
 

 

  
Abstract—Using the variational method we investigated spatial 
symmetry of a large bipolaron in singlet state. It is shown strictly 
mathematically that the formation stable state of bound two polarons 
in the singlet state corresponds to an axially symmetric spatial 
formation. It was found that the inclusion step-by-step of electron 
correlations lead to an increase in the binding energy of the 
bipolaron, but does not change spatial symmetry of bipolaron. At the 
same time spherically symmetric two polarons formation is not 
stable, even after accounting for electronic correlations. There are 
numerous arguments that point out the fallacy of spherically 
symmetric model of singlet bipolaron. It is shown that the variational 
principle should apply subject to certain restrictions that are imposed 
on the wave function. We performed a comparison of experimental 
data with the theoretical results. Theoretical results have been 
obtained in the framework of an axially symmetric bipolaron. At the 
same time for electronic-excited triplet states we have shown that a 
large bipolaron is one-center formation. We give explanations of 
changing the spatial symmetry of a large bipolaron when changing its 
spin state. 
 
Keywords—Axially symmetric, bipolaron, electron-electron 
correlations, magnetic susceptibility, optical absorption, singlet, 
stability, triplet, variational method  

 

I. INTRODUCTION 
ISENTLY, numerous publications have appeared on the 
stability of adiabatic large bipolarons and its dependence 

on the electron-phonon coupling constant and the dielectric 
parameters of polar media. The exact solution of the bipolaron 
problem can be reduced to finding a solution to a nonlinear 
integro-differential equation for the self-consistent field [1]. 
Since solution of this equation poses formidable difficulties, 
variational methods have commonly been employed to find 
approximations to solutions. However, care should be taken 
when directly applying the variational method and searching 
for approximations to the solution. Indeed, as the trial 
electronic function becomes more complicated, the search for 
a constrained minimum of the energy of a system can be 
unintentionally replaced by study of the global minimum, 
which has no physical meaning. In this paper, we study the 
relations between the variational method and the virial theorem 
with regard to the problem of bipolaron stability, analyze 
additional restrictions that optimize electronic wave functions 
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of bipolaron problem, and discuss the physical consequences 
of these restrictions. Further, we will show that the axial-
symmetric model of a large bipolaron can correctly interpret 
the known experimental results.  

  

II. PROBLEM FORMULATION 
Studies of the dependence of the Hartree-Fock 

approximation for a large bipolaron problem on the distance R 
between the centers of gravity of the polarons have shown that 
the bipolaron potential has a maximum as 0→R  and, 
therefore, a spherically symmetric state of large bipolaron is 
unstable [2]. A minimum of the interpolaron potential appears 
only at intermediate equilibrium distances (R > 0) between 
polarons. Therefore, it is important to study the role played by 
the electron correlations in the stabilization of bipoilarons and 
elucidate whether the electron correlations able for change the 
Hartree-Fock approximation so strongly that the bipolaron 
passes from an axially symmetric two-center state to a 
spherically symmetric one-center state [3]. For this purposes 
we use the well-known principles of the variational method 
and firmly established the physical consequences due to by the 
influence electronic correlations on the electronic systems. 
Using these well-known concepts, we show mathematically 
strongly and at the same time very evidently, using both 
variational procedure and the physical principles the instability 
of the spherically symmetric state of Landau-Pekar large 
bipolaron.  Moreover, we demonstrate a clear physical sense 
of the arguments that we use. Incorrect application of 
variational method leads to results that have contradictory 
physical meaning. 

III. PROBLEM SOLUTION 
Using the results from the adiabatic translationally invariant 
theory of a large bipolaron [4], we can replace the integro-
differential equation with an equivalent variational functional 
for the total self-consistent electronic energy E(R) of the 
motionless bipolaron: 
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= T(R) + U(R).                                    (1) 
Here, the dielectric medium is replaced by a continuum; m* is 
the isotropic effective mass of the electron; g(r1,r2) is the 
electron-electron interaction operator; ρ(r1) and  ρ(r1,r2)  are 
the one-particle and two-particle spinless electronic densities, 
respectively; 111*

s
−−− −= ∞ εεε , ∞ε  and sε  are the high 

frequency and static permittivities of the polar medium. 
Functional (1) depends parametrically on the distance R 
between centers of gravity of two polarons. The quantities 
T(R) and U(R) are the average electron kinetic and potential 
energies. The energy is measured off from the bottom of the 
conduction band. Effective translational mass of the polaron is 
equal to  **4** 023.0 mmm c >>= α . ×= )/)(2/1( 2* ωεα ec  

2/1* )/2( ωm > 10 is the dimensionless constant of the 
electron-phonon coupling. These inequalities justify the using 
of "fixed" polarons approximation. Functional (1) was 
analyzed in the papers [2], [5]-[7] for arbitrary distances R. In 
the variational calculations, trial electronic wave functions are 
considered optimal if these quantities satisfy to the conditions 
of the virial theorem.  

We perform a simple and mathematically very clear analysis 
that will demonstrate the incorrectness of the spherically 
symmetric model of bipolaron. 

Using the scaling transformation ii rr λ→  and  RR λ→  
we can write a normalized trial two-electron wave function in 
the form );,();,( 21

2/3
21 RR λλλχλχ rrrr n→ , where n = 2 is 

the dimensionality of the configuration space and λ is an 
arbitrary scaling factor. For the particles the interaction 
between which is inversely proportional to the distance, the 
total energy can be written in the following form 

 
)()()( 2 sUsTsE λλ +=  ,   Rs λ= ,                 (2) 

 
Then, we find that functional (2) reaches an extremum when 
the following relation holds 
 

1)/2)(/( −++−= dssdTTdssdUUλ              (3) 
 

for any distance R. Obviously, as 0→R  or at the point of an 
extremum of the potential, the scaling factor is equal to λ = – 
U(λR)/2T(λR). Thus, using the equation (3) the variational 
method allows us to determine the variational parameter. 
Taking into account that the energy E is a homogeneous 
function of the variational parameter λ and the distance R we 
can find the derivative of the total energy: 
 

ds
sdUs

ds
sdTs

dR
RdER )()()( 2 λλ +=   .              (4) 

 

Substituting (3) and (2) into (4), we obtain virial relation for 
the Coulomb system: 
 

 0)()(2)(
=++ RURT

dR
RdER  ,                 (5) 

 
Thus, when minimizing the total energy functional (1) it is 
necessary that equation (5) would be satisfied for the optimum 
wave functions at any value of R. For these variational 
problems the existence of a minimum of functional (1) is a 
necessary but is not sufficient condition. A sufficient condition 
is closely related to the validity (5) for any R. Obviously, not 
all of the functions for which functional (1) reaches the 
extremum satisfy (5). 

Since the stability of large bipolaron at 0→R  is of the 
greatest interest, we find the second derivative of the energy 
with respect to R. Taking into account that the virial relation 
2T + U = 0 is satisfied at zero distance, we obtain from (5) a 
relation between the total electronic energy of a large 
bipolaron and the kinetic energy : 

 

       
dR

RdT
dR

REdR
RR

)(lim)(lim
02

2

0 →→
−= .                  (6) 

 
Thus, the second derivative of the total energy with respect to 
the variable R at the origin is opposite in sign to the first 
derivative of the electron kinetic energy. Therefore, rather than 
performing complicated calculations of the bipolaron total 
energy E(R) we can restrict ourselves to an analysis of the 
dependence of the average kinetic energy on R. In this case, 
the virial theorem is satisfied. 

For an isolated bipolaron, we search zeroth-order 
approximation to the eigenfunction Hamiltonian using the 
electronic wave function in the following form: 

 
)()()()(~);,( 1221210 rrrrrr b

s
a
s

b
s

a
sR χχχχχ + .        (7) 

 
Approximation (7) we shall call the Hartree-Fock  
approximation. Here, the superscript a refers to the centre 
gravity of polaron at the point R1; the superscript b refers to 
the second polaron at the point R2; R = R1 – R2; r1 and r2 are 
the position vectors of the first and second electrons measured 
from the centers of gravity of the first (R1) and second (R2) 
polarons, respectively. The method of separating the polaron 
coordinates Ri from the electronic coordinates ri is described 
in Ref. [4]. At the distance ∞→R  equation (1) gives the twin 
total energy of the polaron. We approximate the one-electron 
wave function in a central field by the one parameter function 
for a smoothed hydrogenic potential )exp()1(~)( rrrs ααχ −+  
where α is a variational parameter. As is well known, the wave 
function in the form of Gaussian function ( ))(exp~ 2rηχ −  
incorrectly behaves close to points R1 and R2. Such wave 
functions do not have the so-called "cuspidal point", which is 
available for Coulomb functions.  
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Fundamentally important in calculations of the correlation 
effects is the choice of initial basic of wave functions and point 
of origin. It is known that when we are looking for the absolute 
extremum of functional then value of its maximum is obtained 
in large disadvantage. In this case, the success of the method is 
largely dependent on the correct choice point of origin and of 
the two-centered functions. Therefore, to avoid this error, we 
need to pass to one-center wave basis. Generally, in the 
numerical calculations using the functional (1) and two-center 
wave functions we are faced with the problem of the two-
center integrals calculations. To overcome this difficulty, you 
can use, for example, method [8]. This method allows you to 
move from two-center integrals to one-center integrals. Using 
this method, we can present the radial part )(rRs  of the wave 

function )(rb
sχ  in the coordinates of which are assigned to 

center  a  as follows: 
 

( )[ −+−= )exp()( 2
3212 rrArAA

Cr
rRs α

α
π    

( ) ] )exp()exp(2
321 CrrArAA −−++ α ,    r < R, 

( )[ ])exp()( 2
3212 rrBrBB

Cr
rRs α

α
π

−+−= , r > R. 

Here 
( )2

1 332 CCA ++= , ( )CA 2322 += α , 2
3 2α=A , 

( )2
4 332 CCA +−= , ( )CA 2325 −= α , RC α= , 

)exp()exp( 141 CACAB −−= , 
)exp()exp( 252 CACAB −−= , 

( ))exp()exp(33 CCAB −−= . 
 
In this representation, coordinate r is measured from the center 
of a. Similar expansions can be obtained for other wave 
functions. 

When we use a one-center basis set functions unlike two-
center basic set we can avoid problems of wave functions 
redundancy. This can lead to divergences in variational 
calculations (see, Eg., [3]). As it is well known [9]-[11], using 
of two-center basic set leads to an uncontrolled overestimation 
of electron-electron correlations in binding energy. In addition, 
using of one-center conception of the wave functions allow us 
to control the sequential convergence of variational procedure. 
As established in the paper [12] using of the one-center 
expansion is ideal for calculating energy derivatives (or finite 
difference energies) on the nuclear coordinates. Since we are 
interested in the behavior of the total energy at distances close 
to R = 0 we expand the functions centered at the point b in a 
power series in R about the origin a. Then, using (7), we can 
write the variation in the kinetic energy ΔT(R) = T(R) – 2Ts 
(where Ts is the average electron kinetic energy of an isolated 
polaron in the ground state) associated with the formation of 
bipolaron as follows: 

 
×=∆ ωα 22)( cRT  

( )37245 1007.41058.710324.1 RRR −−− ⋅+⋅+⋅ .        (8) 
Here, ω is the limiting frequency of long-wavelength phonons 
and we assumed that ∞εε /* is equal to 1.0. In equation (8), we 
have retained the cubic terms in the parameter R.  
 

 
Fig. 1 Distance dependence of the electronic kinetic energy of 
axially symmetric large bipolaron: (1) is zeroth-order 
approximation; (2) wave function contains one additional 
configuration 2p2; (3) wave function contains two additional 
configurations 2p2 and 1s2p. 
 

It is seen from Figure 1 the average kinetic energy )(RT  
has a minimum at R = 0. Therefore, the first derivative is 
positive and it follows from Eq. (6) that the total Hartree-Fock 
energy has maximum at R = 0; i.e., spherically symmetrical 
bipolaron is unstable even after taking into account electron 
correlations. These results (Fig.1) fully coincide with the 
results of variational calculations for bipolaron in the 
approximation of quasi-independent electrons [13] and remain 
valid for all values of the dielectric parameters of the polar 
medium admitting the existence of a bipolaron. Analysis has 
shown [4] that the difference )(RT∆  depends only weakly on 
the chosen basis of the one-electron functions χs(r), since the 
bipolaron bond energy is a composite quantity and the errors 
of the choice of the basic functions are compensated.      

IV. STABILITY OF LARGE BIPOLARON AND ELECTRON-
ELECTRON CORRELATIONS 

Approximation of Hartree-Fock Hartree-Fock 
approximation takes into account the correlation of electrons 
due to antisymmetry of the wave function, but does not take 
into account the Coulomb electron-electron correlations. 

In the variational procedure, the electron correlations can 
be taken into account either by including an additional 
function that depends explicitly on the distance r12 between 
electrons or by constructing of a two-electron function that 
takes into account the superposition of electronic 
configurations. These two approaches are alternative with 
proper application of the variational method [14], [15]. For the 
purposes of clarity and visibility of the results, we will use the 
second method. We add the electron configuration 2p2 to the 
initial function: );,( 210 Rrrχ . 
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According to Pekar [16] the 2p function corresponds to the 
lowest of the electron excited states of a large polaron. Thus, 
the trial electronic wave function can be written as the sum of 
the electron wave functions 0χ and orthogonal complement 
(function 1χ ): 

);,( 21 Rrrχ ~ 

))()()()(();,( 12211210 rrrrrr b
p

a
p

b
p

a
pCR χχχχχ ++  

110 χχ С+= ,                                  (9) 
here pχ ~ )exp( rz β−  and the z axis coincides with bipolaron 

binding axis. The wave function (9) allows us to take into 
account the permutation degeneracy. The parameters β and С1 
are additional variational parameters. Functions sχ  and pχ  

belong to the set of wave functions of the polaron Hamiltonian 
[16]. The representation of the wave function in the form of 
(9) virtually coincides with the approximation that was used in 
[11], [17], [18] and made it possible to obtain substantially 
more exact bond energies of the hydrogen molecule compared 
with the zeroth approximation. It was shown in Ref. [12] that 
the Hellman-Feynman variational theorem for optimum wave 
functions can be strictly satisfied only with such “floating” 
functions. Moreover, the new wave function must have the 
same qualitative properties as the initial wave function [19]. 
Again, we use expansion in a series the functions centered at 
the point b in (9). We easily obtain the following expression 
for the average kinetic energy: 
 

       )(/)(2)( 2 RNRKRT c ωα = ,                      (10) 
where  

RCRK +⋅+= 2
1038.0107.0)(  

( )+⋅⋅+⋅⋅+⋅× −−− 2
1

4
1

65 10887.910045.110324.1 CC  

( )2
1

4
1

342 10334.21023.51058.7 CCR ⋅⋅−⋅⋅+⋅ −−− + 

( )2
1

5
1

673 10417.110183.21007.4 CCR ⋅⋅−⋅⋅+⋅ −−− , 

RCCRN ⋅⋅⋅+= −− ++ 69
1

2
1 10573.410286.2(1)(  

)108.610287.2 3523 RR ⋅⋅⋅⋅ −− ++ . 
 

We will test changes whether the sign of derivative 
dRdT

R
/lim

0→
 as compared to the zeroth-order approximation.   

To define energy (10) it is necessary to find the numerical 
value of the variational parameter C1. Let us consider the 
difference ΔE(R=0) = − E(R=0) + 2Es, which determines the 
effect of the interaction between polarons in ground state Es. 
Omitting simple calculations we find the correlation 
contribution demotes the bipolaron energy, i.e., ΔE(R=0) > 0, 
if the following inequality is satisfied (for 00.1/* =∞εε ): 

 
 02)44(22 32113

2
11

3
1 <++−−+ VVVCVCVC ,         (11) 

here 

>=< − )(||)( 2
21

121
2

1 rrrV ss χχ , >=< − )(||)( 2
21

121
2

2 rrrV ps χχ , 

>=< − )()(||)()( 12
1

12213 rrrrrV psps χχχχ . 

 
Since the two-electron integrals satisfy to the relation V2 ≈ V1/2 
inequality (11) can be rewritten in the form: 
 

03113
2
11

3
1 <+++ VVCVCVС .                  (12) 

 
Using the numerical values of the integrals and Eq. (12) we 
find that inequality (11) is satisfied if C1 < – V3/3V1 0.04−≈  
(V3 > 0, V1 > 0). After simple mathematical manipulation we 
can write the second derivative in the following form 
 

 3113
2
11

3
1

2
1

2 33/ VVCVCVCdCEd −−+= .           (13) 
 

From equation (13) it follows inequality: 131 3/ VVC −< . 
Hence the second derivative d2E/dC1

2 > 0; i.e., the electron 
correlation demotes the total bipolaron energy. Thus, the 
parameter C1 must be negative and smaller than unity. That is, 
the correlation contribution to energy bipolaron is small. This 
contribution can not significantly alter the bond energy of 
bipolaron, which is obtained in the Hartree-Fock 
approximation. Straightforward variational calculations with 
simultaneous variation of the parameters α, β, and C1 have 
given C1 = – 0.097 for R = 0 and for 00.1/* =∞εε . This 
value does not contradict the results obtained from conditions 
(12) and (13). Using the value C1 = – 0.1, we obtain from (10) 
that in this case also d2E(R)/dR2 < 0 (line 2, Fig.1). 
Consequently, the spherically symmetric state of bipolaron has 
a maximum as R = 0. That is, spherically symmetric bipolaron 
formation is unstable. This coincides with the results of Pekar 
and Tomacevich [16], [20]. 

Thus, the following important requirement of the 
variational method should be implemented. Not only the 
correction function should be close to zero approximation 
function, but theirs the first derivatives should be close too. 
Figure 2 shows that these requirements are not always met (see 
calculations in the paper [3]).   

This result indicates the logical correctness of applying the 
variational procedure. That is, the bipolaron total energy 
reaches a maximum as 0→R , as well as in the case of the 
zeroth-order approximation. Therefore, a one-center bipolaron 
remains unstable. It is known [21] that, once the wave function 
has become close to the correct wave function, further changes 
in the wave function produce relatively small variations in the 
energy E(R) rather than fundamental changes including a 
change in the symmetry of a large bipolaron. That is, 
calculations must demonstrate the convergence, and do not 
make radical changes in the Hartree-Fock state of the coupled 
system. 

Let us increase the flexibility of the wave function by 
including one more electronic configuration 1s2pz:  
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( )=++ )()(r)(r)( 12212 rr b

p
a
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b
p

a
sC χχχχ  

22110 χχχ CC ++  .                           (14) 
 

Just simply we can show that the approximate value of the 
variational parameter is equal to C2 ≈ 0.1 as R → 0. Line 3 
(Fig.1) shows that a spherically symmetrical bipolaron remains 
unstable. Thus, no additional minimum for the energy of the 
bipolaron does not appear as that claimed in [3]. The 
variational function (14) belongs to the class of functions (7) 
and (9). 

Additional the correctional functions 1χ and 2χ  have a 
precise physical meaning. For example, the 
function 1χ determines the contribution of the polarization 
effects to the binding energy. In accordance with theorem of 
Brillouin the electron excitation are determined by the wave 
function 2χ . The function in the form (14) proved to be very 
significant for diatomic molecules at any distances R [2], [22], 
[23].  

Importantly, the correlation contributions must also take 
into account the spatial symmetry of the axially symmetric 
(two-center) bipolaron. That is, we must consider the point 
symmetry group, which corresponds to the Hartree-Fock 
spatial configuration of the bipolaron and by the irreducible 
representation by which must transform the electronic wave 
function [2], [4], [22]. The importance of considering the 
symmetry of a large bipolaron at the formation of the 
electronic wave function consists in the fact that it allows us to 
formulate the correct the regular principle of consistent 
expansion of the function flexibility and the convergence of 
the variational procedure. This principle is another natural 
restriction by using variational procedure that is imposed on 
the choice of the correction functions to the Hartree-Fock 
approximation. As is well known, the wrong choice of the 
basis set functions is the source of large errors (Fig.2) of the 
variational procedure. The use of additional conditions within 
the variational method is natural and abundant in other 
physical problems. For example, in the variational problems of 
the quantum collision theory are used so-called "principle of 
radiation" as an additional condition (requirement of the 
satisfiability of  causal-investigatory conditions) [19].  

Figure 1 shows that increasing the flexibility of the 
electronic wave function reduces to decrease of the correlation 
contributions step-by-step to the binding energy of the 
bipolaron as R → 0, and for the bipolaron binding energy is 
retained maximum when R = 0 ( 0/lim 22

0
<

→
dREd

R
  and 

0/lim
0

>
→

dRdT
R

). Spherically symmetric state of a large 

bipolaron remains unstable, even at varying of the functional 
by four parameters α, β, C1 and C2. That is, the symmetry of 
zeroth-order approximation is retained. The sensitivity analysis 

of the equation (6) to changing of the parameters C1 and C2 
shows that the sign of the second derivative does not change in 
a wide range of variation of these parameters. It is well known 
[21] that the method of expansion by the electronic 
configurations is able approximate the solution of the 
Schrödinger equation with any accuracy. 

Smallness of the variational parameters |C1| << 1 and |C2| 
<< 1 indicates that the correlation effects are the corrections to 
the zeroth-order approximation as it is required for coupled 
electronic systems. It is well known that the correction to the 
eigenvalue has the second order of smallness by difference 

|| 0χχ − . 
The same conclusions about the instability of a spherically 

symmetric bipolaron can be obtained by solving of the 
differential equation (5). This equation relates to the type of 
Riccati equations. Approximating the kinetic energy under 
condition R → 0  by the function 2)( RABRT ⋅+=  it is easy 
to find the solution of the differential equation: 

 
0/))(( 2 =⋅++ RABdRRREd . 

 
The solution of this equation can be written in the following 
form: 3/)( 2RABRE ⋅−−= . Here A and B are positive 

constants. It follows inequality: 0)/)((lim 22

0
<

→
dRREd

R
, that 

is spherically symmetric bipolaron remains unstable. 
As it is noted in the paper [24] the least preconceived 

approach to calculate of the correlation contribution in binding 
energy is the approach that simulates the sequence of the 
perturbation series. This is an important provision of the 
variational approach is ignored often. Hence, the calculation of 
variations of these authors leads to a significant overestimation 
of the contribution of electron-electron correlations in the 
bipolaron binding energy.  

 

 
Fig. 2 Line 1 is the total energy of the bipolaron in Hartree-
Fock approximation; line 2 is the total energy after accounting 
electron-electron correlations. Figure was taken from [3]. 
 

Large quantity of studies have firmly established [9] that 
zeroth-order approximation gives for diatomic molecules 
contribution to the total electron energy is equal to 95–99.5%, 
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and only the remaining 0.5–5% gives the electron-electron 
correlations contribution. Evidently, for such ratio in the 
energies, the correlation contribution can’t change the spatial 
symmetry of the coupled system corresponding to the zeroth-
order approximation. Practically, from calculations of the 
global minimum follow that zeroth-order approximation 
becomes a correction to the electron-electron correlations 
contributions (Fig.2). This is obviously absurdly. 

Thus, increase the flexibility of the trial functions  and 
additional taking into account of electron-electron correlations 
does not alter fundamentally the functional dependence of the 
bipolaron potential on the distance between the centers of 
gravity of polarons. Maximum of the bipolaron potential 
remains valid at R = 0 (Fig.3). This result coincides with the 
known results of Pekar and Tomacevich [16], [20]. With 
correct application of variational method the contribution of 
electron-electron correlations to the binding energy is identical 
[14], [15] using both the method of superposition of electronic 
configurations and by using the explicit dependence of the 
wave function of the distance r12. 

It is known [9], [25] the contribution of electron-electron 
correlations to the electronic energy follows the same virial 
rule as for the quasi-independent electrons in zeroth-order 
approximation: 

 

0)()(2)(
=++ RURT

dR
RdER corrcorr

corr . 

 
Therefore, the dependence of the bipolaron potential of R has 
the same form both for the quasi-independent electrons 
(zeroth-order approximation) and for the contribution of the 
electron-electron correlations to the binding energy. This 
relationship remains valid for the entire domain of bipolaron 
existence along the all admissible values of the parameter 

∞εε /* . 
Qualitatively, the correlation energy )(REcorr    correlates 

(Fig.3) with approximation of Hartree-Fock [9].  It is well 
known that double excited electronic configurations make a 
smaller contribution to the binding energy compared with 
single excited configurations. Namely this argument is 
confirmed by the calculations, which are presented in Fig.3.  

 The importance of considering the bipolaron symmetry at 
the construction of the wave function consists that it is allows 
us to formulate the correct consecution of expansion of the 
basis set of elements that belong to the same set. If the set of 
functions is not invariant, then search of eigenvalue becomes 
uncertain. The set of functions with a given symmetry form a 
linear space, as well as their linear combination belongs to this 
space. At the same time, the combination of Gaussian 
functions [3] does not form a linear space. 

At short distances the greatest contribution to the binding 
energy comes from the so-called “axial” correlation between 
the electrons [17], [26]. However, calculations show that even 
these correlative contributions can’t change the bipolaron axial 
symmetry (Figs.3 and 4). If the spherically symmetric 

bipolaron is stable then the additional incorporation of the so-
called “ionic” correlative terms (Weinbaum’s function [27]) 
must result to stabilization of the bipolaron. 

 

 
Fig. 3 Distance dependence of the correlation contributions to 
the axially symmetric large bipolaron binding energy 
( 1.05/* =∞εε ). (1) corresponds to the wave function (9); (2) 
corresponds to the wave function (14). 
 
However, simple and physically understandable calculations 
demonstrated that these correlation corrections do not 
contribute to the binding energy of the spherically symmetric 
bipolaron. Indeed, in this case the electronic wave function can 
be written as a sum of the wave functions [27]: 
 

);,( 21 Rrrχ ~ );,( 210 Rrrχ  

( ))()()()( 21112111 rrrr b
s

b
s

a
s

a
s χχχχµ ++ .             (17) 

 
Here μ is additional linear parameter and obviously 0 ≤ μ ≤ 1. 
It would seem that this term must give the contribution to the 
stabilization of the spherically symmetric bipolaron. The 
electronic energy of a bipolaron in the maximum of the 
bipolaron potential (R = 0) can be represented in the following 
form ( 00.1/* =∞εε ): 
 

2016.4982.2918.0[()( µµµ ++−=E
 

×++ )557.0331.2 43 µµ
 

ωαµµ 222 2])791.2019.5787.2( c×++ − .        (18) 

 
The numerical values in (18) we obtained for the case that is 
the most favorable for the positive manifestations of so-called 
"ionic" correlation contributions. Direct Coulomb repulsion 
between electrons is extremely weakened for the parameter of 

00.1/* =∞εε . The extremal properties of the functional (18) 
demonstrate that the variational parameter μ = 0; i.e., one-
centered electron-electron correlations do not lead to 
stabilization of spherically symmetric bipolaron. At the same 
time if we use the wave function in the form of (17) then it 
leads to the stabilization of an axially symmetric bipolaron. 
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This conclusion remains valid over the entire range of 
acceptable values ∞εε /* . In this situation the contribution to 
the bipolaron bonding energy is due to by oscillations of 
electron between two potential wells [28].  

In the papers [29]-[31] we are demonstrated the pair 
bipolaron potentials for a wide range of dielectric constants. In 
addition, we take into account the additional restrictions 
imposed by the virial interrelations, orthogonality 
requirements, spatial symmetry and convergence of variational 
procedure. Within those functions, the inequality:  dT/dR > 0 is 
likewise satisfied; i.e., for spherically symmetric state of a 
large bipolaron remains unstable (Fig.4). Figure 4 shows the 
rapid convergence of the variational procedure. The problem 
of symmetry of the wave function by using the variational 
principle is discussed in the paper [19].  

Thus increase the flexibility of the trial wave function 
leads only to increasing of the binding energy of the axially 
symmetric singlet bipolaron. However, the common character 
of the dependence of the bipolaron binding energy from the 
distance R remains the same as for quasi-independent electrons  
and does not depend of the dielectric properties of the polar 
medium (Figs. 4 and 5).  

For curve 4 (Fig.4) we used a superposition of four 
electronic configurations: basic (see (7)), singly excited: 
1s+2p and 1s+2s, and doubly excited configuration: 2p+2p. In 
a symbolic form the electronic wave function can be written as 
follows: 

χ  ~ )1( 2
0 sχ  

)21()21()2( 3312
2

21 ssCpsCpC χχχ +++ .     (19) 
 

Function s2χ was chosen in the following form: 
)exp()1(~ 21 rr γγ −− , where 1γ  and 2γ  are additional 

variational parameters. The sequence of the functions iχ  
belongs to the range of definition of the polaron functional.  

 
Fig. 4 The binding energy of the axially symmetric large 
bipolaron versus of distance R ( 00.1/* =∞εε ).  (1)  C1 = C2 
= C3 = 0 (zeroth-order approximation); (2) C1 ≠ 0, C2 = C3 = 0;  
(3)  C1 ≠  0, C2 ≠ 0, C3 = 0; (4) C1 ≠ 0, C2 ≠  0, C3 ≠  0; (5) 
triplet state of the bipolaron. 
 

Number of variational parameters run up to seven, but no 
additional minimums does not appear (Fig.4). On the contrary 
there exists a smooth downtrend in bipolaron potential with 
increasing flexibility of trial function. At the same time is kept 
the qualitative dependence of the potential on the distance R 
and transition to a spherically symmetric state of bipolaron 
does not occur. If the variational procedure is used correctly 
no significant change of the bipolaron binding energy does not 
happen, and there no exist any change in the spatial symmetry 
of bipolaron. In this case the equilibrium distance R ≠ 0 
remains between the polarons for each value of ∞εε /* . For 
series of the minimizing electronic functions (7), (9) and (19) 
justly the following inequality: 0/lim

0
>

→
dRdT

R
. That is, the 

bipolaron potential retains the shape. Spherically symmetric 
singlet state of bipolaron is unstable. In addition, it should be 
noted that we get rapid convergence of variational series 
(Figure 4).  According to the literature it is known [9] that for 
the calculation of the dissociation energy of diatomic 
molecules sufficiently to consider only two electronic 
configurations. Increase the flexibility of the wave function 
retains the correct uniform convergence of the results, in 
accordance with the requirements of the variational method 
(compare with curve 2 of the Figure 2). 

At the same time, using equation (5) and (6) it can be 
shown [32]-[34] that the triplet electron-excited states of a 
large bipolaron are one-center formations (except of the state 

uΣ3 , which is repulsive (Fig. 5)). Studies have shown that the 
singlet electron-excited states of the bipolaron are axially 
symmetric quasimolecular formations. 

Change in the equilibrium distance between polarons is due 
to modification of the parameter ∞εε /*  (Fig.5). Figure 5 

shows that increasing of the ratio ∞εε /*   leads to monotonous 
decreasing of the bipolaron binding energy at that the 
equilibrium distance between the polarons is increased. 
Reducing the binding energy of the bipolaron is accompanied 
by increasing the effective size of large bipolaron . At the same 
time the spherically symmetric bipolaron is not sensitive to 
changes of the polar medium.  
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Fig. 5  The bipolaron binding energy in the ground state versus 

of the distance R. ∞εε /*  = 1.00 (1), 1.02 (2),1.05 (3), 1.08 
(4), 1.10 (5). 

Variational calculations of the paper [3] are characterized 
by the divergent sequence, i.e. stationary points can not be 
determined. Such variational calculations lead to instability of 
the computational algorithm. Therefore, Ritz computational 
procedure should be verified by requirement of procedure 
stability and convergence. That is, the parameters of the Ritz 
procedure vary significantly and the approximation to the 
solution very differs from the zeroth-order approximation. 
This makes Ritz procedure unstable and diverging. Incorrect 
application of the variational method leads to a significant 
overestimation of the electron-electron correlations 
contribution to the binding energy of a large bipolaron. This is 
due nonoptimality of two-electron wave functions, which in 
turn leads to unfounded changes in the spatial symmetry of 
bipolaron. The consequence of this is the results that have no 
physical meaning. In accordance with the perceptive remark of 
Epstein [35] such bipolaron calculations can be attributed to 
"pathological type." 

In the paper [36] is used the density matrix formalism of 
Gunnarsson-Lundqvist [37] to account the electron-electron 
correlations. The results of this work also point to the 
instability of a spherically symmetric bipolaron. In the paper 
[38] it is shown that the bipolaron Hamiltonian has not 
spherically symmetric solutions for the singlet spin state in the 
presence of electron-electron repulsion. 

Further, it will be shown that the axially symmetric 
bipolaron interprets correctly experimental data. 

 

V. INTERPRETATION OF EXPERIMENTAL DATA 

A. Regeneration of Hydrated Electrons  
Аxially symmetric large bipolaron allow us to interpret the 

spectroscopic experiments. It has been experimentally 
established [39] that on photo-excitation of a hydrogen-
saturated alkali system by light in the UV region of the 
spectrum, hydrated electrons (eaq) were formed at a 
concentration 10-6M. As one would expect, disappearance 
hydrated electrons occurred according to a second order law. 
Subsequent irradiation of the system by pulses of red light (λexp 
> λmin = 700nm) after disappearance of 98% of the hydrated 
electrons led to regeneration of trapped electrons eaq (polaron 
type). Here we assumed that the reason of regeneration is 
optical excitation of the bound two electron species (bipolaron 
type) decaying to the reaction: 

 
                    aqaqaq eee + →

> nm7002)( λ
.  

 
Formation of molecules H2 following after disappearance 

of hydrated electrons, which occurs considerably slower than 
the primary process is in favor of the existence of the bound 

two-electron species. Further experiments of flash photolysis 
[39] have confirmed the existence in aqueous solution of 
singlet 2)( aqe .  

Figure 6 demonstrates that the singlet ground and excited 
states of large bipolaron correspond to axisymmetrical state, 
while the triplet states of the bipolaron are spherically 
symmetric formations. This result is physically obvious and 
understandable. For triplet bipolaron formations [40] the 
electrons are at different orbitals and distant from each other.  

As shown in the papers [4,6,7], the transitions 
)21()1( 121

zpss Σ→Σ  and )21()1( 121
iyxpss ±Π→Σ  will be most 

probably (oscillator strength in dipole approximation will be 
following 7.0≥f ). Here the z axis coincides with the 
symmetry axis of the large bipolaron; the indices in 
parentheses of the spectroscopic symbols signify the single-
electron states, arising on adiabatic propagation of hydrated 
electrons at the distance ∞→R . Figure 6 shows the 
electronic terms of axially symmetric large bipolaron are given 
as functions of the distance R for 02.1/* =∞εε  ( =sε 78.3, 

=∞ε 1.78). 
 

 
 

Fig. 6 The ground state and excited quasi-molecular terms of 
the axially symmetric bipolaron for 02.1/* =∞εε . (1)    

)1( 21 sΣ ; (2)  )1( 23 sΣ ; (3)   )21(1
zpsΣ ; (4)  )21(1

iyxps ±Π .  

 
 

Let us examine the dipole-allowed electronic transition 
)21()1( 121

iyxpss ±Π→Σ  the frequency of which at the 

maximum of the absorption band in correspondence with the 
Frank-Condon principle we determine from the Pekar’s 
relation [16]: 

 







 +++−=Ω

n
nnAEE 11ln)1(

2
||

1
0

011 , 

      [ ] 11)/exp( −−= TBkn ω ,                    (20) 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 183



 

 

 
here ωα 21

0 21026.1 cE ⋅⋅−= − , 2
1 108.6 −×−=E  ωα 22 c⋅   

are the self-consistent total energies of the initial (0) and final 
(1) electronic states, respectively. The energy of 
reorganization of the polarization state of the polar medium as 
a result of the photo-transition ( 10 → ) is determined from the 
relation 
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ωπ
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e 

k ,                            (21) 

here  

212
2

211 )exp(|),(|)( ττχρ ddikrrrk ∫= . 
 

Frequency ω  can be estimated from the half-width 2/1W  of 
the optical absorption band of polaron. In the low-temperature 
limit (n < 1)  

2ln2 1
02/1 ωAW = .                             (22) 

Here the energy of reorganization of the polar medium 1
0A  

relates to the ps 21 →  phototransition of the polaron. Taking 
into account the known experimental value eV29.02/1 =W [39] 
from (22) we find ω  = 2.2·1013sec-1. The isotropic electron 
effective mass is equal to m* = 2.52m, which we determined 
by comparing the experimental and theoretical the maximums 
optical absorption of the hydrated electron.   

Considering that the photo-transition is performed from the 
minimum ( 2/1*1

0 )/(32.4 ωα mR c −⋅= ) of the )1( 21 sΣ  ground 
term (Fig.6), i.e., we neglect the intrinsic vibrational-rotational 
structure of the bipolaron [31]. For the temperature conditions 
usual in experiment (T = 298K) from Eq. (20) we obtained: 

eV41.121081.6 22
1 =⋅⋅=Ω − ωα  c . These conditions 

correspond to the wavelength: minnm877 λλ >= . It is not 

difficult to see from Fig.7 the final term )21(1
iyxps ±Π  (line 4, 

Fig.7) is repulsive in the entire interval of distances R, which 
finally leads to dissociation of a bipolaron. For the transition  

)21()1( 121
zpss Σ→Σ  the situation turns out to be different. We 

calculated the transition energy by using (20): eV37.12 =Ω . 

This corresponds to the wavelength: minnm905 λλ >= . 
After the transition the electronic subsystem turns out to be 
into nonequilibrium state and during the time 1−≈ ωτ  relaxes 
to the minimum of state )21(1

zpsΣ  (line 3, Fig.6) through 

which the repulsive triplet term )1( 23 sΣ  (line 2, Fig.6) passes. 
In the vicinity of the crossing point of the terms due to 
interactions acting on the spin variables (for example, 
transverse optical vibrations of a polar medium [41] generating 
an oscillating magnetic field) intercombinational singlet-triplet 

transitions )21(1
zpsΣ ~~> )1( 23 sΣ  are possible with a high 

probability. 
With a lowering of temperature the absorption band is 

shifted into the long-wavelength region and for T = 80K at the 
maximum of the absorption band 

eV26.13 =Ω ( nm982theor =λ ). The wavelength obtained 
very close to the experimental value nm1000=λ  [39]. At the 
same time the wavelength corresponding to the energy of 
photo-ionization ( 22**4 /178.0 εmeI = ) of bipolaron turns 
out to be considerably shifted into the short-wave region: 

eV77.01 =Ω . It is important to note that bipolaron 
formations is accompanied by a shift of the absorption band to 
longer wavelengths region with respect to the experimental 
absorption band of the hydrated electron 
( eV73.1)(max =Ω aqe  [39]). 

  

B. The Absorption Band of the Bipolaron in Ammonia 
According to magnetic and optical studies, and studies of 

the electron mobility, reliably experimentally established 
[42,43] that in ammonia systems there exist highly mobile two-
electron diamagnetic formations of bipolaron type. Bipolarons 
were found in organic compounds [44]-[46], molten salts [47], 
metal-ammonia systems [43]-[53], and vanadium bronzes [54]. 
According to Mott [55] a sequence of experimental data can 
be interpreted only suggesting the possibility of the existence 
of two-electron mobile diamagnetic formations in the polar 
media. This opinion is shared by Thompson [56]. Importantly, 
alkali metal ions in the ammonia solution have not the affinity 
to the solvated electron [43].  

Furthermore, the optical properties of additional electrons 
are identical both the injected electrons and the dissolved 
alkali metals. That is, the electrons are not associated with 
cations. 

It is well-known experiments that studied the conductivity 
of the metal-ammonia solutions. It is found that with a change 
of the electron concentration the electrolytic equivalent 
conductance of electrons varies unusual manner. With 
increasing of the electron concentration of 0.01 M to 0.4 M the 
conductivity is reduced by 20%. At the same time reduces the 
paramagnetic susceptibility of the solution. According to the 
authors [53] occurs pairing of electron spins without the 
participation of the metal cations. A further increase in 
concentration leads to the restorer of conduction. 

It has been established experimentally [52], [57] that 
electrons in metal-ammonia systems able to form of the 
bipolarons with dissociation energy D = 0.15−0.2eV.  For the 
axially symmetric bipolaron in ammonia theoretical estimates 
give the following value: D = 0.14−0.16eV [58]. The 
applicability of the polaron model to describe the properties of 
electrons in polar liquids has been discussed repeatedly [43], 
[59]-[61]. As it turned out, many of the properties of electrons 
in ammonia can be interpreted using the polaron theory. 
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Now that, using the system of electronic terms of a 
bipolaron (Fig.7), we will compare the experimental optical 
characteristics of the bipolaron in ammonia ( 075.1/* =∞εε ) 
with the theoretical calculations. The optical transition 

→Σ )1( 21 s )21(1
zpsΣ is assumed to take place from the 

minimum of the ground term: 2/1*1
0 )/(1.5 ωα mR c −= . The 

total self-consistent energies of the initial and final states are: 
ωα 21

0 210158.1 cE ⋅⋅−= − , 2
1 1077.8 −⋅−=E ωα 22 c⋅ , 

respectively; 21
0 1068.8 −×=A ωα 22 c⋅ . Since the optical 

measurements is usually carried out at 225 K we obtain from 
(20) the following energy: eV77.01 =Ω . The transition 

)21()1( 121
iyxpss ±Π→Σ  is also possible. In this case, for the 

self-consistent final state we have: ωα 22
1 2105.6 cE ⋅×−= − , 

21
0 107.2 −×=A ωα 22 c⋅ , and the transition energy is equal to 

eV84.02 =Ω . Here we used the following parameters for the 

polaron in ammonia: 756.1=∞ε , 8.22=sε , mm 73.1* = , 
113105.5 −⋅= sω , 4.13=cα . 

 

 
Fig. 7 The ground state and excited quasi-molecular terms of 
the axially symmetric bipolaron ( 075.1/* =∞εε ). (1) – 

)1( 21 sgΣ ; (2) – )1( 23 suΣ ; (3) – )21(1
zg psΣ ; (4) – 

)21(3
iyxu ps ±Π ; (5) – )21(1

iyxg ps ±Π ; (6) – )2( 21
zg pΣ ; (7) – 

)2( 21
iyxg p ±∆ ; (8) – )21(3

zg psΣ . 

 
Details of the calculations are presented in the papers 

[33,58]. Thus, the maximum of the bipolaron absorption band 
in both the first and second case is close to the experimental 
maximum photo-transition of polaron in the metal-ammonia 
system )21(Ωmax ps → eV885.0= . Similarly to the hydrated 
electron it has been experimentally established [39] that the 
maximum of optical absorption band for bipolaron in ammonia 
is shifted to longer wavelengths region. The measurement of 

the position of the absorption band maximum of the bipolaron, 
gives the value eV81.0exp =Ω that is within the range of 

calculated frequencies. The theoretical maximum turns out to 
be precisely in the 0.81–0.82eV energy range. In which 
connection for a sequence of excited electronic terms of 
bipolaron, is kept well-known Hund's rule as 0→R  (Fig.7). 
Axially symmetric large bipolaron allows us to interpret 
correctly other experimental data.  

   

C. The Magnetic Susceptibility of Polarons in Ammonia 
Systems 

Study of the concentration dependence of electron magnetic 
susceptibility of the metal-ammonia systems have shown [62], 
[63] that the static susceptibility depends on the concentration 
of dissolved alkali metal. Susceptibility is changed from a 
paramagnetic state to a diamagnetic state in the area of 
electron concentration 1019 - 1020 cm-3 at  temperature below 
200K. Additional experimental studies [64] confirmed the 
pairing of electron spins.  

Using the results of the paper [65], we can write the 
diamagnetic contribution to the susceptibility in the following 
form: 

 

∑ −−=
= 2,1

22*4)( )(||)()4/(
i

iiiii
d rrrcme rr χδχχ βααβ  

     = 2
0

2 /52.39 eaBµ− ,   zyx ,,, =βα .                 (23) 

Here Bµ  is the electronic magneton; 0a  is Bohr radius. 
For axially symmetric electron systems the paramagnetic 

susceptibility can be approximated by the following equation 
[66] 

 
2

0
2)()()()( /52.1|/)(2 eaB

d
yy

d
zz

d
xx

p µχχχχ =−= .          (24) 

 
Electronic magnetic susceptibility can be written as follows: 
 

bpbppp nn χχχ += .                          (25) 

 
Here, pχ is the magnetic susceptibility of polarons, which 

also takes into account the Pauli spin paramagnetic 
susceptibility TkBBpauli /2µχ = ; bpχ  is the magnetic 

susceptibility of a bipolaron. The total number of electrons is 
equal to 02 nnn bpp =+ . In accordance with the low of mass 

action, the equilibrium constant K of the reaction nbp ↔ 2np in 
the thermodynamic equilibrium state at temperature T is given 
by  

==
bp

p

n
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Here vibrZ  and rotZ  are the vibrational and rotational 

partition functions of the bipolaron, and Dbp is its dissociation 
energy. 

In Fig. 8 is made the comparison between the theoretical 
and experimental results [62], [63] for the magnetic 
susceptibility of metal-ammonia systems at temperatures of 
198 and 239 K as a function of the degree of dilution of the 
solution lg(n/n0), where n = 2.431022 cm-3 is the concentration 
of solvent atoms [59] and n0 is alkali metal concentration.  In 
Figure 8, we present the change of the equilibrium 
concentrations of polarons and bipolarons depending as a 
function of concentration of dissolved alkali metal Na. It can 
be seen that the formation of bound electron pairs is initiated 
at alkali metal concentrations of 17105 ⋅≈ cm-3; in the range 

18
0 103 ⋅≈n  to 1019cm-3 the number of diamagnetic formations 

begins to exceed the number of polarons. 
 

 
Fig. 8 The relative concentrations of polarons and bipolarons 
as a function of dissolved metal concentration. (1) T = 239 and 
(2) 198 K. 

 
It is important to emphasize that in this region of 

concentrations there exist a shift of the maximum of the optical 
absorption band toward the long-wave region (Section V B). 
In this concentration range it is found that equivalent 
conductivity of electrons decreases on 20%. This drop of 
conductivity may be due to the formation of bipolarons. These 
findings are confirmed by measuring of the proton relaxation 
velocity [67]. These studies show that the formation of singlet 
spin pairs is initiated at concentrations np 17105 ⋅≈ to 

18103 ⋅ cm-3.  
To compare the theoretical results of the calculation of the 

static magnetic susceptibility with experiment, we use the 
following equation 

 

== pAk nTNC /χ  

[ ] BpbpPaulibpPaulipBA knnN //)2/(/2 −− χχχχµ ,       (27) 

 
here AN  is  Avogadro number. 

Figure 9 demonstrates the comparison of the theoretical 
and experimental [62] atomic magnetic susceptibilities as a 
function of concentration for two temperatures 198 and 239 K. 
 

                      
Fig. 9 Atomic magnetic susceptibility as a function of 
concentration. The solid curves give the theoretical results.  
●, □   experimental values for T = 239 (1) and 198 K (2), 
respectively [62]. 

 
We proposed a theoretical model that correctly describes 

the dependence of the magnetic susceptibility both the 
concentration and the temperature. As increasing of the 
electron concentrations and lowering the temperature the 
paramagnetism of electrons decreases. Magnetic susceptibility 
of Ck changes sign when the electron concentration is equal to 

2110≈n  cm-3. The system of electrons in ammonia becomes 
diamagnetic completely (Ck < 0). The detailed mathematical 
analysis of the magnetic susceptibility dependence on the 
temperature and the concentration we have given in the paper 
[65]. 

VI. CONCLUSION 
This shift of optical band is confirmed by theoretical 

calculations for the axially symmetric large bipolaron 
(Sections V A and V B) and it is in complete agreement with 
the observed change in the optical absorption band when 
passing from two separated (R → ∞) hydrogen atoms 
(spherically symmetric) to a hydrogen molecule (axially 
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symmetric) [68], i.e., at the change from a spherically 
symmetric object to an axially symmetric object.  This rule is 
observed for other two-electron physical objects. For example, 
a similar shift in the long wavelength region of the optical 
spectrum was noted for quasi-molecular biexciton [69]. 
However, for the spherically symmetric small bipolaron which 
analogous to a helium atom that corresponds to bipolaron 
calculations [3], the expected shift of the optical absorption 
maximum would occur to the opposite (short-wavelength) 
region of the spectrum. This is confirmed by experiment [70]. 
We present in this article the numerous theoretical arguments 
which indicate that inclusion of electron-electron correlations 
does not lead to the stability of spherically symmetric 
bipolaron. Beside that the spherically symmetric model of 
bipolaron also come into conflict with the existing 
experimental data.  
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