. 

• Parameter constraints are involved in the estimation 

process. In particular, the constraint ∑
t

tκ re-scales 

the series of κt as new data are included. 
For the C-B-D model the inclusion of new data will not 

affect previous parameters values. We can call this property as 
“new data invariant“. 

 
Reasons for this special property, that adding new data will 

have no effect on the parameters that are already estimated, is 
due to no constraint in this model. 

Figure 10. and 11. show the data-invariant property of MLE 
estimates of mortality parameters from the C-B-D model using 
Czech Republic males data. 

)1(
tκ  in C-B-D model presents the level of the logit-

transformed mortality curve. A reduction in )1(
tκ , that is a 

parallel downward shift of the logit-transformed mortality 
curve, represents an overall mortality improvement. 

)2(
tκ  presents the steepness of the logit-transformed 

mortality curve. An increase in )2(
tκ , that is an increase in the 

steepness of the logit-transformed mortality curve, means that 
mortality (in logit scale) at younger ages improves more 
rapidly than at older ages. 

 
Fig. 9. Parameter )1(

tκ estimates for Lee-Carter model. 
Source: Own Processing 

 

 
Fig. 10. Parameter )1(

tκ estimates for Cairns-Blake-Dowd 
model. Source: Own Processing 

 

 
Fig. 11. Parameter )2(

tκ estimates for Cairns-Blake-Dowd 
model. Source: Own Processing 

 
If we look better on 3D plots (Figures 2. and 7.) we can see 

a “kink” which draws from the bottom (age around 60 in 1980) 
upwards. This “kink” is connected with cohort born around 
1920 (those born after World War I). 

We can see that nor Lee-Carter model not C-B-D model can 
describe this “kink”. Therefore we propose to apply an 
extension of the C-B-D model that incorporates a cohort 
effect. 

V. CAIRNS-BLAKE-DOWD MODEL WITH COHORT EFFECT 

Cairns et. al. (2009) in [2] introduced the C-B-D model with 
cohort effect: 

ctttx xx γκκµ +−+= )(log )2()1(
, ,    (11) 

with constraints 
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0
1

=∑
=

cn

c
cγ ,         (12) 

0
1

=⋅∑
=

cn

c
cc γ ,         (13) 

where nc is the number of cohorts (nc =  na + ny - 1) 
 
In the Figure 12. we have plotted the maximum likelihood 

estimates for the parameters of the Cairns-Blake-Dowd model 
with cohort effect, using Czech Republic males data, aged 60 - 
90 from the period year 1960 - 2000. 

We used Box-Jenkins approach again to fitting an ARIMA 
model and using it forecasting mortality rates for years 2001-
2020 using data from 1960-2000. The comparison between the 
observed values for 2001-2011 and our predicted values 
provides a test of our results.  

3D plots (Figure 13.) show that this model gives an 
improved fit. 

Figure 14. shows the forecasted logit(mortality) at selected 
ages under the Cairns-Dowd-Blake model with cohort effect. 
One notable feature is that the model has wider confidence 
interval for older males, but it seems to be reasonable. 

 
Fig. 12 Parameter Estimates for C-B-D model with cohort 

effect, DF: 151 = 2 · na + nc −2. Source: Own Processing  
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Fig. 13  3D plots of mortality rates: observed (left) and 

fitted by C-B-D model with cohort effect (right). Source: Own 
Processing 
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Fig. 14  Forecasted value of  logit q  for selected ages for  

C-B-D model with cohort effect. Source: Own Processing 
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VI. CONCLUSION 
 
National governments and the WHO announce life 

expectancies of different populations every year. To financial 
institutions, life expectancy is not an adequate measure of risk, 
because all it does not give any idea about how mortality rates 
at different ages vary over time. On the other hand, indicators 
of longevity risk cannot be too complicated. An indicator that 
is composed by a huge array of numbers is difficult to interpret 
and will lose the purpose as a “summary” of a mortality 
pattern. 

If we compare only first two models i.e. Lee-Carter model 
and Cairns-Blake-Dowd model.  We propose using the C-B-D 
model mortality parameters ( )1(

tκ , )2(
tκ ) as a longevity risk 

indicator. It is a “simple“ summary of a mortality pattern. The 
indicator contains only two set of numbers, )1(

tκ  and )2(
tκ , 

each of which is readily interpretable and they together tell 
how mortality rates at different ages change with time. 

The main reason why we propose is that it has the new-data 
invariant property. This property is important; because, as a 
proper indicator, we cannot allow new data to alter the index 
values of previous years. 

We could see that there is a significant cohort effect in 
mortality improvements and we found that the Cairns-Dowd –
Blake model with cohort effect fits our data best. 

These models will only be reliable if past trends continue. 
The medical advances can invalidate projection by changing 
the trend. 

We have attempted to explain mortality improvements for 
males aged 60-90 in the Czech Republic using three stochastic 
mortality models. It is not the aim of this paper to provide an 
exhaustive comparison of all the mortality models in existence. 
There is the obvious question of whether results based on the 
whole population are applicable to annuitants and pensions. 

Afterwards we can turn to the industry requirement to 
forecast future mortality.  

But forecasting of mortality should be approached with both 
caution and humility. Any prediction is unlikely to be correct. 

There is a need for awareness of model risk when assessing 
longevity-related liabilities, especially for annuities and 
pensions. The fact that parameters can be estimated does not 
imply that they can sensibly be forecast. 

Such forecasting should enable actuaries to examine the 
financial consequences with different models and hence to 
come to an informed assessment of the impact of longevity risk 
on the portfolios in their care. 
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