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Application of Bayesian Multivariate Method to
Time Dependent Data

Steward H. Huang

Abbstract– Time dependent data have widespread scientific
applications. A very interesting area of its applications is growth
curve models. Researchers have considered these models under
different real-world scenarios, including complicated variance-
covariance structures with autocorrelations. In this paper, the
goal is to incorporate these types of structures into the models
for multivariate random variables under Bayesian formality.
Due to the complexity of the models many other models in
literature have to make compromising assumptions. However,
this paper will make Bayesian estimates of parameters for these
highly complicated models with greater similarity to real world
situations. Through judicial choices of priors, we obtain highly
informative posteriors in the estimation procedures. The models
presented in this paper are useful and competitive alternatives to
frequentist’s approach.

Keywords– Multivariate, Growth curve, Bayesian analysis,
Autocorrelation

1. Introduction

Time dependent data, such as growth curve models, are use-
ful especially for studying growth behavior of time series
in economics, biology, medical research and epidemiological
problems [1], [2], have a long history. Their initiation may be
attributed to Potthoff and Roy [3], who introduced their formu-
lation and then studied the growth curve problems. Then subse-
quently, Rao [4], Khatri [5], Geisser [6] and von Rosen [7]-[9]
became the primary researchers in analyzing the growth curve
models. However, it took nearly a decade before the Bayesian
approach (including predictive problem from a Bayesian per-
spective) was applied to the analysis of growth curve models and
different assumptions about covariance matrices were also made
accordingly. Lindley and Smith [10] and Geisser [11] assumed
that covariance matrices were known, Fearn [12] assumed that
they were identity matrices with unknown variances. Barry
[13] gave a different treatment of the problem under Bayesian
approach but also assumed identity matrix for covariances. The
motivation for building multivariate models in this research
is that we can study the effect of several variables acting
simultaneously. This gives a closer resemblance to our intuition
as well as better understanding about the relationship between
the variables. When more variables are analyzed simultaneously,
greater statistical power will be obtained and we gain easier
visualization and interpretation of the data through graphical
measures, such as scatter plots or higher dimensional plots
(e.g. 3D plots). So our focus is also spontaneously shifted from
individual or isolated factors to the relationships among several
variables of interest in a data set.

In this research, similar general multivariate growth problems
are studied by assuming that the multivariate dependent vari-
ables (such as weight, height, etc.) can be described by some
commonly used nonlinear growth curves in terms of the inde-
pendent variable (time) with a certain correlation (dependence)
relationship in the covariance matrix. So the multivariate growth
curve models proposed in this paper will include nonlinear
growth curves with autocorrelated errors in their covariance
structures. The classical analysis for these types of realistic
models becomes either too complicated to obtain analytical
solutions or may require a lot of simplifying assumptions,
thus becoming unrealistic. Bayesian analysis, including experts’
opinions, can help us computationally to get to the estimates
of the parameters for growth curve models and thus become
more appealing, as well as important to researchers. No similar
models which consider such complex scenarios are available in
the literature. The model formulation will be presented in the
following first two section with the Gompertz growth curve as
an example. Then in the last two sections, the applications of the
models using a bivariate growth data set will be demonstrated.
The simulation results will be discussed in the conclusion.

2. Models

Let’s consider a single subject of n observations. Y j
(p×1)

, for j =

1, ..., n , is a vector of p-variate correlated dependent variables.
If we let W = (w1, ...,wn) be a vector of the independent variable
time and Θ

q×p
= ( θ1

q×1
, ..., θp

q×1
) , where θk, k = 1, .., p is a vector of

coefficients (parameters) for growth curves and q is the number
of coefficients for the specific growth curve in that model (e.g.,
q = 3 in a Gompertz curve). Also let f (W |θk), k = 1, ..., p be
the growth curve then our model can be defined as Y = M + E ,
where E ∼ Np(0,Ω) , Ω is a p × p variance covariance matrix,

Y
(p×n)

=


y′1
...

y′p


(p×n)

, where yk =


y1k
...

ynk

 for k = 1, ..., p , and M
(p×n)

=


µ′1
...
µ′p


(p×n)

=
[
f (W |Θ)n×p

]′
, where µk =


µ1k
...
µnk

 = f (W |θk)
n×1

for

k = 1, ..., p .

This model considers a covariance structure between weight and
length in that, under normal conditions, the lengthier the subject
grows, the weightier it becomes and vice versa. Assume that
Y follows a p × n matrix normal distribution, which is actually
a special case of the pn-variate multivariate normal distribution
when the covariate matrix is separable. Then denote a pn-variate
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normal distribution with pn-dimensional mean µ and pn × pn
covariance matrix Ω , the p.d.f. function will be as follows:

g(y|µ,Ω) = (2π)−
np
2 |Ω|−

1
2 exp

{
− 1

2 (y − µ)′Ω−1(y − µ)
}

(1),

where y
(pn×1)

= vect(Y ′) = (y′1, ..., y
′
p)′ , µ = vect(M′) =

(µ′1, ..., µ
′
p)′ ,

in which the operator vect(·) stacks the columns of its matrix
argument from left to right in a single vector. The separable
matrix Ω = Σ ⊗ Φ , where ⊗ is the Kronecker product which
multiplies every entry of its first matrix argument by its entire
second matrix argument, can be written as:

Σ ⊗ Φ =


σ11Φ
...

σp1Φ

· · ·

· · ·

σ1pΦ
...

σppΦ

.
Also we know that Ω−1 = (Σ ⊗ Φ)−1 = Σ−1 ⊗ Φ−1 and
|Σ ⊗ Φ|−

1
2 = |Σ|−

n
2 |Φ|−

p
2 . Then we have

g(y|µ,Σ,Φ) = (2π)−
np
2 |Σ|−

n
2 |Φ|−

p
2 ·

exp
{
− 1

2 (y − µ)′(Σ ⊗ Φ)−1(y − µ)
}
.

Note that also with the matrix identity, we have

(y − µ)′1×np(Σ ⊗ Φ)−1
np×np(y − µ)np×1 = trΣ−1

p×p(Y − M)p×nΦ−1
n×n(Y −

M)′n×p,

g(Y |M,Σ,Φ) = (2π)−
np
2 |Σ|−

n
2 |Φ|−

p
2 .

exp
{
− 1

2 trΣ−1
p×p(Y − M)p×nΦ−1

n×n(Y − M)′n×p

}
(2).

So Y is a random variable that follows a p × n matrix normal
distribution and can be denoted as:

Y |(M,Σ,Φ) ∼ Np×n(M,Σ ⊗ Φ),

where (M,Σ,Φ) parameterize the above distribution with Y ∈
Rp×n, M ∈ Rp×n and Σ,Φ > 0 ( Σ and Φ are commonly
referred to as the within and between covariance matrices).
Recall that M is a function of Θ and assume that Φ is a
function of correlation coefficient ρ and that, for simplicity, Θ

, Σ and Φ are independent and adopt vague prior distributions
for (Θ, Φ, Σ). Then we have h(Θ,Φ,Σ) = h(Θ)h(Φ)h(Σ) and
because Φ is a function of ρ, their prior distribution assumptions
are as follows: h(Θ) ∝ constant, ρ ∝ (1 + ρ)α̃−1(1 − ρ)β̃−1 for
−1 < ρ < 1 (i.e., (1 + ρ)/2 Beta(α̃, β̃), where α̃ and β̃ can
be chosen such that the mean α̃/(α̃ + β̃) is consistent with
the empirical value for ρ ) and h(Σ) ∝ 1

|Σ|(p+1)/2 . So the prior

distribution is h(Θ, ρ,Σ) ∝ (1+ρ)α̃−1(1−ρ)β̃−1

|Σ|(p+1)/2 , and the joint posterior
distribution of the parameters follows:

π(Σ,Φ(ρ),Θ|W,Y) = (2π)−
np
2 |Σ|−

n+p+1
2 |Φ|−

p
2 (1 + ρ)α̃−1·

(1−ρ)β̃−1 exp
{
− 1

2 trΣ−1
p×p(Y − M)p×nΦ−1

n×n(Y − M)′n×p

}
(3).

Let G = (Y − M)Φ−1(Y − M)′ then (3) becomes

π(Σ,Φ(ρ),Θ|W,Y) ∝

[
|Σ|−

n+p+1
2 exp

{
− 1

2 trΣ−1G
}]
· |Φ|−

p
2 (1 +

ρ)α̃−1(1 − ρ)β̃−1.

This can be reduced to the joint distribution of Φ and Θ and
become π(Φ(ρ),Θ|W,Y) if we integrate out Σ.

The integration can be worked out by recognizing that if Σ−1

follows a Wishart distribution [14] then it can be written as:

π(Θ,Φ(ρ)|W,Y) ∝ |Φ|
−

p
2 (1+ρ)α̃−1(1−ρ)β̃−1

|G|n/2
(4).

Assume an autocorrelation matrix for Φ with correlation coeffi-
cient ρ as follows:

Φ =


1
ρ
...

ρn−1

ρ
1
...

ρn−2

ρ2

ρ
...

ρn−3

· · ·

· · ·

· · ·

ρn−1

ρn−2

...
1

 (5),

where ρ is the correlation coefficient. Then we can substitute the
results that

|Φ| = (1 − ρ2)n−1, into (4) and get the posterior function

π(Θ,Φ(ρ)|W,Y) ∝ (1+ρ)(α̃−1)−p(n−1)/2(1−ρ)(β̃−1)−p(n−1)/2

|G|n/2
(6).

3. An Illustrative Example

If we take the Gompertz curve as an illustrative example in
fitting a bivariate data set which has weight and length as the
variables and the following priors for

Θ = {θ1 θ2} =


a1 a2

b1 b2

c1 c2

, where a1 ∼ Expon( 1
ã1

) , a2 ∼

Expon( 1
ã2

),{
b1

b2

}
∼ N2

({
b̃1

b̃2

}
, Σ̃b

)
, c1 ∼ Expon( 1

c̃1
) and c2 ∼ Expon( 1

c̃2
).

Let Θ̃ = (ã1, ã2, b̃1, b̃2, c̃1, c̃2, Σ̃b) be a set of empirical Bayes
estimates of the coefficients which can be estimated through
nonlinear least square regression method. MATLAB nlinfit func-
tion can be used to fit nonlinear Jenss, Gompertz and Richards
curves and polyfit function to fit polynomial curves (MATLAB
Help and [15]). Depending on the data, although sometimes we
could get estimates of Σ̃b , most of the time we have to assume
them to be equal to some proper value for our Bayesian analysis.
So the prior distributions are:

h(Θ|Θ̃) ∝ 1
ã1ã2 c̃1 c̃2|Σ̃b|

1/2 ·

exp

− 1
2

(
b1 − b̃1

b2 − b̃2

)′
Σ̃−1

b

(
b1 − b̃1

b2 − b̃2

)
−

(
a1
ã1

+ a2
ã2

+ c1
c̃1

+ c2
c̃2

) (7).

Let (7) be substituted into (6), then it becomes

π(Θ,Φ(ρ)|W,Y) ∝
(1 + ρ)(α̃−1)−p(n−1)/2(1 − ρ)(β̃−1)−p(n−1)/2∣∣∣(Y − M)Φ−1(Y − M)′

∣∣∣n/2 �

exp

− (
a1
ã1

+ c1
c̃1

+ a2
ã2

+ c2
c̃2

)
− 1

2

(
b1 − b̃1

b2 − b̃2

)′
Σ̃−1

b

(
b1 − b̃1

b2 − b̃2

) (8).

Then we get the full conditionals of the parameters as follows:

π(ρ|·) ∝ (1+ρ)(α̃−1)−p(n−1)/2(1−ρ)(β̃−1)−p(n−1)/2

|(Y−M)Φ−1(Y−M)′|
n/2 (9),

π(a1|·) ∝
exp{−a1/ã1}

|(Y−M)Φ−1(Y−M)′|
n/2 (10),

π(a2|·) ∝
exp{−a2/ã2}

|(Y−M)Φ−1(Y−M)′|
n/2 (11),

π(b1|·) ∝ 1
|(Y−M)Φ−1(Y−M)′|

n/2 ·

exp

− 1
2

(
b1 − b̃1

b2 − b̃2

)′
Σ̃−1

b

(
b1 − b̃1

b2 − b̃2

) (12),

π(b2|·) ∝ 1
|(Y−M)Φ−1(Y−M)′|

n/2 ·

exp

− 1
2

(
b1 − b̃1

b2 − b̃2

)′
Σ̃−1

b

(
b1 − b̃1

b2 − b̃2

) (13),

π(c1|·) ∝
exp{−c1/c̃1}

|(Y−M)Φ−1(Y−M)′|
n/2 (14),
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π(c2|·) ∝
exp{−c2/c̃2}

|(Y−M)Φ−1(Y−M)′|
n/2 (15).

Regarding the MH Algorithm:

Let’s take the sampling of a2 in Gompertz curve as an example.
To define the algorithm, let ϕ(a(old)

2 , a(new)
2 ) denote a source

density for a candidate draw a(new)
2 given the current value a(old)

2
in the sampled sequence. The density ϕ(a(old)

2 , a(new)
2 ) is referred

to as the proposal or candidate generating density. Then, the
MH algorithm is defined by two steps: a first step in which a
proposal value is drawn from the candidate generating density
and a second step in which the proposal value is accepted as the
next iterate in the Markov chain according to the probability:

α
(
a(old)

2 , a(new)
2

)
= min

{
π2(a(new)

2 )ϕ
(
a(new)

2 ,a(old)
2

)
π2(a(old)

2 )ϕ
(
a(old)

2 ,a(new)
2

) , 1
}

,

if π2(a(old)
2 )ϕ

(
a(old)

2 , a(new)
2

)
> 0 (otherwise α

(
a(old)

2 , a(new)
2

)
= 1).

If the proposal value is rejected, then the next sampled value
is taken to be the current value. Let’s follow this Metropolis-
Hastings Algorithm:

1) Specify an initial value a(0)
2 .

2) Repeat for j = 1, 2, ...,M :

a) Propose a(new)
2 ∼ ϕ(a( j)

2 , ·), and
b) Let a( j+1)

2 = a(new)
2 if U(0, 1) 6 α(a( j)

2 , a(new)
2 )

otherwise a( j+1)
2 = a( j)

2 .

3) Return the values a(1)
2 , a(2)

2 , ..., a(M)
2 .

Then follow the above algorithm in taking samples of Θ and ρ
by using (9)-(15) through the following steps:

1) Set j = 0 and select a set of initial parameter values for
Θ(0) , B(0) and ρ(0).

2) Sample ρ( j+1) from (9) (using MH algorithm).
3) Sample Θ( j+1) from (10)-(15) (using MH algorithm).
4) Replace ρ( j) by ρ( j+1) , Θ( j) by Θ( j+1) and B( j) by B( j+1).
5) Set j = j + 1 and repeat steps 2 through 4.

Drop the initial burn-in sets and retain the rest of the data for
marginal distribution analysis. This analysis includes highest
density regions for the estimated parameters. In addition to
this analysis of parameters, we can also generate 90% Credible
Intervals (CIs or HDR’s, Highest Density Regions) for the best-
fit growth curve under this Bayesian formulation by using the
5% and 95% percentiles of y calculated by substituting the M
samples of Θ at a given w j.

4. Real-world Data as Example

An intrauterine growth retarded rats data set [16] in this section
as an example to demonstrate how to apply our approach to
Bayesian analysis of multivariate growth curve model in a
bivariate data setting (weight and length). In their experiment,
in [16], they chose fifty female rats that were mated overnight
with ten adult males and then divided the pregnant female rats
into three groups: control group, intrauterine growth control
group and sham-operated group. They then measured body
weight, body length, and other facial characteristics of the rats
that were in those three groups, respectively, every four days
for twenty days. For illustrative purposes and for simplifying
our analysis, the control group has been chosen and only use
the bivariates body weight and body length in our growth
curve model. The data set for rats growth is in Table 1.
Four classic growth curve models explicitly for this specific

example includes Jenss curve: f (w) = a + bw − exp(c + dw);
Gompertz curve: f (w) = a exp

[
− exp(b + cw)

]
; Richards curve:

f (w) = a
{
1 + b exp[c(d − w)]

}−1/b; Polynomial curve: f (w) =

a + bw + cw2 + dw3.

In that data set, assume that Σ̃b is equal to s2
[

1 0.1
0.1 1

]
for

Gompertz curve. Similar assumption has been made for the
other growth curves for comparison. s2 can be quite small if
prior knowledge is reliable. The value assumed here would
allow some moderate correlation relationship between the co-
variates length and weight. The results of Bayesian estimates are
displayed in Table 2. Using BIC, in conjunction with the graphs
and CIs, it seems natural to say that the Cubic growth curve
is the model of selection for this specific bivariate intrauterine
growth retarded rats data.

Regarding diagnostic testing for the model, careful considera-
tion has been given to the useful approach presented by Franses
[17] for residual autocorrelation in growth curve models. How-
ever, it’s natural to concurr with his own conlcusion that there
are obvious drawbacks in applying his method to small sample
sizes, other growth curve models and to various model selection
criteria as well. Needless to mention that this research is dealing
with a multivariate scenario.

5. Discussion

The 90% Credible Intervals, the fitted curves, and the estimates
of the model parameters for the four growth curves in Figures 1-
4 and Table 1-2 have been presented in this paper. There, we can
see that for weight versus time (Figure 1) and length vs. time
(Figure 2), the 90% CI of Cubic curve is the narrowest among
all four curves when time is small but diverges like a funnel
shape as time increases to approximately more than 15 days; for
weight vs. time in Figure 1, Jenss and Gompertz curves both
have relatively narrow 90% CIs, whereas for length vs. time
in Figure 2, Jenss curve has smaller 90% CI. In Figures 3-4,
we observed that on the one hand, the data display a positive
trend that as length increases, the rate of change in weight also
increases; on the other hand, when weight increases, the rate
of change in length decreases. Although all four curves fit the
data reasonably well, the Cubic curve is apparently the best fit
curve among them. In addition, as time increases approximately
before the fifteenth day, the rate of change in length and in
weight both increase as weight and length increase. It’s obvious
that Cubic curve appears to be the best fit curve for the given
data. Besides, BIC is useful criteria in model selection because
the smaller value it is, the better curve fitting it will be, and this
is consistent with our observations in those Figures.

In summary, the Bayesian multivariate growth curve models
in this study provide a formulation for generating Bayesian
estimates as well as describing the dependence relationship
between variables with a certain autocorrelation relationship
under consideration. Further research topic may include better
diagnostic testing methods for more growth curve models as
well as smaller multivariate sample size data using various
selection criteria.
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Age (Days) Weight (g) Length (mm)
1 6.6 54.5
5 10.4 65.6
9 16.3 77.2
13 23.2 87.5
17 28.6 94.6
21 38.4 110.4

TABLE 1
Rats Growth Data

(Units for ages: Days; Weight: Grams and Length: mm)

TABLE 2
Bayesian Estimates of Parameters and BIC

Note: Take the numbers in the two columns under Gompertz as
example: they are the estimates of the parameters (coefficients)
of the bivariate growth curves (for length and weight, respec-
tively), where

Length(w) = 275.231 exp
[
− exp(0.501 + 0.027w)

]
,

Weight(w) = 146.321 exp
[
− exp(1.167 + 0.041w)

]
.

Figure 1 Weight vs. Time Credible Intervals for the Four
Different Growth Curves

Figure 2 Length vs. Time Credible Intervals for the Four
Different Growth Curves

Figure 3 Weight vs. Length for the Four Different Growth
Curves

Figure 4 Three Dimensional Plot (Time, Weight and Length)
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