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Abstract---One of the most important issues in control
engineering of flows is the accurate specification of recirculating
zones, especially at various fluid and thermal industrial
applications, where the working fluid’s pressure and temperature
values are important enough. In the present paper we develop a
complete numerical approach for the simulation, modeling and
estimation of recirculating flows, mainly inside short pipes. We use
Cartesian grids, uniform as well as structured – nested ones with
refinement, in order to succeed the appropriate choice of the
number of sub-grids and the refinement factor providing accurate
results for the fluid flow. The mathematical modeling of the
governing Navier – Stokes equations consist of upwind schemes
with up to third order of accuracy. We present the incompressible,
steady and laminar flow inside a square lid-driven cavity, a channel
with step and a backward facing step channel, trying to predict the
recirculation lengths and define the position of detachment and
reattachment points. The utility of the methodology is tested by
comparing our results to those of the standard single algorithm as
well as of the literature.  We conclude that our numerical
algorithms and technique provide accurate results for the prediction
of the recirculating incompressible flows and it can be applied in
extended pipeline flow networks.

Keywords---incompressible flow, recirculating flows,
refinement techniques, viscous flow

I. INTRODUCTION

HE circulating flows present great interest due to the
various industrial applications in engineering flow

processes. An accurate but also a simple numerical
technique for the simulation and estimation of these flows
can contribute in pressure control and safety issues or in
thermal cycle’s efficiency improvement. Many accurate
approaches have been done, as Louda’s [1,2] where a
numerical approach for backward facing steps is presented
giving detailed results, or Wallin’s methodology [3] and
Torres’s [4] for turbulent flows with interesting recirculating
zones in short pipes.
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Very interesting experimental approaches have been
developed for various flows with recirculation by Lee [5] or
Armaly [6] and Willis [7], as well as various numerical
approaches for backward facing steps [8,9,10]. Cartesian
grids seem to be the most appropriate for the case of
recirculating flows in pipes, because in most of the cases the
curvilinear or complex part of the physical domains are
limited. Using appropriate methodologies this type of grids
can also be used for the numerical simulation and
discretization of domains with complex geometrical bounds
producing very satisfied results. The main advantage is that
the specification of the geometry description is simple, using
most of the times only grid lines. [11], [12].

Although most of the Cartesian generation
techniques are independent of the domain shape and
dimensions, there are some cases where a huge number of
Cartesian cells have to be used if we want to produce
accurate results. For example in the case of oil pipeline
flows, it is almost impossible to use only uniform Cartesian
grids because the computational memory and time will be
increased in an inappropriate level. This is the main reason
that various refinement mesh techniques have been
developed overcoming the huge number of cells, which
some physical domains demand for the numerical
simulation. The refinement approaches are based on cell –
refinement either on region – refinement according some
specific criteria. Many approaches have been developed
regarding adaptive or mesh refinement techniques. Wang
[13] proposes a quad tree-based adaptive
Cartesian/Quadrilateral grid generator and flow solver based
on cell cutting-[14], [15], Lee [16] presents an numerical
scheme based on cutting cells for Turbulent flows using
Cartesian grids and Pan [17] a ghost cell method for
incompressible flows.

Various approaches have been presented regarding
the implementation of the boundary conditions, although
most of the times we enforce the value of one variable and
we solve for the others. A method where the velocity is
enforced, is presented by Faldun [18], where the boundary
conditions are applied to the nearest nodes of the physical
boundary. Ikeno [19] uses a pressure correction scheme,
where the pressure gradient at boundary nodes can modify
the enforced velocity value, while Tseng [20], presents a
very interesting approach for the immersed boundary
method, which can be probably applied in complex
curvilinear geometries with satisfied convergence of the
numerical algorithm.

In the present paper a Cartesian grid generation
algorithm is used in combination with upwind schemes for
the equations’ solution in order to obtain the characteristics
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of recirculating incompressible laminar flows. Particular
interest will be given in the identification of the recirculation
lengths as well as the reduction of the computational time
according to the appropriate refinement technique. In order
to create the approximated Cartesian bounds of the physical
domains we develop a method using only grid lines,
[21],[22] based on Chen, Lee and Patakar [16]. We also
develop a refinement methodology using structured sub-
grids [23], based on grid generation criteria of Martin and
Collela [11], and Berger and Collela [24]. The numerical
solution of Navier –Stokes equations is based on an artificial
compressibility technique [25]. Three different cases will be
presented with extended recirculating regions, giving
particular emphasis to the accuracy and the convergence of
the results, trying to specify the recirculation length and the
important points regarding each particular flow field and
trying also to prove that our numerical approach provides
accurate results for the flows with recirculating regions.
Particular investigation is taken place concerning the nested
refinement technique, trying to improve the accuracy of the
results and reducing the computational memory and time
simultaneously.

II. MATHEMATICAL MODELING AND NUMERICAL SOLUTION

The numerical approach of flow fields consists of
several steps, where plenty of methods can be applied.
Especially at the cases of recirculation regions a precise way
of geometry description is needed in order to ensure the
flow rate conservation and predict the lengths as well as the
important points with accuracy. The method which we
propose is independent of the physical geometry description
and it can be applied even if a complex curvilinear bound
has to be approached. At the following sections each step of
our numerical methodology is presented concerning the
physical domain simulation, the numerical solution of the
governing equations, the application of the boundary
conditions as well as the best numerical approach for the
recirculation zones. Various applications using several
methodologies have been developed for the prediction of
circulating flows [26, 27, and 28]

A. Physical domain discretization

In our numerical approach, if the physical domain
bounds are aligned with Cartesian grid lines, we have no
need to produce any approximated bound. However, if our
domain consists of complex or curvilinear bounds, we have
to create a new approximated one in order to proceed to the
grid generation. [12] The new approximate bound is parted
only by the use of grid lines, on x or z-axis either and this is
our benefit. The method is used, called saw-tooth and is has
been chosen as the most appropriate for the finite volume
cell centered numerical simulation of flow fields. This
method provides independence and automation of grid
generation for problems with complex boundaries, with or
without existence of an analytical function. The new
geometrical approach is based on sets of data points, the
original points as well as the approximated points of the
body contour as we describe below.

Fig. 1: Specification of approximate Cartesian points

Consequently, the first step is the creation of a new
approximated Cartesian bound of our physical domain. We
project the original contour of the curvilinear geometry onto
a Cartesian grid. This complex contour is described by a set
of data points on x or z-axis either. We have to control if the
contour segment between two neighbour data points varies
monotonically with respect to both x or z directions. If we
discover that this rule doesn’t occur we have to cluster the
Cartesian grid and repeat the above procedure. In order to
define the new approximated points we follow the below
rule: if an original data point is on x-axis, we calculate the
distance between this and its neighbouring grid nodes in the
same direction (x). According the smallest distance we
choose the corresponding grid node as the Cartesian
approximated point, (fig. 1). By this way we define the new
points, applying the rule of minimum distance for each set
of original data points. We finally connect the new points
using only grid lines (saw-tooth method), (fig. 2)

B. Mesh generation and refinement technique

As we have fulfilled the above procedure, we can create
a Cartesian grid, excluding the cells that there are no more
included to the flow field due to the above approximation.
Therefore a new Cartesian grid is generated where all the
“new physical” bounds lie on grid lines.
Although most of the times the above grid generation
technique is appropriate for the solution, sometimes a huge
number of cells is needed in order to simulate the whole
physical domain. That is why we develop a block
refinement technique by the use of a hierarchical structured
grid approach. The method is based on using a sequence of
nested rectangular meshes in which numerical simulation is
taking place (fig. 3). The whole domain is a rectangle whose
sides lie in the coordinate directions. We simulate the
domain based in as many refine grids as we need. [23]. At
the case of recirculating flows inside pipes (short or
extended), the above block nested refinement is more
appropriate method than others, because the sub grids are
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Fig. 2: Method for the connection of the Cartesian approximated points
(saw-tooth)

simply created in any region we demand, without any
complicated adaptive techniques, using simultaneously the
refinement factor that each case demands. By the other
hand, we prefer to propose easy specification of our grid
adaptation, which will provide simple and accurate results in
many industrial applications. In the case of recirculating
flows, a refinement technique is absolutely necessary in
order to avoid huge number of cells which are created (i.e. at
the case of pipe’s gas flows) and by the other hand to
estimate the related lengths, points as well variables with
accuracy.  Especially in extended pipeline networks, low
interest is presented at the straight parts of these, where the
domain discretization can be occurred using uniform
Cartesian grids developing the minimum number of cells. At
the regions with curvilinear bounds, the block nested
refinement technique can be easily applied providing better
accuracy and reducing the computational time
simultaneously. In this method the refinement is convenient
to be a power of 2.

Fig. 3:  Block nested refinement, grid levels=2 and
refinement factor = 2

The proposed nested algorithm contains several
levels of grids. We name the coarsest level m=0 and each
next refine sub – grid is named m+1. We define an integer
refinement factor:

11 //   mmmm dzdzdxdxI .           (1)

As we have created the coarse grid we simulate the flow
field and calculate the variables. At this time the coarse-fine
interfaces are neglected since no information from the finer
level is available yet. We have already defined the limits of
the refinement levels and we proceed the calculation to the
next refinement level. The sub-grids bounds must lie on a
grid line of the previous level grid. As we use staggered
grids and the variable values are expressed on the cell’s
center, we consider pseudo – cells (artificial cells), all
around the physical domain and the sub – grids too. (fig. 4)
By this way we estimate the variables using interpolation
between pseudo – cells and their neighbor cells for the
velocity value. The pseudo-cells of each sub-grid m are
lying on the level m-1. We continue this process for all the
sub- grids.
As we have fulfilled the simulation in all sub-grids and we

have the flow field results at maxm level, we resolve the

problem in the coarser levels again to ensure conservation.
We find a new solution, this time by the influence of the fine
levels. In addition we must satisfy both Dirichlet and
Neumann matching conditions along coarse-fine and fine-
coarse interfaces. That’s why we give the velocity values,
but we solve for pressure. With nested grids, each grid is
separately defined and has its own solution vector, so that a
grid can be advanced independently of other grids, except
for the determination of its boundary values. The
information exchange between two successive levels is
described in the next section.

Fig 4: Ways of boundary conditions application. The red
cells are excluded by the flow field, while the blue cells are

included in it. Ψ: artificial cells
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Let’s consider that we have already solved into the
initial coarse grid and we have to continue the numerical
simulation into a sub-grid. In order to specify the boundary
conditions at coarse grid and sub-grid interfaces, we

represent ),(1 kiu m and ),(1 kiwm , the values of the

velocity components on the sub-grid pseudo-cells. The

),( nlu m and ),( nlwm are the corresponding coarse grid

values into the physical domain. Every interpolation takes
place either on x either on y- axis. If we consider that we
apply the new velocity values on x-axis, (figure 3),
interpolation is applied as follows:

),(1 kiu m

2

),1(),( nlunlu mm 
 (2)

and

2

),1(),(
),(1 nlwnlw

kiw
mm

m 
 (3)

Also,

),1(...),1(),( 111 kIiukiukiu mmm   (4)

Concerning the pressure boundary condition, we prefer not
to apply interpolation and develop a different approach for
this variable. Assuming that we simulate for an
axisymmetric flow, the pressure vertical derivative at the
interface is estimated as follows:
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In fact, we can apply liner interpolation for both of the
above flow variables, but if we want to develop an non -
depended technique which can be apply to a wide range of
various applications [28],[29], we prefer to solve for the
pressure by the above way or an alternative one. Most of the
researchers prefer this option. [23]

C. Governing Equations and Numerical Scheme

The incompressible governing flow equations are
the Navier-Stokes equations, which, expressed in terms of the

Cartesian system of coordinates  zx, , and using the above

relations for time derivatives, take the form:
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Where, )diag(0,1,1][  is the singular diagonal matrix, a is

a switch for the activation of the axisymmetric terms (α=0 is

non axisymmetric, a=1 axisymmetric flow field), Re the
Reynolds number and Q the unknown solution vector,

 Twup=Q , with p being the pressure, and (u, w) the

velocity components in physical space. E, G, 1G and R, S,

1S are respectively the convective and diffusive flux

vectors at the plane  zx, . [24]

Due to the absence of the pressure from the unknown
variables’ vector, it is impossible to relate the convective
flux vectors with the unknown variables’ vector (common
problem in the incompressible flows). We don’t prefer to
introduce a new related equation among velocity and
pressure variable because the construction of a fully implicit
numerical scheme. [24] For these reasons we choose to
introduce the artificial compressibility term, which allows to
us the construction of a fully implicit methodology as well
as a simple reverse of the matrix-coefficient of the unknown
variables, in order to find the final desired values. So, the
matrix [Γ] after the addition of the artificial compressibility
term takes the form:

T1)1,,
1

diag(=][


 (7)

After the addition of the artificial compressibility
term, the equations (6) for incompressible flow are as
follow:
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where the symbols are the same as above.
The above N-S equations are the governing equations

for unsteady flow. These are also used for the solution of
steady flow fields. In these steady cases the time derivative
is used for the construction of an iterative technique using
the artificial time step in order to define our final steady
state.  We transfer the one solution (n) to the next “time
level” (n+1), where we receive the final convergence of our
problem in steady state setting simultaneously  the time
derivatives equal to zero.
The systems of equations for the flow problems consist of
the two-dimensional incompressible Navier – Stokes
equations after the addition of the pseudo-compressibility
term (or artificial compressibility term), which take on a
hyperbolic character with pseudo-pressure waves
propagating with finite speed. In such types of problems
“the information” inside the flow field is transmitted along
its characteristic curves. In this sense we can relate the sign
of eigenvalues with the upwind representation of the flow
variables at the cell faces. The upwinding of the inviscid
fluxes gives more freedom in devising implicit algorithms,
since it loads up the diagonals of the implicit factors.
Upwind differencing, also, alleviates the necessity to add
and to tune the numerical dissipation for numerical stability
and accuracy as the schemes with central differencing. [24]
Here, we extend the FVS method for solving incompressible
flow fields implicitly. In such flow fields the splitting of the
convective flux vectors has to change sense because of their
non-homogeneous property. The values of the flux vectors
at the cell faces are approached by upwind schemes up to
third order of accuracy. The unfactored discretized Navier-
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Stokes equations are solved by an implicit second order
accurate in time scheme, using Gauss-Seidel relaxation
technique.

III. RESULTS

Three different domains with incompressible steady,
laminar flows will be presented in order to estimate the
recirculation zones inside them as well as the velocity and
pressure distribution. We first present the numerical solution
of a cavity flow with moving wall as a first approach. The
following cases are the internal flows inside a channel with
step as well as over a backward facing step Although all the
above domains have bounds on Cartesian grid lines, these
are appropriate enough in order to prove the stability and
chase out the accuracy of the refinement technique using the
sequence of various rectangular sub- grids and our
numerical scheme for the recirculation regions. The
validation of our results is done by comparing the results
with the correspondent ones of Cartesian uniform grid, with
the same base grid size or of the literature ones.

D. Recirculating laminar flow around a square
cavity with moving wall

The lid-driven cavity flow is the motion of a fluid inside
a rectangular cavity created by a constant velocity of the
upper side of the square domain, while the other sides
remain at rest. Fluid flow behaviors inside these cavities
have been the subject of extensive computational and
experimental studies over the past years. Applications of
driven cavities are in material processing, metal casting,
pipelines flows, petroleum engineering applications,
hydraulic systems etc. [29]

Figure 5: Uniform and nested grids for cavity flow (grid
size: 20x20 or 40x40, L=1, I=2)

By the aforementioned flow filed, we have the opportunity
to test the independence and the accuracy of our refinement
technique trying to prove that we can reduce the
computational time and memory producing the desired
accuracy simultaneously. In this case we don’t face the
geometry Cartesian approximation problem and we focus on
the structured sub-grid block creation and implementation.
Various grids have been used, uniform and block nested, in
order to examine the effectiveness of our numerical scheme.
The used numerical grids are presented in table I. The
refinement has been applied close to the cavity walls, with
one and two levels of refinement.

The Reynolds number is equal to 100 and 400. Some
of the used numerical grids are presented in fig. 5, where we
can see one level of refinement (m=1) and the refinement
integer factor to be equal to 2 (I=2) for various grid sizes.
The numerical simulation has been applied for 10x10,
20x20, 40x40 and 80x80 base grids. At figure 5 some of the
uniform and block nested grids are presented, while at figure
6, the sub – grids for the cavity numerical solution are
clearly stated and depicted. An important point during this
numerical calculation is that the solutions must be
transferred from the coarsest to the refine sub – grid
choosing the appropriate velocity values according to the
sub-grid location.

In table I, we present the computational times as well
as the number of grid cells which have been used for each
numerical solution. The reduction of the time is significant,
which is achieved by the use of nested grids in comparison
with the CPU time we need applying the uniform grids. For
example using a nested grid 40x40  (L=1, I=2), we can
achieve the accuracy of an 80x80 uniform one, reducing the
computational time for almost 50% although the number of
grid cells isn’t much more different among the above two
cases.

Figure 6: Four (4) sub – grids for the numerical estimation
of cavity flow
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It’s interesting that in all the cases that we have applied the
block – nested methodology, the computational time is
significantly reduced in comparison with the application of
uniform grids, although the accuracy of the results remains
quite at the same level. (Table III)

The velocity values for the centre line of the cavity
domain are presented in table III for several grid sizes, with
or without refinement. By these results, we conclude that
with the appropriate choice of grid levels we can achieve the
accuracy at the regions of the numerical domain which
demand more detailed approach (in this cases, we apply
refinement near the walls of the cavity domain). However it
seems that the way of boundary conditions application is
appropriate and it doesn’t affect the accuracy of the results
by any negative way.

Table I: CPU time and number of computational cells

Grid size CPU

time

Number of cells

10x10, Uniform 2,42 100

10x10,    L=1, I=2 6,2 292

20x20, Uniform 11,26 400

20x20, L=1, Ι=2 42,46 1168

40x40, Uniform 84,53 1600

40x40, L=1, I=2 435,85 5696

80x80, Uniform 890,23 6400

Additionally, we can see that our approach is independent of
the grid size, providing an appropriate accuracy for the flow
variables. The accuracy of a refine grid is almost identical
with those of a double sized uniform one as well as the
accuracy of all the refined grids is appropriate. In order to
test our numerical results and our algorithm concerning the
independence of the grid size, we chose to develop a
numerical solution using a 500x500 grid which we assume
that it provides the “correct – accurate” solution. By this
way we present the relative errors for the axial velocity
values in table II. By these results, it seems that our solution
is independent of the grid size, as well as that we can
produce the desired accuracy using the block structured sub-
grids with a significant reduction of computational time.
Especially the relative errors at the case of 40x40 and 80x80
grid size are quite satisfied.

Finally we present the axial and vertical velocity
distribution along the center line of the cavity in figures 7a
and 7b as well as the vorticity lines in figure 8a for
Reynolds number equal to 100 and at figure 8b for Re=800.

By these plots we conclude that the accuracy seems to be
very satisfied again.

Table II: Errors for the axial velocity.

Base grid size 20x20 40x40 80x80

Uniform grid 1.70e-02 5.33e-03 5.02e-03

Level=1, I=2 1,61e-02 4.98e-03 4.97e-03

Level=2, I=2 1,56e-02 4.73e-03 4.71e-03

Table III: Velocity values for the centre line of cavity
domain

Grid size
max

U
max

Z
max

W
max

X

10x10,

Uniform

0,1877 0,4607 0,1532 0,8021

10x10,

L=1, I=2

0,1927 0,4620 0,1535 0,8021

20x20,

Uniform

0,1889 0,4620 0,1545 0,8021

20x20,

L=1, Ι=2

0,1930 0,4620 0,1681 0,8021

40x40,

Uniform

0,1928 0,4620 0,1642 0,8018

40x40,

L=1, I=2

0,1930 0,4620 0,1683 0,8021

80x80,

Uniform

0,1935 0,4620 0,1647 0,8021

E. Flow Over a Backward-facing Step

The simulation and estimation of the flow over a
backward-facing step is a classical problem in CFD. The
main reason that this test case has been chosen is not only
the appearance of an interesting industrial flow but also the
close relationship of the specific case with the numerical
modelling of the air in an urban environment which we
intent to develop in our future research, and by this way we
can validate our methodology. However this flow appears
detachments and reattachment points [26] as well as
recirculation zones and boundary layers which vary
according to the aspect ratio, the expansion ratio or the
Reynolds number of the flow.
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Figure 7a: Axial velocity profile for the cavity centre line,
Re=100.

Figure 7b: Vertical velocity profile for the cavity centre line,
Re=100.

Figure 8a: Vorticity contours for the cavity flow, Re= 100

Figure 8b: Vorticity contours for the cavity flow, Re=400

Figure 9:  Physical domain of the backward – facing step
channel.

The expansion ratio is equal to 0.5 while all the
variables are estimated with the reference length to be equal

to the diameter of the cylinder. ( refL =H)

The dimensionless pressure p~ is defined as below:

2
~

refU

P
p


 (9)

where P the pressure, ρ the desnsity of the fluid and

refU , the reference velocity which is equal to the average

velocity to the inlet of the channel.
The grid generation and the numerical method that was
described above were used for the calculation of steady flow
inside a stenosed tube. The stenotic area is the 0.25% of the
inlet area. The used numerical refinement grid is level=1
and I=2, (base grid: 401x26). The Re number, that was
based on the maximum inlet velocity and the diameter of the
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Fig.10a: Parts of the uniform Cartesian grids that have been used
for the backward - facing step simulation and calculation

Figure 10b: Parts of the block bested Cartesian grids for the
backward - facing step simulation and calculation, I=2.

inlet, was set equal to 400 as well as to 800. The boundary
conditions are summarized as below, at table IV. It is worth
to be mentioned that due to the below outlet boundary
conditions, we need to choose the appropriate length of the
cylinder; 15 dimensionless lengths for Re=400 and 30 ones
for Re=800.  In order to control the accuracy of the

proposed method, we simulated the current flow field by the
use of two uniform grids sized 161x21 and 81x11 too.
Finally we develop and use a Cartesian nested grid sized
81x11 with refinement factor equal to 2 using first only one
and then two grid levels. The physical domain of the
backward – facing step channel is presented in figure (9)
while some of the used numerical grids or parts of these are
presented in figure 10.

The recirculation lengths at upper and lower bound
are presented at table V. It is obvious, by the
aforementioned values, that the accuracy of 161x21 grid

Table IV: Boundary Conditions for the channel’s simulation

Upper bound,

[BC]:

Wall conditions:

0,0 




z

p
wu

Lower bound,

[ΕD]:

Wall conditions:

0,0 




z

p
wu

Inlet, [ΑΒ]: Inlet conditions giving parabolic
distribution of the velocity:

0,0),5.0(24 




x

p
wzzu

Inlet, [ΑΕ]: Wall conditions:

0,0 




x

p
wu

Outlet,[CD]: Outlet conditions where the pressure
has a value:

0,0,0 



pw
x

u

results is almost identical with 81x11 refine grid ones.
Additionally we present Gartlings [32] relevant results
where it seems that the convergence is quite satisfied. At
table VI, we present the computational time as well as the
number of the computational cells for each numerical grid
that we have solved our domain. It is remarkable that
although the block nested algorithms has comprised by
larger number of cells than the uniform ones, the refine grid
algorithm demands less computational time providing a
higher accuracy of the results simultaneously.

Two velocity profiles along the flow field, upper and
lower wall pressure distribution, as well as the pressure
distribution are presented in figures (11), (12). The
streamlines along the channel are presented at figure 13, for
Re=800 using two levels of refinement.
By these results, it seems that the convergence between
block nested algorithm results and uniform grid’s is very
satisfied.
It’s worth mentioned that the results depicted by the block
nested grid are accurate enough, present a very satisfied
convergence with the according of the uniform grids as well
as demand less computational time despite of the fact that
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the number of computational cells has been increased.
Additionally it was quite anticipated that the results of the
block nested grid with 2 grid levels and refinement factor
equal to 2 provides the best results, according to the
literature ones, in an appropriate enough computational
time. By various other test cases that we have developed, it
seems that the usage of a larger refinement factor (for the
specific flow problem), doesn’t provide any improvement of
the results. Consequently, it seems that the above grid size,
the chosen refinement factor as well as the final number of
sub-grids are a quite accurate choice providing the
appropriate results for the flow variables. Additionally, in
order to choose the location of the sub-grids, brief sub-
routines have been developed, which they check the values
of the u-axial velocity component during the numerical
process. According to these velocity values as well as the
criteria that we have set, we conclude to the final locations
of the rectangular sub-grids. No problem has been raised by
the

Table V: Recirculation data

)9.( fig

HL ref  Lower

Wall

Recircula

tion

Upper Wall Recirculation

Grid
Type

Recirculat
ion length

Detachme
nt point

Reattach-
ment point

Recircula
tion

length

Re=400

161x21,
Uniform
cartesian

5.25 No
detection

No
detection

No
detection

81x11,
Uniform
cartesian

5.33 No
detection

No
detection

No
detection

81x11,
Nested
cartesian,
l=1, I=2.

5.27 No
detection

No
detection

No
detection

Re=800

161x21,
Uniform
cartesian

6.10 4.87 10.37 5.50

81x11,
Uniform
cartesian

6.20 4.80 10.50 5.70

81x11,
Nested
cartesian,
L=1, I=2.

6.10 4.85 10.40 5.55

Gartling,
BFC,
400x20,
[32]

6.10 4.85 10.48 5.63

Fig. 11a: Velocity profiles along the channel flow field for
various Cartesian grid sizes and types. Re=400.
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Fig. 11b: Velocity profiles along the channel flow field for
various Cartesian grid sizes and types. Re=400.

Fig. 12: Pressure distribution along the channel’s walls

Fig.13: Streamlines along the channel. Grid size and type: block-
nested 80x11, L=2, I=2. Re=800.

Table VI: CPU time & number of computational cells

Grid size CPU time Number of

cells

Re=400.

81x11, L=1, I=2 72,96 2172

81x11, uniform 23,01 891

81x11, L=2, Ι=2 120,03 4711

161x21, uniform 174,94 3381

Re=800.

81x11, L=1, I=2 78,84 2172

81x11, uniform 32,46 891

81x11 L=2, Ι=2 131,97 5488

161x21,uniform 187,68 3381

transfer of the velocity or pressure values on the
neighbouring bounds. Very important issue is to neglect the
artificial cells when we solve between coarse – refine grids
and use these only when we set the boundary values at the
physical domains’ bounds.
By this way, our numerical scheme provides accurate results
for the flow variables of the physical domain with
impressive reduction sometimes in computational time, as
you can see at table VI. Especially in the cases of the
geometries with very high aspect ratios, the reduction of the
computational time is very important, without of course
losing in the accuracy of the results.

F. Flow inside a channel with step

At the third test case, we will study and estimate the
incompressible flow inside a channel with a step. Great
importance in this test case is the estimation of the length of
recirculation inside the cylindrical tube and the accuracy
that is provided by the proposed nested algorithm. This test
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case is an approach in order to prove that our methodology
can be applied for the numerical solution of flows inside
pipes even with high aspect ratios as sometimes we meet at
industrial applications. Additionally we have the chance to
study the various recirculation zones which are developed
according to the Reynolds number as well as the geometrical
ratios of the channel. The axisymmetric description of this
test case, gives to us the opportunity to apply and test our
nested refinement technique using symmetry boundary
conditions. The physical domain is presented in figure 14.

Figure 14: Geometry description of the channel with step

Although there are no curvilinear or complex bounds to the
above geometry, we have to exclude some grid cells, if we
want to estimate the flow with the appropriate accuracy. It
seems that if we don’t exclude these cells the provided
solution is not the appropriate one. By this way we have
three types of cells: the cells inside the flow of the channel,
the cells which are outside of the channel and these must be
excluded from the computational domain and finally the
boundary cells.
Additionally, although we don’t test the saw-tooth approach
due to the Cartesian bounds, we verify the accuracy of our
methodology according to the way of the application of the
boundary conditions, especially to the areas that we have
exclude cells.
The industrial application of the aforementioned channel are
various, not only industrial engineering ones (power plants,
water distribution channels etc) but also to the biomedicine
area (arterial stenosis etc.).
In order to define the geometrical characteristics of the
physical domain we have to obtain the diameters’ ratio
(internal d/external D), as these are presented in figure 14,
as well as the aspect ratio of the channel (L/D). (Table VII)
According to the above geometrical characteristics of the
channel, the recirculation lengths are developed along it.

Table VII: Geometrical ratios of the channel

Grid size d / D L / D

61x21 0.8 0.4

101x21 0.6 0.6

For the grid refinement we have used 1 level of sub grids
with integer factor equal to 2. Regarding the numerical

scheme for the N-S equations, the value of the artificial
compressibility set equal to 1, as optimum choice for the
reduction of the computational time. [25].
The inlet boundary condition at [AB] is:

0,0),1(*2 2 




x

p
wzu (10)

Figure 15: Parts of the numerical grids for the channel with
step numerical solution, m=1, I=2.

where u is the axial component of the velocity of the fluid, p
is the pressure and x,z are the Cartesian coordinates (fig.
15), while at the outlet boundary we give the pressure as you
can analytically see to the below table VIII.

Table IX: Boundary conditions for the flow inside a
channel with step

Upper limit [ΒC]: Wall conditions:

0,0 




z

p
wu

Lower limit, [AD]: Symmetry conditions:

0,0,0 







z

p
w

z

u

Inlet, [AB]:
0,0),1(*2 2 





x

p
wzu

Outlet,[CD]:
constpw

x

u





,0,0

Parts of the uniform and nested grids are presented at figure
15. Various results have been produced with very satisfied
convergence. Four velocity profiles are presented in figure
16 along the channel, for various values of the geometrical
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Figure 16a: Velocity profile along channel with step on
x=0.9. Based grid size 61x21, l/d=0.8 and

d/D=0.8

Figure 16b: Velocity profile along channel with step at
x=0.9. Based grid size 61x21, l/d=0.8 and d/D=0.8

ratios. The results present satisfied convergence. The
comparison has taken place among uniform grid’s and block
nested grids results, for each case.  Concerning the
recirculation length, it seems that it is higher in the case of
the channel with d/D=0.6 than the one with ratio equal to
0.8, as it was expected. By this way, the recirculation in this
case is more intense. Finally the recirculation area has been
estimated in both of the cases with high accuracy.  The
applications of the boundary conditions seem to be
appropriate despite of the axisymmetric state of the flow.
Good behavior is also providing through the neibouring
nested block grids.

Figure 16c: Velocity profile along channel with step at
x=0.9 (on the step). Based grid size 101x21, l/D=0.6 and

d/D=0.6

Figure 16d: Velocity profile along channel with step at
x=0.9 (on the step). Based grid size 101x21, l/D=0.6 and

d/D=0.6

IV. CONCLUSIONS

At the present paper we present a numerical approach for
the prediction of recirculating flows. Concerning the
discretization of the physical domain we apply a saw-tooth
method while the final approximation of the geometrical
bound is taking place by the use of only Cartesian grid lines.
We generate uniform as well as refined Cartesian grids,
using block nested structured sub-grids, where the numerical
approach demands.  We use a cell center discretization and
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the boundary transfer is demonstrated in the interfaces by
the use of interpolation for the velocity and pressure values
at the coarse – fine interfaces of the refined sub – grids. The
method is applied for steady, laminar, viscous and
incompressible flows. We pay attention to the prediction of
the recirculating lengths as well as the important points of
each flow, in order to prove that our methodology is
appropriate enough for the numerical estimation of
pipeline’s flows, sort or extended, providing the desired
accuracy for various industrial applications. Main purpose
of this paper is the testing and evaluating the above
algorithm in order to be used for the numerical simulation of
pipeline’s flows. We present various numerical solutions
using a variety of grid – sizes, refinement factors or sub-
grids, and we prove that with the appropriate choice of the
local sub-grids, we succeed high accuracy with an important
reduction of the computational time simultaneously.

We have presented the numerical simulation of
three flow fields of internal flows: flow inside a lid-driven
cavity, the flow inside a backward-facing step as well as
inside a channel with step. At all the above physical
domains, we don’t need to produce the Cartesian
approximation of a curvilinear bound but we should
evaluate the independence as well as the accuracy of our
block – nested structured grid generator in combination with
our numerical approach. Our results have been compared
with those of uniforms Cartesian grids as well as of the
literature with very satisfied convergence. After these results
it seems that our approach can be quite appropriate for the
numerical simulation and estimation of pipeline flows
without presenting any problem according to the domain
discretization or the numerical schemes providing a satisfied
accuracy concerning the recirculation characteristics of each
flow fields. It is also quite encouraging that the way of
boundary conditions application seems to be appropriate,
between the neighbouring sub-grids without causing any
problems in mass conservation. The prediction finally of the
recirculation lengths as well as of the detachment and
reattachment points is quite satisfied according to the
literature results.

All the above numerical results, regarding the flow
variables’ values, computational time, and recirculation data
prove that the Cartesian block refinement method is stable
and accurate enough, and it can provide accurate modelling,
simulation and results to recirculation zones of a pipeline
flow domain for any industrial usage. The block Cartesian
method is simple, it can be applied in any complex domain
and provides accurate, grid independent, numerical solution
for high aspect ratio geometries, as well as complex
curvilinear domains, accomplishing also to reduce CPU
memory and the simulation’s computing time effort,
advantages very important for an algorithm concerning
industrial flow. With appropriate choice of local block
refinement multilevel solutions computed with this
algorithm can attain the accuracy of the equivalent uniform
fine grid at less computational cost. Our next steps will be
the development and application of the above methodology
in pipeline flows with complex domains bounds, trying to
produce the desired accuracy for the flow characteristics and
variables.
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