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Abstract—Recently, the virtual machine allocation problem, in
which virtual machines must be allocated to physical machines in
cloud data centers, has received a lot of attention. This is a very
complex optimization problem with many possible formulations. In
order to foster the clear definition of problem variants and the
comparability of algorithms to solve those problem formulations, this
paper introduces a generic model of the problem and derives the
typically investigated problem variants as special cases. Meaningful
problem variants are structured in the form of a taxonomy of problem
models.
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I. INTRODUCTION

Resource management in data centers (DCs) has been an im-
portant optimization problem for decades [7]. More recently,
the wide spread of virtualization technologies and the cloud
computing paradigm have established several new possibilities
for resource provisioning and workload allocation [4], opening
up new optimization opportunities but at the same time also
introducing new challenges.

Virtualization makes it possible to co-locate multiple ap-
plications on the same physical machine (PM) in logically
isolated virtual machines (VMs). This way, a high utilization
of the available physical resources can be achieved, thus
amortizing the capital and operational expenditures associated
with the purchase, operation, and maintenance of the DC
resources (PMs, cooling, etc.). What is more, live migration
of VMs makes it possible to move a VM from one PM to
another one without noticeable service interruption [2], [14].
This enables the dynamic re-optimization of the allocation of
VMs to PMs, reacting to changes in the VMs’ workload and
the PMs’ availability.

Consolidating multiple VMs on relatively few PMs helps
not only to achieve good utilization of hardware resources, but
also to save energy because unused PMs can be switched off or
at least to a low-energy state such as sleep mode. However, too
aggressive consolidation may lead to performance degradation.
In particular, if the load of some VMs starts to grow, this may
result in an overload of the accommodating PM’s resources,
leading to a situation where one or more VMs will not receive
the capacity that would be necessary to achieve acceptable
performance. In many cases, the expected performance levels
are laid down in a service level agreement (SLA), defining also
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penalties if the provider fails to comply. Thus, the provider
must find the right balance between the conflicting goals of
utilization, energy efficiency, and performance [13], [17].

Beside virtualization and live migration, the most impor-
tant characteristic of the cloud computing paradigm is the
availability of online services with practically unbounded
capacity that can be provisioned elastically as needed.
This includes Software-as-a-Service, Platform-as-a-Service,
and Infrastructure-as-a-Service [34]. In the latter case, VMs
are directly offered to customers; in the first two cases,
VMs can be used to provision virtualized resources for the
software/platform services in a flexible manner. Given the
multitude of available public cloud offerings with different
capabilities and pricing schemes, it is increasingly difficult
for customers to make the best selection for their needs. The
problem is further complicated by hybrid cloud setups that
are increasingly popular in enterprises [5]. In this case, VMs
can be either placed on PMs in the own DC(s) or using
offerings from external providers, thus further enlarging the
search space.

There are several further aspects that need to be taken
into account in VM allocation. For example, communication
among VMs and network characteristics like bandwidth and
latency of network elements lead to communication costs
and delays that may be significant. Also live migration has
an overhead in terms of both network communication and
additional load on the affected PMs [30]. Another aspect is
thermal management: if, for example, several PMs that are
physically near to each other work under high load, this may
lead to overheating, increasing the risk of failures [27].

Since the allocation of VMs is an important and challenging
optimization problem, several algorithms have been proposed
for it. However, as shown in a recent survey, the existing lit-
erature includes a multitude of different problem formulations
– in fact, it is difficult to find a pair of papers in the VM
allocation literature that address the same problem variant –
making the existing approaches hardly comparable [19]. Even
worse, some existing works failed to explicitly and precisely
define the version of the problem that they are addressing,
so that this must be figured out from the algorithm that they
proposed or from the way the algorithm was evaluated.

We believe that addressing an algorithmic problem should
start with problem modeling: a thorough consideration of
the problem’s characteristics and their importance or non-
importance, leading to one or more precisely defined – prefer-
ably formalized – problem formulation(s) that capture the
important characteristics of the problem [18]. Then and only
then should algorithms be proposed if the problem is already

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 269



2

Real-world 
problem 

Real-world 
problem 

Formalized 
problem model 

Formalized 
problem model 

Algorithm Algorithm 

Fig. 1. General problem-solving process
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Fig. 2. Diagrammatic overview of the problem model

well-understood and well-defined (see Fig. 1). It seems that in
the case of the VM allocation problem, this critically important
phase was skipped, resulting in a rather chaotic situation where
algorithms for “the VM allocation problem” actually address
many different problems with sometimes subtle, sometimes
serious differences.

The aim of this paper is to remedy this deficiency. Specifi-
cally, we devise and formally define a general formulation of
the VM allocation problem that includes most of the problem
formulations studied so far in the literature as special cases. We
provide a taxonomy of important special cases and take a look
at their complexity. Section II contains the general problem
model and Section III discusses special cases, followed by
a suggested notational system for VM allocation problem
variants in Section IV. Finally, Section V concludes the paper.

II. GENERAL PROBLEM MODEL

We consider a Cloud Provider (CP) that provides VMs
for its customers. For provisioning, the CP can use either its
own PMs or external cloud providers (eCPs); see Fig. 2 for
a graphical overview. The CP attempts to find the right bal-
ance between the conflicting goals of cost-efficiency, energy-
efficiency, and performance. In the following, we describe the
details of the problem.

A. Hosts

Let D denote the set of data centers available to the CP.
For data center d ∈ D, let Pd denote the set of PMs available
in d, also including any switched-off PMs. Furthermore, P =⋃
{Pd : d ∈ D} is the set of all PMs.
Each PM p ∈ P is characterized by the following numbers:
• cores(p) ∈ N: number of processor cores
• cpu_capacity(p) ∈ R+: processing power per CPU core,

e.g., in MIPS (million instructions per second)
• capacity(p, r) ∈ R+: capacity of resource type r ∈ R.

For example, R can contain the resource types RAM and
HDD, so that the capacity of these resources are given for
each PM (e.g., in GB). This should be the net capacity
available for VMs, not including the capacity reserved

for the OS, the virtualization platform, and other system
services

Our approach to model the CPU explicitly and all other
resources of a PM through the generic capacity function
has several advantages. First, this gives maximum flexibility
regarding the number of resource types that are taken into
account. For instance, also caches, SSD drives, network inter-
faces, or GPUs can be considered, if relevant. On the other
hand, the CPU is quite special, particularly because of multi-
core technology. A multi-core processor is not equivalent to a
single-core processor of capacity cores(p) · cpu_capacity(p).
It is also not appropriate to model each core as a separate
resource, because VMs’ processing power demand is not
specific to each core of the PM, but rather to the set of its
cores as a whole. The other reason why it makes sense to
model the CPU separately is the impact that the CPU load
has on energy consumption.

Each PM p ∈ P has a set of possible states, denoted by
States(p). States(p) always contains the state On, in which
the PM is capable of running VMs. In addition, States(p) may
contain a finite number of low-power states (e.g., Off and
Sleep). Each PM p ∈ P and state ∈ States(p) is associated
with a static power consumption of static_power(p, state)
per time unit. In addition, the On state also incurs a dy-
namic power consumption depending on the PM’s load,
as defined later. The possible state transitions are given
in the form a directed graph (States(p), T ransitions(p)),
where a transition ∈ Transitions(p) is an arc from one
state to another. For each transition ∈ Transitions(p),
delay(transition) and energy(transition) denote the time it
takes to move from the source to the target state and the energy
consumption associated with the transition, respectively. (It
should be noted that most existing works do not model PM
states and transitions in such detail; an exception is the work
of Guenter et al. [12].)

Let E denote the set of eCPs from which the CP can lease
VMs. For each eCP e ∈ E, Types(e) denotes the set of VM
types that can be leased from e, and Types =

⋃
{Types(e) :

e ∈ E} is the set of VM types available from at least one eCP.
Each VM type type ∈ Types is characterized by the same set
of parameters as PMs: cores(type), cpu_capacity(type), and
capacity(type, r) for all r ∈ R. In addition, for an eCP e ∈ E
and a VM type type ∈ Types(e), fee(type, e) specifies the
fee per time unit for leasing one instance of the given VM
type from this eCP. It should be noted that the same VM type
may be available from multiple eCPs, potentially for different
fees.

Since VMs can be either hosted by a PM or mapped to a
VM type of an eCP, let

Hosts = P ∪ {(e, type) : e ∈ E, type ∈ Types(e)}

denote the set of all possible hosts.

B. VMs

What we defined so far is mostly constant: although some-
times new PMs are installed or existing PMs are taken out
of service, eCPs sometimes introduce new VM types or
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change rental fees, such changes are rare, and can be seen as
special events. On the other hand, the load of VMs changes
incessantly, sometimes quite quickly [33]. For the purpose of
modeling such time-variant aspects, let Time ⊆ R denote the
set of investigated time instances. We make no restriction on
Time: it can be discrete or continuous, finite or infinite etc.

The set of VMs in time instance t ∈ Time is denoted by
V (t). For each VM v ∈ V (t), cores(v) is the number of
processor cores of v. The CPU load of v in time instance t is
a cores(v)-dimensional vector: vcpu_load(v, t) ∈ Rcores(v)

+ ,
specifying the computational load per core, e.g., in MIPS. The
load of the other resources is given by vload(v, r, t) ∈ R+ for
a VM v ∈ V (t), resource type r ∈ R, and time instance
t ∈ Time.

It should be noted that all the cores of a PM’s CPU are
expected to have the same capacity. In contrast, the cores of
the CPU of a VM do not have to have the same load.

C. Mapping VMs to hosts

The CP’s task is to maintain a mapping of the VMs to the
available hosts. Formally, this is a function

Map : {(v, t) : t ∈ Time, v ∈ V (t)} → Hosts.

Map(v, t) defines the mapping of VM v in time instance
t to either a PM or a VM type of an eCP. Furthermore, if
Map(v, t) = p ∈ P , that is, the VM v is mapped to a PM
p, then also the mapping of processor cores must be defined,
since p may have more cores than v and each core of p may be
shared by multiple VM cores, possibly belonging to multiple
VMs. Hence in such a case, the function

Map_corev : {1, . . . , cores(v)}×Time→ {1, . . . , cores(p)}

defines for each core of v the accommodating core of p, in a
given time instance.

Given the mapping of VMs, the load of a PM can be
calculated. For a PM p ∈ P and time instance t ∈ Time,
let

V (p, t) = {v ∈ V (t) : Map(v, t) = p}

be the set of VMs mapped to p in t. The CPU load of p in time
instance t is a cores(p)-dimensional vector: pcpu_load(p, t) ∈
Rcores(p)

+ , the ith coordinate of which is the sum of the load
of the VM cores mapped to the ith core of p, that is:

pcpu_load(p, t)i =
∑

v∈V (p,t),
Map_corev(j,t)=i

vcpu_load(v, t)j .

Similarly, for a resource type r ∈ R, the load of PM p with
respect to r in time t is

pload(p, r, t) =
∑

v∈V (p,t)

vload(v, r, t).

The dynamic power consumption of a PM p is a
monotonously increasing function of its CPU load. This func-
tion can be different for each PM. Hence, for a PM p ∈ P ,
let dynamic_powerp : Rcores(p)

+ → R+ define the dynamic
power consumption of p per time unit as a function of the
load of its cores. This function is monotonously increasing in

time tstart tend 

h1 

h2 
v’ 

mig_time(v,h1,h2) 

v 

Fig. 3. Schematic view of live migration

all of its coordinates. If PM p is in the On state between time
instances t1 and t2, then its dynamic energy consumption in
this time interval is given by∫ t2

t=t1

dynamic_powerp(pcpu_load(p, t))dt. (1)

D. Data transfer

For each pair of VMs, there may be communication be-
tween them. The intensity of the communication between
VMs v1, v2 ∈ V in time instance t ∈ Time is denoted
by vcomm(v1, v2, t), given for example in MB/s. If there
is no communication between the two VMs in t, then
vcomm(v1, v2, t) = 0. The communication between a pair of
hosts h1, h2 ∈ H is the sum of the communication between
the VMs that they accommodate, i.e.,

pcomm(h1, h2, t) =
∑

v1,v2∈V (t),
Map(v1,t)=h1,
Map(v2,t)=h2

vcomm(v1, v2, t).

For each pair of hosts h1, h2 ∈ Hosts, the band-
width available for the communication between them is
bandwidth(h1, h2), given for example in MB/s.

E. Live migration

The migration of a VM v from a host h1 to another host h2
takes time mig_time(v, h1, h2). During this period of time,
both h1 and h2 are occupied by v. This phenomenon can be
modeled by the introduction of an extra VM v′ (see Fig. 3). Let
tstart and tend denote the time instances in which the migra-
tion starts and ends, respectively. Before tstart, only v exists,
and is mapped to h1. Between tstart and tend, v continues to
occupy h1, but starting with tstart, also v′ appears, mapped
to h2. In tend, v is removed from h1, and only v′ remains.
Furthermore, data transfer of intensity mig_comm(v) takes
place between v and v′ during the migration period, which is
added to pcomm(h1, h2, t).

F. SLA violations

Normally, the load of each resource must be within its
capacity. A resource overload, on the other hand, may lead
to an SLA violation. Specifically:
• If, for a PM p ∈ P and one of its processor cores 1 ≤ i ≤
cores(p), pcpu_load(p, t)i ≥ cpu_capacity(p), then this
processor core is overloaded, resulting in SLA violation
for all VMs using this core, i.e., for each VM v ∈ V (p, t),
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for which there is a core of v, 1 ≤ j ≤ cores(v), such
that Map_corev(j, t) = i.

• Similarly, if, for a PM p ∈ P and resource type r ∈
R, pload(p, r, t) ≥ capacity(p, r), then this resource is
overloaded, resulting in SLA violation for all VMs using
this resource, i.e., for each VM v ∈ V (p, t), for which
vload(v, r, t) > 0.

• Assume that Map(v, t) = (e, type), where e ∈
E. An SLA violation occurs relating to v, if either
vcpu_load(v, t)i ≥ cpu_capacity(type) for some 1 ≤
i ≤ cores(v) or if vload(v, r, t) ≥ capacity(type, r) for
some r ∈ R.

• If, for a pair of hosts h1, h2 ∈ Hosts,
pcomm(h1, h2, t) ≥ bandwidth(h1, h2), then the
communication channel between the two hosts
is overloaded, resulting in SLA violation for all
VMs contributing to the communication between
these hosts. That is, the set of affected VMs
is

⋃
{{v1, v2} : Map(v1, t) = h1,Map(v2, t) =

h2, vcomm(v1, v2, t) > 0}.
It should be noted that, in practice, loads will never exceed

capacities. However, the loads in the above definitions are
calculated as the sum of the loads of the relevant VMs; such
a sum can exceed the capacity, and this indeed is a sign of an
overload.

In any case, if there is an SLA violation relating to VM v,
this leads to a penalty of

SLA_fee(v,∆t), (2)

where ∆t is the duration of the SLA violation. The SLA
violation fee may be linear in ∆t, but it is also possible that
longer persisting SLA violations are progressively penalized
[10].

In principle, there can be two kinds of SLAs: hard SLAs
must be fulfilled in any case, whereas soft SLAs can be
violated, but this incurs a penalty. Our above definition allows
both: hard SLAs can be modeled with an infinite SLA_fee,
whereas soft SLAs are modeled with finite SLA_fee.

G. Optimization objectives

Based on the above definitions, the total power consumption
of the CP for a time interval [t1, t2] can be calculated as the
sum of the following components:
• For each PM p, the interval [t1, t2] can be divided into

subintervals, in which p remained in the same state.
For such a subinterval of length ∆t, the static power
consumption of p is static_power(p, state) · ∆t. The
sum of these values is the total static power consumption
of p.

• For each PM p and each state transition of p,
energy(transition) is consumed.

• For each PM p and each subinterval of [t1, t2] in which
p is in state On, the dynamic power consumption is
calculated as in Equation (1).

The total monetary cost can be calculated as the sum of the
following components:

• The fees to be paid to eCPs. Assume that for t ∈ [t1, t2],
Map(v, t) = (e, type), where e ∈ E. This incurs a cost
of (t2 − t1) · fee(type, e). This must be summed for all
VMs mapped to an eCP.

• SLA violation fees, calculated according to Equation 2,
for all SLA violations.

• The cost of the consumed power, which is the total power
consumption, as calculated above, times the unit power
cost.

The objective is to minimize the total monetary costs, by
means of optimal arrangement of the Map and Map_core
functions and the PMs’ states. As a special case, if the other
costs are assumed to be 0, the objective is to minimize the
overall power consumption of the CP.

It should be noted that there is no need to explicitly
constrain or minimize the number of migrations. Rather, the
impact of migrations is already contained in the objective
function in the form of increased power consumption and
potentially SLA violations because of increased system load.
(With appropriate costs of migrations and SLA fees, it is
possible to also model constraints on migrations, if necessary.)

III. IMPORTANT SPECIAL CASES AND SUBPROBLEMS

The above problem formulation is very general. Most au-
thors investigated simpler problem formulations. We intro-
duced some important special cases and subproblems in [19]
and categorized the existing literature on the basis of these
problem variants. In the following, we show how these prob-
lem variants can be obtained as special cases of our general
model. It should be noted that the addressed problem variants
are not necessarily mutually exclusive, so that combinations
of them are also possible.

A. The Single-DC problem

The subproblem that has received the most attention is the
Single-DC problem. In this case, |D| = 1 and |E| = 0, i.e.,
the CP has a single DC with a number of PMs, and its aim
is to optimize the utilization of these PMs. |P | is assumed
to be high enough to serve all customer requests, so that no
eCPs are needed. Since all PMs are co-located, bandwidth is
usually assumed to be uniform and sufficiently high so that
the constraint that it represents can be ignored.

Some representative examples of papers dealing with this
problem include [1], [2], [29], [32].

B. The Multi-DC problem

This can be seen as a generalization of the Single-DC
problem, in which the CP possesses more than one DC. On the
other hand, this is still a special case of our general problem
formulation, in which |D| > 1 and |E| = 0. An important
difference between the Single-DC and Multi-DC problems
is that in the latter, communication between DCs is a non-
negligible factor. Moreover, the DCs can have different charac-
teristics regarding energy efficiency and carbon footprint. This
problem variant, although important, has received relatively
little attention [15], [23].
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C. The Multi-IaaS problem

In this case, P = ∅, i.e., the CP does not own any PMs,
it uses only leased VMs from multiple IaaS providers. Since
there are no PMs, all concerns related to them – states and state
transitions, sharing of resources among multiple VMs, load-
dependent power consumption – are void. Power consumption
plays no role, the only goal is to minimize the monetary
costs. On the other hand, |E| > 1, so that the choice among
the external cloud providers becomes a key question, based
on offered VM characteristics and prices. In this case, it is
common to also consider the data transfer among VMs.

The Multi-IaaS problem has quite rich literature. Especially
popular is the case when communication among the VMs is
given in form of a directed acyclic graph (DAG), the edges of
which also represent dependencies. Representative examples
include [9], [25], [31].

D. Hybrid cloud

This is actually the most general case, in which |D| ≥ 1
and |E| ≥ 1. Despite its importance, only few works address
it [3], [6].

E. The One-dimensional consolidation problem

In this often-investigated special case, only the computa-
tional demands and computational capacities are considered,
and no other resources. In our general model, this special case
is obtained when the CPU is the only resource considered, and
the CPU is taken to be single-core, making the problem truly
one-dimensional. That is, R = ∅ and cores ≡ 1.

Whether a single dimension is investigated or also others
(e.g., memory or disk), is independent from the number of DCs
and eCPs. In other words, all of the above problem variants
(Single-DC, Multi-DC, Multi-IaaS, Hybrid cloud) can have a
special case of one-dimensional optimization.

F. The On/Off problem

In this case, each PM has only two states:
States(p) = {On,Off} for each p ∈ P . Furthermore,
static_power(p,Off) = 0, static_power(p,On) is the same
positive constant for each p ∈ P , and dynamic_powerp ≡ 0
for each p ∈ P . Between the states On and Off , the transition
is possible in both directions, with delay(transition) and
energy(transition) both assumed to be 0. As a consequence,
the aim is simply to minimize the number PMs that are on.
This is an often-investigated special case of the Single-DC
problem.

G. Connections to bin-packing

The special case of the Single-DC problem, in which a
single dimension is considered, power modeling is reduced to
the On/Off problem, all PMs have the same capacity, there is
no communication among VMs, migration costs are 0, and
hard SLAs are used, is equivalent to the well-known bin-
packing problem, since the only objective is to pack the VMs,

as one-dimensional objects, into the minimal number of unit-
capacity PMs. This has an important consequence: since bin-
packing is known to be NP-hard in the strong sense [22], it
follows that all variants of the VM allocation problem that
contain this variant as special case are also NP-hard in the
strong sense.

If multiple dimensions are taken into account, then we
obtain a well-known multi-dimensional generalization of bin-
packing, the vector packing problem [24], [26].

It is also clear that VM allocation in its general form is
much more complex than the very special case that is equiv-
alent to bin-packing. This has important implications for the
approximability of the problem: while bin-packing is known
to be easy to approximate [8], approximating VM allocation is
much harder under standard assumptions of complexity theory
[20]. Nevertheless, some subproblems of VM allocation can
be effectively approximated using some simple heuristics [21].

H. The Load prediction problem

When the CP makes some change in the mapping of VMs
or the states of PMs at time instance t0, it can base its decision
only on its observations of VM behavior for the period t ≤ t0;
however, the decision will have an effect only for t > t0.
The CP could make ideal decisions only if it knew the future
resource utilization of the VMs. Since these are not known, it
is an important subproblem to predict the resource utilization
values of the VMs or their probability distributions, at least
for the near future.

Load prediction is seen by some authors as an integral part
of the VM placement problem, whereas others do not consider
it, either because VM behavior is assumed to be constant (at
least in the short run), or it is assumed that load prediction
is done by a separate algorithm. Load prediction may or may
not be considered, independently from the types of resources,
i.e., also within the Single-DC or Multi-IaaS problem.

IV. NOTATION FOR VM ALLOCATION PROBLEM VARIANTS

In the theory of scheduling problems, a three-component
description (α | β | γ notation) is used to denote the different
flavors and variants of the problem. Introduced by Graham
et al. [11], this notation has enjoyed wide-spread adoption
ever since. Here, the α part contains the characteristics of
the machines, the β part contains the characteristics of the
jobs and any further constraints, whereas the γ part contains
the optimization objective. Inspired by this notation, we now
propose an analogous notational system for the different
variants of the VM allocation problems. This notational system
has the structure α | β | γ | δ | ω, where the meaning of each
component is as follows:

• α: description of the available hosts
• β: definition of the resource types that are accounted for
• γ: definition of the placement task
• δ: description of the cost model for optimization
• ω: any other specialties

Next, each of these components are described in more detail.
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TABLE I
POSSIBLE COMBINATIONS OF THE NUMBER OF DCS (|D|) AND THE

NUMBER OF ECPS (|E|)

|E|

|D| 0 1 multiple

0 N/A Single-IaaS Multi-IaaS
1 Single-DC (1,1)-Hybrid Hybrid Multi-IaaS
multiple Multi-DC Hybrid Multi-DC Full hybrid

A. α: description of the available hosts

The most fundamental differentiation must be made ac-
cording to the number of own DCs of the CP (|D|) and the
number of available eCPs (|E|). Since these are independent
dimensions, several combinations must be differentiated, as
shown in Table I.

As can be seen in the table, 9 combinations are conceiv-
able, among which the already mentioned setups (Single-
DC, Multi-DC, Multi-IaaS) are the most popular ones. The
case |D| = |E| = 0 is obviously meaningless. The case
|D| = 0, |E| = 1, which is called Single-IaaS in the table, is
rarely considered in the literature, probably because it offers
very limited optimization possibilities. Nevertheless, it has
been considered recently by Sedaghat et al. who showed that
actually even this limited model offers interesting opportuni-
ties for optimization [28]. Another important observation that
can be made on the basis of Table I is the wealth of hybrid
models. As mentioned previously, hybrid models are currently
heavily under-represented in the literature. Nevertheless, here
we define four different cases of hybrid cloud setups that are
all meaningful problem variants.

B. β: definition of resource types

The set of considered resource types (R) relates both to
hosts and VMs, since for each resource type, both the capacity
of the hosts and the resource requirement of the VMs must be
specified.

The β part of the problem notation may contain one or
more of the following possibilities, according to the set of
considered resource types:

• 1D: the capacities of hosts and the sizes of VMs are all
one-dimensional quantities, so that we are facing a one-
dimensional consolidation problem. The single dimension
might represent one specific resource type (e.g., CPU),
but it can also be an overall indicator of capacity and
size [16].

• kD(. . . ): k distinct resource types are considered, each
one-dimensional, so |R| = k. In parentheses, the names
of the resource types can be given optionally. Example:
3D(CPU,memory,diskIO).

• Mcore: the multicore scheduling of CPU load is consid-
ered when deciding whether a set of VMs fit on a PM.

• Comm: the communication requirements of VM pairs is
given and must be taken into account.

• Net(host-pairs): network constraints are given in the form
of available bandwidth for each pair of hosts.

TABLE II
POSSIBLE PLACEMENT TASKS

Placement type

Considered VMs Initial Reoptimization

All VMs Place(full) Reopt(full)
VM set Place(set) Reopt(set)
One VM Place(one) Reopt(one)

• Net(full): a full model of the network, including switches,
host–switch and switch–switch links, together with their
bandwidths, is given.

It should be noted that there is a significant difference
between modeling bandwidth restrictions on the level of
single hosts (the kD(. . . ,bandwidth,. . . ) model), on the level
of host pairs (the Net(host-pairs) model) and the full-network
level (the Net(full) model). The descriptive power – and also
complexity – of the models increases in this order.

C. γ: the placement task

Traditionally, the theory of algorithms differentiates be-
tween offline and online algorithms: in an offline setting, the
whole input is known already at the beginning, whereas in an
online setting, the input is revealed item by item, and each
item must be processed by the algorithm before it receives the
next one. This differentiation also makes sense in the case of
the VM allocation problem: online algorithms are useful to
place newly requested VMs, whereas offline algorithms can
be used to re-optimize the placement of the existing VMs.
However, in VM allocation, also other settings are possible,
for example, a set of VMs that together form an application
may be requested at once.

Looking more systematically at the possibilities, one can
identify two independent dimensions, as shown in Table II.
On the one hand, the set of VMs that are considered in the
optimization problem can be (i) all VMs of the CP, (ii) a set
of VMs belonging together, e.g. the VMs that together form
one application, and (iii) a single VM. On the other hand,
the aim can be either an (i) initial placement, in which newly
requested VM(s) is/are provisioned, or (ii) the reoptimization
of the placement of existing VM(s). From the problem model
point of view, the main difference between initial placement
and reoptimization is that in the latter, migration (together with
the associated costs, delays etc.) also plays a role.

From the resulting possibilities, displayed in Table II,
Place(set), Place(one), and Reopt(full) are the most popular
in the literature. Place(full) may also be called Greenfield,
because this variant applies if a new DC is opened. Reopt(set)
and Reopt(one) are rarely considered because reoptimizing all
VMs offers more opportunities for optimization.

The classic notions of offline and online optimization best
describe the Reopt(full) and Place(one) variants, respectively.

D. δ: the cost model

Most approaches to VM allocation aim at minimizing a
cost function. However, there are also some that maximize
an objective function (e.g., profit) instead. Therefore, it is
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important to specify within the δ part of the notation whether
the given function must be minimized (Min) or maximized
(Max).

Besides, the δ part must contain the definition of the cost
or objective function itself. This typically consists of one or
more of the following:
• NumActive: the number of active PMs
• TotStatPow: total static power consumption
• TotStatDynPow: total power consumption, including both

static and dynamic components
• TotRentalFee: total amount of fees to be paid to eCPs for

VM rental
• NumMigr: number of migrations
• TotMigrCost: total cost of migrations
• NumOverload: number of resource overload situations
• NumSlaViol: number of SLA violations
• TotSlaFee: total of SLA violation fees
• TotRev: total revenue, stemming from accepting user

requests and placing VMs accordingly
The cost or objective function can be a combination of these

metrics, for example c1 ·NumActive+c2 ·NumMigr denotes
the weighted sum of the number of active PMs and the number
of migrations, with two constants as weights.

E. ω: other specialties

Finally, the ω part allows the specification of miscellaneous
further aspects that the above standardized scheme is lacking.
There is no limitation on what can be in this part, but it should
be a concise but understandable description. If ω is empty, the
last vertical line can be omitted.

F. Examples

Finally, in order to validate the applicability of the suggested
notational system, some examples are shown.
• A basic model of the Single-DC problem, which has been

used for example in the impactful work of Beloglazov et
al. [1], is the following:
Single-DC | 1D(CPU) | Reopt(full) | Min(NumActive).

• A slightly more sophisticated model, still for a single DC,
considered by Srikantaiah et al. [29]:

Single-DC | 2D(CPU,disk) | Reopt(full) |
Min(TotStatDynPow).

• A very different model, considered by Genez et al. for
workflow scheduling (the workflow is given in the form
of a DAG) [9]:

Multi-IaaS | 1D(CPU),Comm,Net(host-pairs) |
Place(set) | Min(TotRentalFee) | DAG.

As can be seen, the suggested notational system is flexible
enough to describe a wide range of problem variants.

V. CONCLUSIONS

In this paper, we attempted to lay a more solid foundation
for research on the VM allocation problem. Specifically, we
presented a detailed problem formalization that is general
enough to capture all important aspects of the problem. We

showed how some often-investigated problem variants can
be obtained as special cases of our general model. We also
introduced a notational system that can serve as a taxonomy
of problem variants, filling the problem modeling gap in the
literature between the physical problem and the proposed
algorithms. We hope that this will catalyze further high-
quality research on VM allocation by showcasing the variety
of problem aspects that need to be addressed as well as
by defining a set of standardized models to build on. This
will hopefully improve the comparability of the proposed
algorithms, thus contributing to the maturation of the field.
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