
 

 

  

Abstract—In this paper are investigated some methods for 

parallel computation of the QR decomposition method of matrices. A 

mathematical approach is based on the method of given’s rotation 

and the method of householder reflection. The mathematical 

background is followed by the corresponding array which uses 

systolic approach. In both cases the systolic array is triangular array. 

On the case of the systolic array based on given’s rotation, 

parallelization continues step by step as it is shown at figures 5 and 6. 

The output values of figure 5 become the input for  figure 6 and vice 

versa, the output values of  figure 6 become the input for figure 5. 

This kind of iteration is repeated until achieving the convergence. 
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decomosition, Systolic model, Mapping scheme, Systolic array, 

given’s rotations, Householder reflection, computing the orthonormal 

matrix, computing the upper triangular matrix.  

I. INTRODUCTION 

HE computation of the QR decomposition of a matrix is 

one of the most important matrix problems that arises in 

many applications. The domain of its application is very 

large.  It can be used as an important tool in solving different 

problems in the area of signal processing, image processing, 

solution of differential equations etc. It can be applied in the 

solving of simultaneous linear equations. The QR 

decomposition of a matrix uses the triangularization of the 

coefficient matrix, followed by the use of back substitution. 

Most of the QR -decomposition implementations are based 

on three methods: 

1. The Given’s rotation method, (also known as Jacobi 

rotations) used by W. Givens and originally invented 

by Jacobi 

2. The Gram-Schmidt method and  

3. The method with the Householder transformations.  

The Householder transformation is one of the most 

computationally efficient methods to compute the QR-

decomposition of a matrix. Although the error analysis [10, 

26] shows that the Householder transformation outperforms 

the Given’s method under finite precision computation, the 

QR decomposition of this method is more difficult. Especially, 

the systolic approach is difficult because we have to find only 

local connections. On the other hand, by the method of givens 

rotations, the order of rotations can be changed influencing 

 
 

different rows. Taking this into the consideration, the parallel 

processing of this method is very appropriate.  

There is a lot of research done in the area of the 

decomposition of matrices as well as the parallel computation 

of such decompositions. In the case of the SVD decomposition 

of matrices we are mentioning the methods based on Jacobi 

rotations [3] and the method based on Hestenes-Jacobi method 

[7]. Interesting method for evaluation of sparse Jacobians can 

be found in [20]. These approaches are followed by the 

systolic arrays for the parallelization of the SVD 

decomposition [1, 19, 21]. Using the adaptive singular value 

decomposition can be found in [24]. The spectral 

Decomposition of some tridiagonal matrices one can found at 

[9, 17].  

In this paper we analyze the case of the QR decomposition 

method. The basic idea of the QR-decomposition of a matrix 

is to express a given nm ×  matrix A  in the form QRA = , 

where Q is an orthonormal nm ×  matrix and R is an nn×  

upper triangular matrix with nonzero diagonal entries. 

A parallel version of Given’s rotation was proposed in [16]. 

In [14] one can find an alternative way for parallelization of 

Given’s rotation which is more efficient for larger matrices. In 

[8] it is given a parallel pipeline version of Given’s rotation 

for thr QR decomposition. In [2] one can find the block 

version of the QR decomposition, which first transforms the 

matrix into the Hassenberg form and then applies Given’s 

rotation to it. In [11] one can find the design based on 

Householder method. In [23] is presented a new algorithm for 

finding QR decomposition for square and full column matrix. 

The numerical analysis and experiment is given in [15]. In [6] 

is demonstrated a parallel algorithm based on the Gram-

Schmidt method. 

The analysis in this paper uses the givens rotation method 

[12] and the householder method [25]. In [12, 22] are 

proposed two systolic arrays for the QR decomposition with 

hardware complexity O(n
2
) and time complexity O(n) which 

are based on the method of Given’s rotation. The systolic 

approach based on the same method can be found at [18]. 

In this paper we give  the mathematical backround of the 

QR decomposition method, and then we analyze the 

corresponding parallelization for processing with this method.  

II. THE QR DECOMPOSITION BASED ON GIVEN’S ROTATION 

The upper triangular matrix is obtained using sequences of 

Given’s rotations [3] such that the subdiagonal elements of the 

first column are nullified first, followed by those of the second 

column and so forth, until an upper triangular matrix is 
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reached. The procedure can be written in the form given 

below: 

 

RAQT =  

 where 121 ...QQQQ nn
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where 
qpQ ,

 is the Given’s rotation operator used to annihilate 

the matrix element located at row 1+q  and column p . When 

we work with 2x2 matrices, an elementary Given’s 

transformation has the form: 

 










′′

′′′

=







⋅








−

+

+

+

+

ki

kii

kii

kii

xx

rrr

xxx

rrr

cs

sc

...00...0

...0...0

...0...0

...0...0

1

1

1

1

                  (2) 

where c  and s  are the cosine and the sine of the annihilation 

angle, such that 
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It is not difficult to verify that the product of two rotations 

is also rotation. Let A be an nxn matrix. In order to transform 

A into an upper triangular matrix R, we can find a product of 

rotations 121 ...QQQQ nn

T

−−=  such that  RAQT = . It is 

not difficult to show that O(n
2
) rotations are required. Because 

the number of operations in every rotation is O(n), the 

complexity of this algorithm will be O(n
3
). In general, the 

computational complexity of the QR decomposition is given 

below [6]. 

1. Householder: 4/3n
3
+ O(n

2
) 

2. Given’s: 8/3n
3
+ O(n

2
) 

3. Fast Given’s: 4/3n
3
+ O(n

2
) 

4. Gram-Shmidt: 2n
3
+ O(n

2
) 

From the results above it is not difficult to conclude that the 

Householder transformation outperforms the Given’s method 

under finite precision computation. But on the other hand due 

to the vector processing nature of the Householder 

transformation, no local connections in the implementation of 

the array are necessary. Therefore QR decomposition by the 

method of Householder transformation is more difficult. 

III. TRIANGULAR SYSTOLIC ARRAY BASED ON GIVEN’S 

ROTATION 

In [5] it is shown that a triangular systolic array can be used 

to obtain the upper triangular matrix R  based on sequences of 

Given’s rotations. This systolic array is shown in Fig. 1.  

 

 
Fig. 1 Triangular systolic array for computing the upper triangular matrix R  
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As we can see, the array consists of two different shapes of 

cells. The cells in the shape of a circle (fig. 2), and the cells in  

quadratic shape (as in fig.3). 
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Fig. 2 Input and output of the circle cell of the array in fig.1 
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Fig. 3 Input and output of the quadratic cell of the array in fig.1 

 

The cells of fig.2 perform according to algorithm 1: 

 

Algorithm 1: 
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The calculations of quadratic cells are given by the relations 

below: 
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According to the relations in (1), the Q  matrix cannot be 

obtained by multiplying cumulatively the rotation parameters 

propagated to the right. Accumulation of the rotation 

parameters is possible by using an additional rectangular 

systolic array. 

 

Before giving an explanation about the systolic array for the 

QR decomposition, we will introduce the methodology of 

computing xR
T− . This computation will be used in the general 

design of the systolic array for aQR decomposition. 

IV. THE COMPUTATION OF R
–T

X 

We present a brief derivation of the result presented in [13] 

about the property that a triangular array can compute xR
T−

 

in one phase with the matrix R  situated in that array. 

 

Let [ ]ijij Rr =  and [ ]1−=′ Rrij
, where 0=ijr  and 0=′

ijr  for 

ji > . It can be shown that: 
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Let 

 

[ ] XRyy TT

n

−=,...,1                                                (4) 

 

Then the recursive computation of (4), where 
T

R
−

 is a nxn 

matrix and X is an nxm matrix is: 
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In particular (because we want to use R  and X to compute 

XR
T−

), jy  can be expressed in terms of ijr  and ��. By 

substituing the equation (4) into equation (5) we have: 
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If we continue, by transforming the relation (6), we will 

have: 
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And finally we get:  
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Using the relation (5), for the final form of jy , we get: 
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Finally, using the relations obtained above (where Y is the 

nxm matrix, R is nxn upper triangular matrix and X is an nxm 

matrix), the algorithm for computing  xR T−  is given: 

Algorithm 2 
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The corresponding systolic array is similar as the array in 

fig.1. The data movement of input values x  and output values 

y  is presented in the figure 4. 

R

x

xRy
T−

=

 

Fig. 4 Data movement of x and y in the computation of R–Tx 

 

In the case presented above, the elements of the matrix R  

are stored in the triangular array. The cells of fig.2 (circle 

cells) perform the division part of the equation (8) (the part

jjr1 ). The second part of the eq. (8) (the part ∑
−

=

−
1

1

j

k

kjkj ryx ) is 

performed by the quadratic cells shown in fig.3. 

 

V. MAPPING INTO THE SYSTOLIC ARRAY 

The number of processors in the fig. 1 can be given by the 

formula 
�(���)�   for some integer number p. To give the 

mapping scheme of this array we assume that 	 = ���
 and 

that the cell on the position (i, j) is mapped on to the processor 

(s, k) in the corresponding network. The mapping is given by 

the formula [4]: 

 

� = �										� �	 + 1� 													��						 �	 + 1 < �		��	�
�� − �		��	�	 � 																								��ℎ� !��� " 

 

And 

 

# = �										� $	 + 1� 													��						 $	 + 1 < �		��	�
�$ − �		��	�	 � 																								��ℎ� !��� " 

The relations given above produces a uniform mapping in 

the case when p is divisible with n. On the other hand (when p 

doesn’t divide n), some processors (in the first %	&'(	) 

columns and %	&'(	) rows), take a matrix which is one 

dimension larger. 

VI. THE QR SYSTOLIC ARRAY 

The design of the systolic array for a QR-decomposition of 

a matrix A  will be based on an iterative algorithm which 

consists of two basic steps. Initially we set AA =1 . The first 

step is to compute kkk RQA = . The process has to be 

continued until the convergence. To compute the next iteration 

1+kA  we start from the relation (1) and taking into the 

consideration that Q is orthonormal (*+* = ,), we have: 

 

kkkkkkkk

T

k QRARQARAQ =⇒=⇒= −1
         (9) 

kkkkk

T

kkk

T

kkkk QRQRQQQAQQRA ====+1   (10) 

 

So, this can be expressed as follows: 
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Algorithm 3 

Set 1AA =  

Step 1: For .,..,2,1=k  compute
kkk RQA = . 

Step 2: Compute
kkk QRA =+1

. If 
1+kA  converges, then stop. 

Otherwise go back to step 1. 

 

From 
kkk RQA =  we have that 
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If the i th column of the matrices 
T

kA  and 
T

kQ is denoted 

by ia  and iq  respectively, then: 
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We already have shown how to compute xR T− . So, the 

systolic array is similar to that one shown in fig. 4. Since the i

-th column of 
T

kA  is the same with the i -th row of
kA , the 

elements of the matrix
kA  will be inputted row by row. The 

corresponding systolic array for computing the elements of 

kQ  as output elements is given in fig. 5. 
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32q 22q 12q
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Fig. 5 Systolic model for computing the Q matrix 

 

 

Of course, the triangular array which contains the elements 

of the matrix R  (presented as right angle triangle) is the same 

with the array in fig.1. 

Fig. 5 in fact is the design for systolic computing of step 1 

of algorithm 2. To do the second step, which consists in 

computing
kkk QRA =+1

, the output elements of fig.5 become 

row by row the input elements for the new computation. It is 

illustratively shown in fig. 5. So, the new array, which 

computes the element of the matrix 
1+kA  using as an input 

elements the computed ones illustrated in fig. 5, is shown in 

fig. 6. The elements of 
1+kA  come out column by column. 
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Fig. 6 Systolic computing of the product RQ 

 

If the obtained result is not convergent, then a new iteration 

will be repeated until achieving a convergence. 

VII. PARALLEL ALGORITHM BASED ON HOUSEHOLDER 

REFLECTIONS 

Let’s take the matrix - = , − .//+ where / ≠ 0 and . is a 

constant which is not equal to 0. The purpose is to choose . 

such that A is orthogonal (-+- = ,). We have: 

 -+- = (, − .//+)+(, − .//+) = , − 2.//+ + .�//+//+ = , − 2.//+ + .�(/+/)//+ = , + (.�/+/ − 2.)//+ = , + .(./+/ − 2)//+ 

From above, if . = 2//+/, then -+- = ,. If we take /+/ = 1 then - = , − 244+ , where 4+4 = 1. 

Householder reflection first implements the decomposition: 

 

 

*�- = 5 = 677
78 �					�					�					 ⋯ 					�	0																																					0																	-:															⋮																																0																															 <==
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where *� = , − 2 ??@?@? and -� is the first vector of A. The 

matrix Q can be obtained applying the formula 

121 ...QQQQ nn

T

−−= . 

Graphical representation of the computation of A is given as 

below: 

 

Fig. 7.  Graphical representation of the computation of A 
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The corresponding algorithm is given as in below [25]: 

Algorithm 4 
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The dependence graph and the corresponding array using the 

projection direction [1  0  0]  are given in the fig. 8 and fig. 9. 

 

Fig. 8.  Dependence graph of the systolic array for QR decomposition using hauseholder reflections 
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Fig. 9.  Systolic array for parallel QR decomposition using hauseholder reflection 

 

In the first step u, v(1) and Q are computed in the first column. 

Then there is a movement of u and Q in the direction of j axis, 

and then v(2), ….., v(n) are computed correspondingly in 

respective columns. In the case of fig. 9, Ai represents the 

column i of matrix A. As we can see the array is triangular 

array with the hardware complexity of O(n
2
). The array 

consists of two different shapes of cells. The cells in the shape 

of a circle (fig. 10), and the cells in quadratic shape (as in 

fig.11). 

 

Fig. 10.  Input and output of the circle cell of the array in fig.9 

 

 

Fig. 11.  Input and output of the quadratic cell of the array in fig.9 
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