
 

 

  
Abstract—In the classification diagram of the Cell Method (CM), 

which is the truly algebraic numerical method, the global variables 
are stored in two columns: the column of the configuration variables, 
with their topological equations, and the column of the source 
variables, with their topological equations. The structure of the 
classification diagram is the same for both the global and the field 
variables of every physical theory of the macrocosm. The importance 
of this diagram stands just in its ability of providing a concise 
description of physical variables, without distinguishing between the 
physical theories. Recently, we have shown that we can provide the 
classification diagram of the CM with a mathematical meaning, in 
addition to a physical meaning. Actually, we can recognize in the 
classification diagram of the CM a structure of bialgebra. In this 
paper, we give a further insight into the mathematical foundations of 
the CM by comparing the structure of the algebraic formulation with 
the structure of the differential formulation. Particular attention is 
devoted to the computation of limits, by highlighting how the 
numerical techniques used for performing limits may imply a loss of 
information on the length scales associated with the solution. Since 
the algebraic formulation does not make use of the limit process, this 
means that the algebraic formulation preserves the information on the 
length scales associated with the solution. Conversely, the differential 
formulation is forced to introduce a proper enrichment of the 
equations and/or the space of reals for taking into account the length 
scales associated with the solution.  
 

Keywords—Cell Method, Non-locality, Non-Standard Calculus, 
Numerical Stability.  

I. INTRODUCTION 
HE association of physical variables to elements of a cell-
complex and its dual cell-complex was introduced by [1] 

and [2]. In particular, Branin [2] treated the duality between 
two cell-complexes as an extension of the duality that exists in 
graph theory between a graph and its dual graph. The physical 
variables were subsequently arranged in a classification 
diagram, denoted as the classification diagram of the Cell 
Method (CM) [3], on the basis of physical considerations on 
the associations between global variables in space and 
geometry, where a global variable in space is a space variable 
that is not the line, surface or volume density of another space 
variable. Accordingly, a global variable in time is defined as a 
time variable that is not the rate of another time variable.  

Specifically, the classification diagram of the CM associates 
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the global variables in space with the geometrical and 
topological features usually neglected by the differential 
formulation, by highlighting how any global variable in space 
is related to one of the four space elements in three-
dimensional space (Fig. 1):  
• the point ( P ),  
• the line ( L ),  
• the surface ( S ),  
• the volume ( V ).  

The global variables in space are then stored in two 
columns:  
• The column of the configuration variables includes the 

variables describing the field configuration: displacements 
(solid mechanics), velocity (fluid dynamics), electric 
potential (electrostatics), temperature (thermal conduction).  

• The column of the source variables includes the variables 
describing the field sources: forces (solid mechanics and 
fluid dynamics), masses (geodesy), electric charges 
(electrostatics), electric currents (magnetostatics), heat 
(thermal conduction).  
This classification allows us to point out an important 

feature of the global variables: by associating the global 
configuration variables with the space elements of a first cell-
complex, we say the primal cell-complex, the global source 
variables turn out to be automatically associated with the 
elements of the dual cell-complex. A point, a line, a surface 
and a volume of the primal cell-complex are denoted by 
putting bars over their symbols, whereas a point, a line, a 
surface and a volume of the dual cell-complex are denoted by 
putting tildes over their symbols (Fig. 2).  

In [4] and [5], we showed that we may start from 
mathematical considerations for obtaining the same 
associations established by the classification diagram of the 
CM, associations that also extend to the inner and outer 
orientations of the global variables (Fig. 2). In effect, the 
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geometric algebra [6]–[12] provides the wider algebraic 
setting in which to answer geometric questions. Specifically, as 
we discussed in [13], we can recognize in the classification 
diagram of the CM a structure of bialgebra (Fig. 2), where:  
• The set of topological equations between global 

configuration variables defines a geometric algebra on the 
space of global configuration variables, provided with a 
geometric product.  

• The operators of the topological equations between global 
configuration variables are generated by the outer product 
of the geometric algebra, which is equal to the exterior 
product of the enclosed exterior algebra.  

• The dual algebra of the enclosed exterior algebra is the 
space of global source variables, associated with the dual 

-cellsp , and is provided with a dual product that is 
compatible with the exterior product of the exterior algebra.  

• The pairing between the exterior algebra and its dual gives 
rise to the energetic variables, by the interior product.  
The CM could seem very similar to the direct or physical 

approach, initially used in the Finite Element Method (FEM), 
and the vertex-based scheme of the Finite Volume Method 
(FVM) or the Finite Difference Method (FDM). Nevertheless, 
the similarity is apparent. In fact, in a truly algebraic 
formulation [14] – as the CM is [15] – all operators must be 
discrete and the limit process must be avoided at each level of 
the formulation [16], [17]. The physical approach is not 
suitable to this aim, since it starts from point-wise and instant-
wise conservation equations, the field functions of the 

differential formulation. If the field functions are not described 
in terms of point position and instants directly, they are 
obtained by performing densities and rates of the global 
variables, thus using the limit process (Fig. 3).  

Even FVM [18] and FDM [19], [20] are based on a 
differential formulation (Fig. 3). In fact, in all the so-called 
discrete methods the algebraic formulation is actually induced 
by the differential formulation, by means of an integration 
process (Fig. 3). This integration process is needed since, 
whereas the elimination of geometry from the physical laws is 
essential for the differential formulation, geometry is essential 
for the numerical solution.  

Moreover, the space distribution of the point-wise field 
functions of the differential formulation requires the 
introduction of coordinate systems (Fig. 3), whose purpose is 
that to create a correspondence between points of the space 
and numbers, their coordinates. This allows us to describe 
geometry by means of mathematics.  

Conversely, the CM uses global variables and balance 
equations in global form (Fig. 3). As a consequence, the 
governing equations are expressed in algebraic form directly, 
thus distinguishing the CM from any other so-called discrete 
method. Even the cell-complexes assume in the CM a different 
meaning. In fact, the two cell-complexes of the CM not simply 
are the result of a domain discretization, needed by the 
numerical analysis, as in the FEM [21]–[49]. They are the 
generalization of the coordinate systems to the algebraic 
formulation. Indeed, they are required by the algebraic 
formulation since the space global variables are associated not 
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Fig. 2 the columns of the configuration and source global variables in the classification diagram of the Cell Method: analogies with a vector 

space and its dual vector space in a bialgebra 
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only with points, as in the differential formulation, but also 
with lines, surfaces, and volumes. By using cell-complexes, we 
can describe the space global variables directly, by associating 
them with the related space elements of the cell-complexes. 
Consequently, in the algebraic formulation of physics the cell-
complexes play the same role that coordinate systems play in 
the differential formulation. Thus, the physical notions are 
translated into mathematical notions by means of the 
intermediation of topology and geometry.  

Finally, if we consider a time axis (Fig. 3) and perform a 
first subdivision of a given time interval into many adjacent 
small time intervals, we have a primal cell-complex in time. 
For building the dual cell-complex in time, we can consider 
the middle instant of each primal time interval. The result is 
that, similarly for the space elements (Fig. 2), also the primal 
and dual time elements are provided with inner and outer 
orientation, respectively.  

Viewed in these terms, it might seem that the main 
difference between the two formulations is that the limit 
process is used in the differential formulation whereas it is not 
used in the algebraic formulation. In effect, the difference does 
not lie in performing the limit in itself, but rather in the 
technique used for finding the limit. The aim of this paper is 
just to point out how some of the most known mathematical 
tools – which we are accustomed to use systematically, without 
pondering on the implications and/or limitations for the result 
– may actually have a determinant influence on the quality of 
the numerical solution.  

II. A DISCUSSION ON HOW TO COMPUTE DERIVATIVES 

As is well known, the first derivative ( )f x′  of a continuous 

function ( )f x  is defined as either of the two limits (if they 
exist)  

 

( ) ( ) ( )
lim
s x

f s f x
f x

s x→

−
′

−


, (1) 

 
and  
 

( ) ( ) ( )
0

lim
h

f x h f x
f x

h→

+ −
′


, 0h > . (2) 

 
The ratio in (2), which is denoted as the difference quotient, 

is not a continuous function at 0h =  because it is not defined 
there. In fact, the limit (2) has the indeterminate form 
( ) ( )0 0→ →  as 0h → , since both the numerator and the 

denominator approach 0 as 0h → .  
We can compute the limiting value (2) both in an 

approximated way, as per the ε δ−  definition of a limit, or in 
an exact way, by making use of the Cancelation Rule for 
limits.  

The ε δ−  definition of a limit is the formal mathematical 
definition of a limit: let f  be a real-valued function defined 
everywhere on an open interval containing the real number c  
(except possibly at c ) and let L  be a real number, then the 
statement  

 
( )lim

x c
f x L

→
=  (3) 

 
means that, for every real 0ε > , there exists a real 0δ >  such 
that, for all real x , if 0 x c δ< − < , then ( )f x L ε− < . 

Symbolically:  
 

 

 
Fig. 3 building an algebraic formulation through the Direct or Physical Approach, the Finite Volume Method, the Finite Difference Method, 

and the Cell Method 
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( )( )0 0 :  0x x c f x Lε δ δ ε∀ > ∃ > ∀ < − < ⇒ − < , (4) 

 
where:  
• ε  is a small positive number. It represents the error in the 

measurement of the value at the limit.  
• δ  is a positive number. It represents the distance to the 

limit point, c .  
The absolute value x c−  in (4) means that x  is taken 

sufficiently close to c  from either side (but different from c ). 
The limit value of ( )f x  as x  approaches c  from the left, 

x c−→ , is denoted as left-hand limit, and the limit value of 
( )f x  as x  approaches c  from the right, x c+→ , is denoted 

as right-hand limit. Left-handed and right-handed limits are 
called one-sided limits. A limit exists only if the limit from the 
left and the limit from the right are equal. Consequently, the 
limit notion requires a smooth function.  

By using the ε δ−  definition of a limit, we compute the 
limiting value by reducing the error with subsequent iterations.  

In the perspective of a computational analysis, it is obvious 
that the choice falls on the exact, rather than the approximated, 
computation of limits. In effect, by using the Cancelation Rule 
for limits, one can obtain an exact solution of the physical 
phenomenon under consideration only in few elementary 
cases, with simple geometric shapes of the domain and under 
particular boundary conditions.  

Anyway, the most important aspect when using the 
Cancelation Rule for limits is not that the exact numerical 
solution is hardly ever attained in real cases, but rather, that 
the choice itself of the term “exact” for the limit promised by 
the Cancelation Rule for limits is not entirely appropriate [50]. 
Indeed, in order to provide the solution of the limit directly, 
the Cancelation Rule for limits reduces the order of zero both 
in the numerator and the denominator by one. Under the 
numerical point of view, this reduction is made by canceling a 
quantity with the order of a length, both in the numerator and 
in the denominator. Under the topological point of view, we 
could say that the reduction degrades the solution, in the sense 
that, being deprived of one length scale, the solution given by 
the Cancelation Rule for limits provides us with a lower degree 
of detail in describing the physical phenomenon under 
consideration.  

Specifically, with the Cancelation Rule for limits, we factor 
h  out of the numerator in (2)  

 
( ) ( ) ( )

x x
f x h f x h g h

=
+ − = ⋅   , (5) 

 
and cancel this common factor in numerator and denominator. 
Then, we find the limit by evaluating the new expression at 

0h = , that is, by plugging in 0 for h , because the new 
expression is continuous at 0h = :  
 

( ) ( )
00

lim
hh

h g h
g h

h =→

⋅
= , (6) 

 
where the result is a real number.  

The equality in (6), established by the Cancelation Rule for 
limits, is undoubtedly numerically correct, in the sense that the 
results of the left- and right-hand-side expressions are actually 
numerically equal, but the way in which these results are 
achieved is radically different in the two cases. As a matter of 
fact, the limit on the left side is defined on the open interval of 
length h , whereas the function ( )g h  is evaluated for a given 

value of the variable, 0h = . This difference, negligible from 
the purely numerical viewpoint, is instead essential from the 
topological viewpoint.  

In effect, this difference is so much essential that the 
opportunity of using an algebraic rather than a differential 
formulation could be discussed just on the basis of the 
numerical equality between the left- and right-hand-side terms 
in (6). Actually, the ε δ−  definition of a limit implies 
choosing an (open) interval, containing the point in which we 
want to estimate a function, with the aim of making the 
distance between the points in which we compute the function 
and the point in which we want to estimate the function as 
small as we want. In other words, the limit on the left side in 
(6) is strictly bonded to the idea of neighborhood of a point 
and cannot be separated from it. Moreover, since the 
amplitude of the neighborhood is fixed by the distance δ  
between computation and estimation points, the notion of limit 
is also bound to the idea of distance or, in other words, to the 
idea of length scale. Consequently, since the amplitude of the 
neighborhood is never reduced to zero, the iterative technique 
preserves information on the length scale, exactly as the 
algebraic formulation of the CM does.  

The result of the limit is the value to which the function 
output appears to approach as the computation point 
approaches the estimation point. For evaluating this result, we 
must enough carefully choose the computation points, in order 
to derive the trend of the output to a specific degree of 
approximation. That is, the result we obtain by choosing 
increasingly close points is only an estimation of the actual 
result and the approximation of the estimation is as much 
better (the degree of approximation is as much low) as the 
computation point is close to the estimation point. In 
conclusion, the ε δ−  definition of a limit also bounds the 
limit to the notions of approximation and degree of 
approximation, or accuracy.  

Completely different is the discussion on the right-hand-side 
function of (6). Actually, the new function ( )g h  is computed 

at a point, the point 0h = , without any need of evaluating its 
trend on an interval. The consequence is that the result we 
obtain is exact and we do not need to prefix any desired 
accuracy for the result itself.  

This is very useful from the numerical point of view, but, 
from the topological point of view, we lose information on 
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what happens approaching the evaluation point. Specifically, 
we lose the same type of information that is lost in passing 
from the description of a phenomenon in a space to the 
description of the same phenomenon in the tangent space at the 
evaluation point. This is also known as the principle of the 
local linearity and leads to the differential formulation.  

In order to stress that the solution given by the Cancelation 
Rule provides us with a lower degree of detail, we will say that 
its solution is exact in a broad sense, and not in a narrow 
sense.  

The idea underlying this paper is that the Cancelation Rule 
can actually be employed only in those cases where the 
specific phenomenon uniquely depends on what happens at the 
point under consideration. In effect, this happens in few 
physical problems, whereas, in most cases, the physical 
phenomenon under consideration also depends on what 
happens in a neighborhood centered at the point.  

By extension of (6) to functions of more than one variable, 
studying the physical phenomenon as if it were a point-wise 
function means that we are using the right-hand side of (6), 
whereas studying the physical phenomenon as a function of all 
the points contained in a neighborhood means that we are 
using the left-hand side, with h  approaching zero but never 
equal to zero. In the first case, we are facing a differential 
formulation, whereas, in the second case, we are facing an 
algebraic formulation.  

Operatively, we are using an algebraic formulation 
whenever we choose increasingly close points (to both the 
right and the left) of the estimation point, until the outputs 
remain constant to one decimal place beyond the desired 
accuracy for two or three calculations. How much the 
computation points must be close to the estimation point 
depends on how fast the result of the limit is approached as we 
approach the point in which the limit is estimated. Therefore, 
the dimension of the neighborhood is fixed by the trend of the 
phenomenon around the point under consideration, or, in other 
words, the distance δ  for the evaluation of ( )f c′  depends 

both on the error ε  and on ( )f c′′ . The information we lose 
by using the Cancelation Rule lies just in the trend of the 
phenomenon, that is, in the curvature, since the curvature 
cannot be accounted for in passing from a space to its tangent 
space at the evaluation point.  

In the differential formulation, the notion of limit is used for 
defining not only derivatives, but also densities. In this second 
case, the denominator that tends to zero has the dimensions of 
a length raised to the power of 1, 2, or 3. The Cancelation Rule 
for limits can be employed also in this second case, by 
factorizing and canceling length scales in dimension 1, 2, or 3, 
respectively. This leads to point-wise variables in any cases, 
the line, surface, and volume densities. 

Finally, the Cancelation Rule for limits is used for finding 
also rates, by factorizing and canceling time scales in 
dimension 1. This last time, the limit, which is a time 
derivative, provides an instant-wise variable.  

In conclusion, with reference to the space of the physical 

phenomena, the differential formulation provides the 
numerical solution in the tangent space of degree 0, where we 
can describe each physical phenomenon in terms of the space 
elements of degree 0, the points, and the time elements of 
degree 0, the time instants. Conversely, the algebraic 
formulation allows us to take account of, we could say, the 
curvatures in space and time at a point, where a point of the 
space of the physical phenomena is a given physical 
phenomenon, in a given configuration, at a given time instant.  

Now, the question is if canceling length and time scales is 
an acceptable loss. We can find many examples of how this is 
not an acceptable loss in several numerical and mathematical 
strategies, which share the common need of recovering length 
and time scales. Although these techniques are widely used, 
unfortunately the scientific literature does not stress enough 
that their common origin is having lost one or more length 
scales, by performing a limit process. Neither it is stressed that 
we can avoid to use these techniques if we do not previously 
apply the Cancelation Rule for limits.  

By way of example, in the following two Sections we will 
discuss how the non-local approaches used for modeling 
heterogeneous material and the non-standard analysis are, in 
reality, two different attempts of recovering the length scales 
in engineering and mathematics, respectively.  

III. A NUMERICAL ATTEMPT OF RECOVERING THE LENGTH 
SCALES: NON-LOCAL FORMULATION 

It is now a common opinion that the classical local 
continuum concept, with the stress at a given point uniquely 
depending on the history of deformation and temperature at 
that point only, is not adequate for describing damagement of 
heterogeneous materials with the differential formulation, 
particularly when the size-effect is involved. Actually, 
modeling the size-effect is impossible in the context of 
classical plasticity, both in problems with strain-softening and 
in those with no strain-softening at all.  

The first critiques of the local approach date back to the 
‘60s [51]–[55] and are based on the micro-structure of matter. 
In effect, all materials are characterized by micro-structural 
details, the size of which ranges over several order of 
magnitude. Therefore they cannot be broken down into a set of 
infinitesimal volumes, each of which could be described 
independently. Consequently, the idea was promulgated that 
heterogeneous materials should properly be modeled by some 
kind of non-local continuum, in which the stress at a certain 
point is a function of the strain distribution over a certain 
representative volume centered at that point.  

According to the previous discussion on when it is 
appropriate to use the Cancelation Rule for limits (Section II), 
we are thus facing with a case where we should abandon the 
differential formulation, which is based on the Cancelation 
Rule for limits, and reformulate the numerical approach from 
its foundations, by using the algebraic formulation of the CM. 
Unfortunately, the consolidated custom of using the 
Cancelation Rule for limits without taking into account the 
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topological implications of this choice did not leave room for 
the idea of abandoning the differential formulation. 
Consequently, the differential formulation was used in any 
case and the problem was addressed by improving the classical 
continuum description with an internal length parameter, 
introduced into the constitutive laws. This idea led to models 
denoted as the non-local models.  

The point we would like to stress in this paper is that the 
terms “improved continuum” and “enriched continuum,” used 
by the non-local formulation, are not completely appropriate. 
It would be more correct speaking of recovering of the length 
scale in a continuum that has been deprived of its metrics by 
the systematic use of the Cancelation Rule for limits. 
Obviously, since the recovering is performed empirically, and 
not after having identified and solved the cause for the loss of 
the length scale, the recovering can only be partial.  

We may further prove the incapability of the differential 
formulation to model non-locality on the basis of the definition 
itself of non-locality. Indeed, according to the mathematical 
definition of non-locality given in [56], the operator A in the 
abstract form of the fundamental equations of any physical 
theory,  
 
Au f= , (7) 

 
is called local when, if  
 

( ) ( )x xu v=  (8) 
 
for all x  in a neighborhood of point 0x , then  
 

( ) ( )x xAu Av= . (9) 
 

Well, the differential operators satisfy the conditions (8) and 
(9), because the derivatives of any arbitrary order do not 
change if the differentiated function changes only outside a 
small neighborhood of the point at which the derivatives are 
taken [57]. Consequently, the differential operators are local 
[58] and any formulation using differential operators is 

intrinsically local (left side of Fig. 3). This is ultimately a 
consequence of having built the differential operators by using 
the Cancelation Rule for limits.  

In conclusion, even in those few cases where the differential 
formulation provides us with a solution in a closed form (Fig. 
4), by reducing the global variables to point and instant 
variables we lose the possibility of describing more than 0-
dimensional effects, that is, the non-local effects. 
Consequently, metrics must be reintroduced a-posteriori, in 
most cases in the discretization process (Fig. 4), if we want to 
model non-locality.  

One may ask, now, where the length scale must be 
reintroduced. In differential non-local approaches, a length 
scale is incorporated into the constitutive laws, but there is no 
evidence that this is the only possible choice, or the physically 
most appealing one.  

Due to the multi-dimensional geometrical content of global 
variables, emphasized by the classification diagram of the CM 
(Fig. 2), we can provide an alternative interpretation of non-
locality. In fact, dimensional scales and non-local effects are 
associated with global variables directly and non-locality is a 
property of the global variables, not a prerogative of just the 
constitutive laws. Consequently, preserving non-locality into 
governing equations by means of the algebraic formulation of 
the CM is physically more correct than recovering non-locality 
into constitutive equations.  

In effect, the CM is a non-local numerical method due to 
three reasons:  
• It replaces the field variables of the differential formulation 

with the global variables, which are associated with 
geometrical objects provided with an extent (we could say, 
with internal length scales in dimension 1, 2, and 3).  

• It uses two staggered meshes, also in plane domains (Fig. 5). 
Since the configuration variables are associated with the 
space elements of the primal mesh and the source variables 
are associated with the space elements of the dual 
(staggered) mesh, the algebraic constitutive relations are not 
established in the point, but within a volume surrounding the 
point. The non-degenerate dimension of this volume is also 
the reason why the CM does not present problems of 
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Fig. 4 losing and reintroducing metrics in nonlocal models 
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localization with zero dissipated energy.  
• It obtains the algebraic topological equations (that is, both 

balance and kinematic equations) by means of coboundary 
processes [59]. The typical two-step procedure of the 
coboundary process establishes a relationship between the 

-cellsp  and their cofaces, which also takes into account the 
extent of the -cellsp . Therefore, the equations are not 
established in a point but within a volume, once again.  
This three-fold motivation provides a non-local nature both 

to the algebraic variables and the governing equations of the 
CM.  

IV. A MATHEMATICAL ATTEMPT OF RECOVERING THE 
LENGTH SCALES: NON-STANDARD ANALYSIS 

Concerns about the soundness of arguments involving 
infinitesimals date back to ancient Greek mathematics. 
Actually, the notion of infinitely small quantities was discussed 
by the Eleatic School. Specifically, Democritus (c. 460–c. 370 
BC) is the first person recorded to consider seriously the 
division of objects into an infinite number of cross- sections, 
but his inability to rationalize discrete cross-sections with a 
cone’s smooth slope prevented him from accepting the idea. 
Antiphon the Sophist (probably, the last two decades of the 5th 
century BC) and Eudoxus of Cnidus (408 BC–355 BC) are 
generally credited with implementing the method of 
exhaustion, which is seen as a precursor to the methods of 
calculus. Archimedes (c. 287-c. 212 BC) was the first to 
propose a logically rigorous definition of infinitesimals. He 
replaced the proofs on the soundness of infinitesimals with 
ones using other techniques, such as the method of exhaustion.  

An important early intermediate step toward calculus was 

Cavalieri’s principle, named after the Italian mathematician 
Bonaventura Francesco Cavalieri (in Latin, Cavalerius) (1598–
November 30, 1647), also termed the “method of indivisibles,” 
which was a bridge between the method of exhaustion and full-
fledged integral calculus.  

More recently, the discussion on the soundness of 
infinitesimals permeate the history of calculus, which is 
fraught with philosophical debates about the meaning and 
logical validity of fluxions, Newton’s term for differential 
calculus [60] (fluents was his term for integral calculus). The 
standard way to resolve these debates is to define the 
operations of calculus using limits, rather than infinitesimals. 
Non-standard analysis, instead, reformulates the calculus using 
a logically rigorous notion of infinitesimal number.  

Non-standard analysis is a rigorous formalization of 
calculations with infinitesimals. It was introduced in the early 
1960s by the mathematician Abraham Robinson (born 
Robinsohn; October 6, 1918–April 11, 1974). By using the 
language of non-standard analysis, the infinite and 
infinitesimal quantities can be treated by the system of 
hyperreal numbers, or hyperreals, or non-standard reals.  

Denoted by *
 , the hyperreal numbers are an extension of 

the real numbers,  , that contains numbers greater than 
anything of the form:  

 
1 1 ... 1+ + + . (10) 

 
Such a number is infinite, and its reciprocal is infinitesimal.  
The hyperreal numbers satisfy the transfer principle, a 

rigorous version of Leibniz’s heuristic Law of Continuity. The 
transfer principle states that true first order statements about 
  are also valid in *

 . Therefore, the hyperreals were 

 
Fig. 5 building staggered cell-complexes in two-dimensional domains with barycentric dual cells 
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logically consistent if and only if the reals were. This put to 
rest the fear that any proof involving infinitesimals might be 
unsound, provided that they were manipulated according to the 
logical rules which Robinson delineated.  

Non-standard analysis deals primarily with the hyperreal 
line, which is an extension of the real line, containing 
infinitesimals in addition to the reals (Fig. 6). In the hyperreal 
line every real number has a collection of numbers (called a 
monad, or a halo) of hyperreals infinitely close to it.  

The standard part function is a function from the limited 
(finite) hyperreal to the reals. It associates with a finite 
hyperreal x , the unique standard real number 0x  which is 
infinitely close to it (Fig. 6):  

 
( ) 0st x x= . (11) 
 
As such, the standard part function is a mathematical 

implementation of the historical concept of adequality 
introduced by Pierre de Fermat. It can also be thought of as a 
mathematical implementation of Leibniz’s Transcendental 
Law of Homogeneity.  

The standard part of any infinitesimal is 0. Thus, if N  is an 
infinite hypernatural, then 1 N  is infinitesimal and  

 
1st 0
N

  = 
 

. (12) 

 
The standard part function was first defined by Abraham 

Robinson as a key ingredient in defining the concepts of 
calculus, such as the derivative and the integral, in non-
standard analysis. Specifically, it allows the definition of 
derivative and integral in a direct fashion.  

The derivative of f  at a standard real number x  becomes  
 

( ) ( ) ( )* *
st

f x x f x
f x

x
+ ∆ − 

′ =  
∆ 

, (13) 

 
where x∆  is an infinitesimal, smaller than any standard 
positive real, yet greater than zero, and * f  is the natural 

extension of f  to the hyperreals ( *  is the transfer operator 
applied to f ). Similarly, the integral is defined as the standard 

part of a suitable infinite sum.  
In this approach, ( )f x′  is the real number infinitely close 

to the hyperreal argument of st . For example, the non-
standard computation of the derivative of the function 

( ) 2f x x=  provides  
 

( ) ( ) ( )
2 2

st st 2 2
x x x

f x x x x
x

 + ∆ −
′  = = + ∆ =

 ∆ 
, (14) 

 
since  
 
2 2x x x+ ∆ ≈ , (15) 
 
where the symbol “ ≈ ” is used for indicating the relation “is 
infinitely close to.” In order to make ( )f x′  a real-valued 
function, we must dispense with the final term, x∆ , which is 
the error term. In the standard approach using only real 
numbers, that is done by taking the limit as x∆  tends to zero. 
In the non-standard approach using hyperreal numbers, the 
quantity x∆  is taken to be an infinitesimal, a non-zero number 
that is closer to 0 than to any non-zero real, which is discarded 
by the standard part function.  

The notion of limit can easily be recaptured in terms of the 
standard part function, st , namely  

 
( )lim

x c
f x L

→
= , (16) 

 
if and only if, whenever the difference x c−  is infinitesimal, 

the difference ( )f x L−  is infinitesimal, as well. In formulas:  

 
( ) ( )( )st stx c f x L= ⇒ = . (17) 

 
The standard part of x  is sometimes referred to as its 

shadow. Therefore, the derivative of ( )f x  is the shadow of 
the hyperreal difference quotient.  

We can thus conclude that the standard part function is a 
form of projection from hyperreals to reals. Since also the 
Cancelation Rule for limits is a form of projection, that is, the 
projection of the actual solution from the multi-dimensional 
space to the tangent space of degree 0 (Section II), we can 
state that the solution of the differential formulation is the 
shadow of the actual solution in the tangent space of degree 0. 
On the contrary, by avoiding the projection process, the 
algebraic formulation provides us with a higher degree 
solution, approximated in any case, which is more adherent to 
the physical nature of the phenomenon under consideration.  

As a consequence, using the algebraic formulation is 
somehow similar to performing non-standard calculus, the 
modern application of infinitesimals, in the sense of non-
standard analysis, to differential and integral calculus. In 

st

0

0

−1−2 1 2

0−ε ε

 
Fig. 6 the bottom line represents the “thin” real continuum. The line 
at top represents the “thick” hyperreal continuum. The “infinitesimal 

microscope” is used to view an infinitesimal neighborhood of 0 
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effect, the extension of the real numbers,  , is equivalent to 
providing the space of reals with a supplementary structure of 
infinitesimal lengths. We could say that this is an attempt to 
recover the loss of length scales due to the use of the 
Cancelation Rule for limits, in differential formulation. This 
configures the hyperreal number system as an infinitesimal-
enriched continuum, and the algebraic approach can be viewed 
as the algebraic version of non-standard calculus.  

The great advantage of the infinitesimal-enrichment is that 
of successfully incorporating a large part of the technical 
difficulties at the foundational level of non-standard calculus. 
Similarly, in the algebraic formulation many numerical 
problems, mainly instability or convergence problems, are 
avoided by the presence of a supplementary structure of 
(finite) lengths both in  , 2

 , and 3
  [16], [59], [61]–[66].  

V. SOME IMPLICATIONS ON NUMERICAL STABILITY 
In differential formulation, the fundamental equations of any 

physical problem are expressed by partial differential 
equations (PDEs, [67]–[73]) of second order. Depending on 
the physical theory involved, the particular path followed for 
putting in relationship the configuration with the source 
variables may result in either elliptic [74] (Fig. 7), or parabolic 
(Fig. 8), and hyperbolic equations (Fig. 9). The reason for the 
terms “elliptic,” “parabolic,” and “hyperbolic” is the general 

form assumed by the second order PDE in two independent 
variables.  

As we have previously discussed, in several real-world 
problems, it is not possible to derive closed form solutions of 
the fundamental equations, for the multitude of irregular 
geometries, various constitutive relations of media, and 
boundary conditions. Computational numerical techniques can 
overcome this inability, providing us with important tools for 
design and modeling. To achieve this, time and space are 
divided into a discrete grid and the continuous differential 
equations are discretized. In general, the simulated system 
behaves differently than the intended physical system. The 
amount and character of the difference depends on the system 
being simulated and the type of discretization that is used.  

Choosing the right numerical technique for solving a 
problem is important, as choosing the wrong one can either 
result in incorrect results, or results which take excessively 
long time to compute. In particular, the equation which 
approximates the equation to be studied is probable to become 
unstable, meaning that errors in the input data and intermediate 
calculations can be magnified in the limit, instead of damped, 
causing the error to grow exponentially.  

Form the numerical point of view, an unstable solution 
occurs in differential formulation whenever the algebraic 
system of discretized equations derived from an elliptic 
equation ceases to be elliptic. The same occurs when the 
algebraic systems of a parabolic or hyperbolic equation are not 
parabolic or hyperbolic, respectively. The causes for this are 
several. In some cases, they consist in the integration method 
adopted. In particular, it is important to use a stable method 
whenever we want to solve a stiff equation, that is, a 
differential equation for which certain numerical methods for 
solving the equation are numerically unstable, unless the step 
size is taken to be extremely small. A problem is stiff when the 
step size is forced down to an unacceptably small level in a 
region where the solution curve is very smooth, whereas one 
would expect the requisite step size to be relatively small in a 
region where the solution curve displays much variation and to 
be relatively large where the solution curve straightens out to 
approach a line with slope nearly zero. A method that is stable 
on stiff problems is called an A-stable method [75].  

 
Fig. 9 hyperbolic equations in the classification diagram 

 

 

 
Fig. 7 elliptic equations in the classification diagram 

 

 
Fig. 8 parabolic equations in the classification diagram 
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Leapfrog integration is a second-order method, which means 
that the error is roughly proportional to the square of the step 
size. Unlike Euler integration, it is stable for oscillatory 
motion, as long as the time-step t∆  is constant, and  

 
2t
ω

∆ ≤ , (18) 

 
where ω  is the angular frequency (measured in radians per 
second).  

Leapfrog integration is equivalent to updating positions 
( )x t  and velocities ( ) ( )v t x t=   at interleaved time points, 

staggered in such a way that they “leapfrog” over each other. 
For example, the position is updated at integer time steps and 
the velocity is updated at integer-plus-a-half time steps:  

 
1 1

2
i i i

x x v t− −
= + ∆ , (19) 

 
1 1

2 2
ii i

v v a t
+ −

= + ∆ , (20) 

 
where ix  is the position at step i , 1

2i
v

+
 is the velocity, or first 

derivative of x , at step 1
2i + , ( )i ia F x=  is the acceleration, 

or second derivative of x , at step i , and t∆  is the size of each 
time step.  

This means that the leapfrog integration uses the same 
explicit time-marching scheme of the CM, where the primal 
time instants, I , and the primal time intervals, T , are 
represented by the nodes and lines of a one-dimensional primal 
cell-complex, respectively (Fig. 10), and primal and dual time 
instants (or time steps) are staggered for a-half time step. 
Moreover, the position 1x  is associated with the first primal 

time instant, 
1

I  (first primal step), the velocity 1xv  is 

associated with the first primal time interval, 
1

T , the velocity 

1xv  is associated with the first dual time instant, 
1

I  (first dual 
step), the acceleration 1xa  is associated with the first dual time 

interval, 
1

T , and the acceleration 2xa  is associated with the 

second primal time instant, 
2

I  (second primal step):  

 
2 1 1 1 1x xx x v t x v t= + ∆ = + ∆ , (21) 

 
2 1 1 1 2x x x x xv v a t v a t= + ∆ = + ∆    . (22) 

 
Consequently, the time-marching scheme of the CM can be 

viewed as the algebraic version of the leapfrog integration in 
the differential formulation.  

Leapfrog integration is used in the Finite-difference time-
domain method (FDTD), which is a numerical analysis 
technique for modeling computational electromagnetics 
(CEM). CEM typically solves the problem of computing the 
E  (electric), and H  (magnetic) fields across the problem 
domain. The equations are solved in a cyclic manner: the 
electric field vector components in a volume of space are 
solved at a given instant in time, then the magnetic field vector 
components in the same spatial volume are solved at the next 
instant in time, and the process is repeated over and over again 
until the desired transient or steady-state electromagnetic field 
behavior is fully evolved. Since the change in the -fieldE  in 
time (the time derivative) is dependent on the change in the 

-fieldH  across space (the curl), at any point in space, the 
updated value of the -fieldE  in time is dependent on the 
stored value of the -fieldE  and the numerical curl of the local 
distribution of the -fieldH  in space. Analogously, at any point 
in space, the updated value of the -fieldH  in time is 
dependent on the stored value of the -fieldH  and the 
numerical curl of the local distribution of the -fieldE  in space. 
Iterating the -fieldE  and -fieldH  updates the results in a 
marching-in-time process wherein sampled-data analogs of the 
continuous electromagnetic waves under consideration 
propagate in a numerical grid stored in the computer memory.  

This description holds true for 1-D, 2-D, and 3-D FDTD 
techniques. When multiple dimensions are considered, 
calculating the numerical curl can become complicated. Kane 
Yee’s seminal paper [76] proposed spatially staggering the 
vector components of the -fieldE  and -fieldH  about 
rectangular unit cells of a Cartesian computational grid so that 
each -fieldE  vector component is located midway between a 
pair of -fieldH  vector components, and conversely. This 
scheme, now known as a Yee lattice, has proven to be very 
robust and remains at the core of many current FDTD software 

 
Fig. 10 Orientations of the primal and dual time elements in the CM for the case of four primal time instants 
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constructs. Furthermore, Yee proposed a leapfrog scheme for 
marching in time wherein the -fieldE  and -fieldH  updates 
are staggered so that -fieldE  updates are conducted midway 
during each time-step between successive -fieldH  updates, 
and conversely. On the plus side, this explicit time-stepping 
scheme [77] avoids the need to solve simultaneous equations 
and furthermore yields dissipation-free numerical wave 
propagation. On the minus side, this scheme mandates an 
upper bound on the time-step to ensure numerical stability. 
This allows us to avoid spurious solutions, that is, to avoid a 
numerical drawback.  

If visualized as a cubic voxel, the electric field components 
form the edges of the cube, and the staggered magnetic field 
components form the normals to the faces of the cube (Fig. 
11). A three-dimensional space lattice consists of a multiplicity 
of such Yee cells, leading to a scheme analogous to the CM 
scheme with primal and dual cells (Fig. 3). Therefore, the Yee 
lattice can be considered the particularization of the primal and 
dual cell complexes of the CM, when a differential formulation 
is derived from the algebraic formulation. Moreover, we may 
generalize the notion of inherited association to the stability of 
the numerical solution, by assuming that the numerical stability 
is inherited by the Yee lattice from the CM cell complexes, 
when the field variables are derived from the global variables 
by performing densities and rates.  

As far as continuum mechanics is concerned, a typical case 
where the numerical solution provided by the differential 
formulation becomes unstable because the governing 
differential equations may lose ellipticity is the boundary value 
problem with strain-softening constitutive model. As we have 
discussed in Section III, the non-local approach is an attempt 
to avoid the ill-posedness of these problems without 
abandoning the differential formulation. Nevertheless, a non-
local differential formulation applicable to any inelastic 
constitutive model with strain-softening is not available, at 
present, and the non-local parameters need to be calibrated on 
the single physical phenomenon.  

Conversely, the algebraic formulation of the CM gives a 
unified approach and does not need any parameter for 
providing a non-local description of physics. In fact, the 
intrinsic non-locality of the CM – due to the three-fold 
motivation discussed in Section III – allows us to employ any 

local law for describing the material behavior. In doing so, we 
can take into account both the local and the non-local effects 
and, according to [57] and [78], this is sufficient for avoiding 
numerical instabilities in strain-softening modeling. Therefore, 
the CM used together with a local material law provides a non-
local description without abandoning the principle of the local 
action altogether. In particular, see [79]–[85] for a list of 
papers where a new local monotone non-decreasing material 
law, the effective law, was identified and successfully 
employed for modeling size-effect in so-called strain-softening 
materials.  

The effective law is confirmed by experimental [80] and 
analytical considerations [79]. Its main contribution to the 
understanding of the failure mechanics of quasi-brittle 
materials, in general, and concrete, in particular, is having 
reopened the question of strain-softening [16], whose 
existence and mathematical well-posedness seemed to be no 
longer under discussion after the outcomes of the displacement 
controlled compression tests [86] and the numerical successes 
of non-local differential approaches. The effective law is based 
on the idea that strain-softening is not a real material property, 
such as argued in several theoretical papers of last century, 
particularly of the 1980s [87]–[93]. The identification 
procedure of the effective law does not consist of a mere scale 
factor: the material is separated from the structure scale and 
the constitutive behavior is no more the mirror image of a 
structural problem at a lower scale. This results in a size-effect 
insensitive effective law between effective strain and effective 
stress.  

VI. CONCLUSION 
In this paper we focused on how to perform the limit 

process, not for introducing some new technique but rather for 
investigating the topological meaning of those techniques that 
we use more frequently. In effect, the extensive use of the most 
known techniques accustomed us to apply them without taking 
time to understand whether the choice itself of the technique 
could affect the quality of the result.  

We found that the two most used techniques for finding the 
limiting value of the first derivative ( )f x′  of a continuous 

function ( )f x  are indeed very different from the topological 
point of view: the ε δ−  definition of a limit preserves 
information on the curvatures in space and time at a given 
configuration, in a given time instant, whereas the Cancelation 
Rule for limits does not.  

We also found that the ε δ−  definition of a limit gives rise 
to the algebraic formulation, whereas the Cancelation Rule for 
limits gives rise to the differential formulation. Consequently, 
the topological differences between the two numerical 
techniques are inherited by the two numerical formulations. 
This is the reason why the algebraic formulation is provided 
with a structure of (finite) lengths both in  , 2

 , and 3
 , 

which allow us to account for the trend of the phenomenon 
around the point under consideration. Conversely, the 

 
Fig. 11 illustration of a standard Cartesian Yee cell used for FDTD, 

about which electric and magnetic field vector components are 
distributed 
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differential formulation provides the numerical solution in the 
tangent space of degree 0, where we can describe each 
physical phenomenon in terms of the space elements of degree 
0, the points, and the time elements of degree 0, the time 
instants.  

Many are the signals showing that a description in the 
tangent space of degree 0 is inadequate in most cases. In 
effect, most limitations of the differential formulation are 
originated by its inability of taking into account the curvatures 
in space and time, though this is not properly stressed in 
scientific literature. In Sections III and IV, we showed how 
non-local approaches and non-standard analysis – two 
strategies in very far fields, one engineeristic and the other 
purely mathematical – are actually two of these signals, since 
they are two different attempts of recovering the length scales 
that the Cancelation Rule for limits has discarded from the 
numerical solution. Consequently, we can avoid to use both 
these strategies and other similar strategies if we do not apply 
the Cancelation Rule for limits, that is, if we reformulate the 
numerical problem in algebraic manner, by means of the CM.  

Finally, we have discussed how the supplementary structure 
of lengths of the algebraic formulation eliminates many 
numerical problems, mainly instability and convergence 
problems. Specifically, the time-marching scheme of the CM 
was found to be the algebraic version of the leapfrog 
integration, which is a second-order method for solving 
dynamical systems of classical mechanics. This similarity 
establishes a strict relationship between the CM and the Finite-
difference time-domain method (FDTD), a differential time-
domain numerical modeling method that uses the leapfrog 
integration, together with grid staggering (Yee lattice), for 
applications in computational electromagnetics. Therefore, the 
CM can be considered a generalization of the FDTD to 
space/time-domain numerical modeling.  

The most important consequence of the similarity between 
the leapfrog integration and the time-marching scheme of the 
CM is that also the CM is stable for oscillatory motion. The 
similarity then extends to the convergence order, since even 
the CM, in its original formulation with barycentric or 
circumcentric dual polygons in space, is a second-order 
method, both in space and in time. Nevertheless, by modifying 
the shape of the dual polygons in space, it is possible to 
achieve higher convergence orders for the CM. In particular, 
we attain a fourth-order convergence in space by choosing 
Gauss points, besides the primal barycenters and the midpoints 
of the dual sides, for building the dual polygons around the 
primal nodes.  

Attaining a fourth-order convergence with the CM is all the 
more relevant as it was not possible to attain convergence 
greater than second-order for any of the methods which are 
similar to the CM, such as the direct or physical approach of 
the FEM, the vertex-based scheme of the FVM, and the FDM.  
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