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Abstract—In this paper we propose an asymp-
totic procedure for diagnosing the appropriateness of a
multivariate spatial regression with correlated responses
based on the so-called multidimensional set-indexed least
squares residual partial sums processes of the observations.
The limit process which is a projection of the higher
dimensional set-indexed Brownian sheet is derived by
applying the vectorial analogue of Prohorov’s theorem.
The adequacy of the assumed model is tested by using the
Kolmogorov-Smirnov and Craḿer-von Mises functional of
the processes. Simulation based investigation are conducted
in studying the finite sample size performance of the tests
by comparing with that of the classical likelihood ratio
test. Finally we attempt to apply the proposed method to
a mining data supplied by a mining industry in Southeast
Sulawesi.

Keywords—Multivariate spatial regression, set-
indexed partial sums process, least squares residuals,
multidimensional set-indexed Brownian sheet, model-
check, Kolmogorov-Smirnov, Craḿer-von Mises.

I. INTRODUCTION

Multivariate spatial regression (M.S.R.) analysis
is frequently utilized as a statistical tool for empiri-
cal model building in applied sciences such as in geo-
sciences and industry. As evidenced in the literatures,
checking the appropriateness of an assumed model is
important before the fitted model is further used such
as in the prediction of future observations. To this stage
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the residual of the observation or variant of it is com-
monly investigated. We refer the reader to Box and
Draper [7], Christensen [9], pp. 9–21 and Johnson and
Wichern [11], pp. 323–328 for the case where the ob-
servations are assumed to be normally distributed and
Arnold [2] for an asymptotic approach.

In this paper we aim to demonstrate the applica-
tion of a technique that based on the partial sums (cu-
mulative sum = CUSUM) of the least squares residu-
als to verify whether or not the assumed model is ade-
quate. The application of CUSUM technique can also
be found in the problem of quality control in indus-
try using control chart as the tool in detecting whether
a change occurs during the production process. The
comparison between the CUSUM and Shewart’s con-
trol chart has been established in Kovarik and Sarga
[12] by a case study.

Let us consider a multivariate spatial process

{Y(t) := (Yi(t))
p
i=1 : t := (tj)d

j=1 ∈ [a, b]d ⊂ IRd}
where [a, b]d := [a1, b1] × · · · × [ad, bd] =: E is
a fixed experimental region. Throughout we write
anyp-column vector of real numbers or real functions
w := (w1, . . . , wp) by (wi)

p
i=1 for convenient. We as-

sume thatY follows a nonparametric spatial regression
model

Y(t) = g(t) + E(t), t ∈ E, (1)

whereg := (g(i))p
i=1 : E → IRp is the true-unknown

regression function, andE := (ε(i))p
i=1 is the vector of

random errors withE(E) = 0 ∈ IRp, andCov(E) =
Σ which is unknown and positive definite.

In the framework of model-check for multivari-
ate linear regression in the first step we assume that
g belongs to a family of polynomials or trigonomet-
ric polynomials with a given upper bound on the de-
gree. Then based on the sample we test the hypoth-
esis if the assumed family of the polynomials is ap-
propriate to represent the model. More precisely, let
W := [f1, . . . , fm] be a subspace ofL2(λE) generated
by some given regression functionsf1, . . . , fm, where
λE is the Lebesque measure onE. We then test the
hypothesis

H0 : g ∈ ×p
i=1W := Wp against H1 : g 6∈ Wp (2)
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based on a sample taken according to a design. Let
{Ynj := Y(tnj) : 1 ≤ j ≤ n1}, n ≥ 1 be a sequence
of independent observations of Model 1 on a regular
lattice withnd points

Ξd
n := {tnj := (tnjk

)d
k=1 ∈ E, 1 ≤ jk ≤ n},

wheretnjk
:= ak + jk

n (bk − ak), k = 1, . . . , d. Here
1 denotes(1, . . . , 1)> ∈ Zd

+ andj := (j1, . . . , jd)> ∈
Zd

+. Thus the setY(Ξd
n) := {Ynj : 1 ≤ j ≤ n1}

is a ”pyramidal array” ofp-random vectors indexed by
the lattice ofd-dimensional positive integer that sat-
isfies the modelYnj = g(tnj) + Enj, whereEnj is
the array of independent and identically distributed er-
ror vectors withE(Enj) = 0 and Cov(Enj) = Σ.
Without loss of generality and for notational conve-
nience we consider in this papern × n-regular lattice
Ξn = {(`/n, k/n) : 1 ≤ `, k ≤ n} in the unit rectan-
gle I := [0, 1] × [0, 1] as the experimental condition.
Our result can be immediately extended to the higher
dimensional case.

In the classical multivariate analysis whereEn`k

are assumed to be normally distributed, a more specific
hypothesis than (2) is considered. That is

H0 : g ∈ Wp against H1 : g ∈ Vp, (3)

where V := [f1, . . . , fm, fm+1, . . . , fq] ⊇ W.
The set {fm+1, . . . , fq} are the set of additional
known regression functions inL2(λI) needed to
representg. Let Wn := [f1(Ξn), . . . , fm(Ξn)], and
Vn := [f1(Ξn), . . . , fm(Ξn), fm+1(Ξn), . . . , fq(Ξn)]
be subspaces ofIRn×n generated respectively by
the set of n × n-matrixes {f1(Ξn), . . . , fm(Ξn)}
and {f1(Ξn), . . . , fm(Ξn), fm+1(Ξn), . . . , fq(Ξn)},
where fj(Ξn) := (fj(`/n, k/n))n

`,k=1 ∈ IRn×n

is obtained by evaluatingfj to every point inΞn,
j = 1, . . . , q. Furthermore, letWp

n := ×p
i=1Wn and

Vp
n := ×p

i=1Vn be the product ofp copies ofWn and
Vn, respectively. LetprWp

n
be the component-wise

orthogonal projector ontoWp
n. Then by using the

analogous argument as the estimation procedure
defined in [9], pp. 1–5. and [11], pp. 314–328, the
ordinary least squares residual of the arrayY(Ξn) is
given by

R(Ξn) := (rn`k)n
`,k=1 = Y(Ξn)−prWp

n
Y(Ξn), (4)

wherern`k := (r(1)
n`k, . . . , r

(p)
n`k)

>, for 1 ≤ `, k ≤ n.
Suppose{f1(Ξn), . . . , fm(Ξn)} builds an orthonormal
basis (ONB) forWn, thenR(Ξn) can be equivalently
expressed asR(Ξn) = (R(i)(Ξn))p

i=1 ∈ ×p
i=1IR

n×n,
where fori = 1, . . . , p,

R(i)(Ξn) = Y (i)(Ξn)

−
p∑

j=1

〈fj(Ξn), Y (i)(Ξn)〉IRn×nfj(Ξn).

Here〈·, ·〉IRn×n denotes the inner product inIRn×n, de-
fined by

〈A,B〉IRn×n := trace(A>B), A,B ∈ IRn×n.

Several test procedures have been proposed for
testing Hypothesis 3 (see [11] pp. 396–398). One of
them is the classical likelihood ratio (L.R.)-test using
the modified Wilk’s lambda statistic defined by

Λn := [n2 − q − 1
2
(p− q + m + 1)] ln

{
detΣ̂V

n

detΣ̂W
n

}
,

where

Σ̂W
n := (Yn2 −Xm(X>

mXm)−1X>
mYn2)> ×

(Yn2 −Xm(X>
mXm)−1X>

mYn2)/n2

Σ̂V
n := (Yn2 −Xq(X>

q Xq)−1X>
q Yn2)> ×

(Yn2 −Xq(X>
q Xq)−1X>

q Yn2)/n2.

Thereby we define the matrices

Yn2 := (vec(Y (1)(Ξn)), . . . , vec(Y (p)(Ξn))),
Xm := (vec(f1(Ξn)), . . . , vec(fm(Ξn))),
Xq := (vec(f1(Ξn)), . . . , vec(fq(Ξn))),

where ”vec” denotes the vec operator defined e.g. in
Magnus and Neudecker [16], pp. 34–36. The test will
reject H0 at level α ∈ (0, 1), if and only if Λn ≥
χ

2;(1−α)
p(q−m) , whereχ2;(1−α)

p(q−m) is the(1−α)-quantile of cen-
tral chi-square distribution withp(q − m) degrees of
freedom.

The L.R.-test defined above has restriction in the
implementation in that the population under study must
be normally distributed. However such a distributional
simplification is frequently found to be unrealistic es-
pecially in the statistical modelling of geosciences (cf.
Christensen [9], pp. 263–299 and Cressie [10], pp 105–
183). In the forecasting problem of times series regres-
sion, normality assumption possibly leads to spurious
results. Alternative approaches with Grey and ARIMA
models under modified residuals was proposed in Shu
and Hsu [19].

In contrast to this classical approach, for our pro-
posed method we do not need such normality assump-
tion. We only consider the partial sums of the array
of the residuals instead. Precisely, letA be the family
of convex subset ofI, anddλ be the Lebesgue pseudo-
metric onA. Let C(A) be the set of continuous func-
tions onA with respect todλ. We embedsR(Ξn) into
a stochastic process indexed byA defined by

Vn(R(Ξn))(B) :=
n∑

`=1

n∑

k=1

nλ(B ∩ C`k)rn`k, B ∈ A
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whereC`k := ((` − 1)/n, `/n] × ((k − 1)/n, k/n].
The i-th one dimensional component ofVn(R(Ξn))
is defined by

Tn(R(i)(Ξn))(B) =
n∑

`=1

n∑

k=1

nλ(B ∩ C`k)r
(i)
n`k.

Results concerning the properties ofTn was stud-
ied in the work of Somayasa, Ruslan, Cahyono and
Ngkoimani [22]. Interested reader is also suggested
to see Bischoff and Somayasa [6] for the case of the
ordinary partial sums process.

By the definition of the operatorVn, the process
{Vn(R(Ξn))(B) : B ∈ A} induces the sample path
in the spaceCp(A). As a convention we call this pro-
cess ap-dimensional least squares residual partial sum
process (L.S.R.P.S.P.) indexed byA. In the present pa-
perCp(A) is furnished with the uniform topology in-
duced by the metricϕ defined by

ϕ(u, w) :=
p∑

i=1

‖ui − wi‖A,

for u := (ui)
p
i=1 andw := (wi)

p
i=1 ∈ Cp(A), where

for i = 1, . . . , p,

‖ui − wi‖A := sup
A∈A

|ui(A)− wi(A)| .

We propose the Kolmogorov-Smirnov (K.S.) and
Craḿer-von Mises (C.M.) functionals of the sequence
of the p-dimensional L.S.R.P.S.P. as the test statistics
for testing (2) defined by

KSn,A := sup
B∈A

‖Σ−1/2Vn(R(Ξn))(B)‖IRp

CMn,A :=
1
n2

∑

B∈A
‖Σ−1/2Vn(R(Ξn))(B)‖2

IRp ,

whereΣ−1/2 a p × p-symmetric matrix that satisfies
Σ−1/2Σ−1/2 = Σ−1. The K.S.-test (resp. C.M.-
test) will rejectH0 at a levelα ∈ (0, 1) if and only
if KSn,A > q1−α (resp.CMn,A > c1−α), whereq1−α

(resp. c1−α) is the(1 − α)-th quantile of the limiting
distribution ofKSn,A (resp.CMn,A).

The properties of the one-dimensional version of
the C.M.-test for spatial data was firstly investigated in
MacNeill and Jandhyalla [15]. The results was gener-
alized to one dimensional set-indexed LSRPSP by Xie
and MacNeill [25]. They got the limit processes by ap-
plying the approach of MacNeill [13, 14]. In [6] the
limit process of the sequence of ordinary L.S.R.P.S.P.
for univariate spatial regression was derived by gener-
alizing the geometric approach of Bischoff [5]. The
extension of the method to the set-indexed L.S.R.P.S.P.

has been already studied in [22]. In this paper we
derive the limit process of the multidimensional set-
indexed L.S.R.P.S.P. by applying the vectorial exten-
sion of Prohorov’s theorem (cf. Billingsley [4], pp. 35–
40).

The rest of the present paper is organized as fol-
lows. In Section II we establish a limit theorem for
the p-dimensional set-indexed L.S.R.P.S.P. underH0

as well as underH1. For this purpose we generalize the
uniform central limit theorem of Alexander and Pyke
[1] to higher dimensional case, see Appendix. Exam-
ples of the limit process underH0 andH1 associated
to polynomial models are studied in Section III. Sim-
ulation study is devoted in Section IV. Application of
the method to real data is presented in Section V. The
paper is closed in Section VI with a conclusion and
suggestion for future work.

II. THE LIMIT OF KSn,A AND CMn,A

A processZp := {(Z(1)(A), . . . , Z(p)(A))> :
A ∈ A} is called thep-dimensional set-indexed Brow-
nian sheet indexed byA, if and only if it is centered
Gaussian process with the covariance function

Cov(Zp(A1),Zp(A2)) = λ(A1 ∩A2)Ip, A1, A2 ∈ A

whereIp is thep× p-identity matrix. The existence of
this process can be shown by generalizing the uniform
central limit theorem of Alexander and Pyke [1] and
Pyke [17] to vectorial processes indexed by sets. As
a result in probability theory it must be well known.
However we can not find a reference where it is stated.
Therefor we present the theorem together with the
proof in the appendix.

Now we are ready to state the limit process of the
sequence ofp-dimensional set-indexed L.S.R.P.S.P. for
the model specified underH0 as well as underH1.

Theorem 1 Let {f1, . . . , fm} be an orthonormal
bases (ONB) ofW andhfj a function inC(A) defined
by hfj (A) :=

∫
A fjdλ. If fj is continuous and have

bounded variation in the sense of Hardy (cf. [8]), that
is fj ∈ BVH(I), j = 1, . . . , m, then underH0 it holds
true

Σ−1/2Vn(R(Ξn)) D−→ ZH0
p,f := Zp − pr∗WHZp

Zp.

where

pr∗WHZp
Zp = (pr∗WHZ

Z(1), . . . , pr∗WHZ
Z(p))>

constitutes a component-wise projection ofZp in the
sense of Rudin [18]. Thereby for everyu ∈ C(A) and
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A ∈ A,

(pr∗WHZ
u)(A) :=

m∑

j=1

〈hfj
, u〉hfj

(A).

Here
∫ R denotes the Riemann-Stieltjes integral, and

for (t, s) ∈ I, u(t, s) := u([0, t] × [0, s]). Moreover
Zp,f is a centered Gaussian process with the covari-
ance function given by

K
Z

H0
p,Z

(A,B) := (λ(A ∩B)−
m∑

j=1

hfj
(A)hfj

(B))Ip

wherehfj
(A) :=

∫
A fjdλ.

Proof: UnderH0, Equation 4 is equivalent to

Vn(R(Ξn)) = Vn(E(Ξn))−Vn(prWp
n
E(Ξn)).

Next by Lemma 5.1 in [22], we further get

Vn(prWp
n
E(Ξn)) = (prWnHZ

Tn(ε(i)(Ξn)))p
i=1

= prWnHZp
Vn(E(Ξn)),

where WnHZ
:= [h

s̃
(n)
1

, . . . , h
s̃
(n)
m

] is subspace

of C(A) generated by {h
s̃
(n)
1

, . . . , h
s̃
(n)
m
}, with

h
s̃
(n)
w

(A) :=
∫
A s̃

(n)
w dλ, for some orthonormal set

of step functions{s̃(n)
1 , . . . , s̃

(n)
m } ⊂ BVH(I) that

satisfy‖s̃(n)
w − fw‖∞ → 0, asn →∞, w = 1, . . . , m.

Interested reader is referred to Lemma A.8 and Lemma
A.9 in [6] for the definition ofs̃(n)

w and their properties
useful for obtaining the result.

By considering Theorem A.1 we only need to
show that the process satisfies the weak convergence

Σ−1/2prWnHZp
Vn(E(Ξn)) D−→ pr∗WHZp

Zp, n →∞.

For this we apply Prohorov’s theorem that sug-
gests to show two conditions. First, we have
to show that the finite dimensional distribution
of Σ−1/2prWnHZp

Vn(E(Ξn)) converges to that of

pr∗WHZp

Zp, where for everyA ∈ A, (pr∗WHZp

Zp)(A)

follows a centeredp-variate normal distribution with
the covariance matrix

C(A,B) :=
m∑

w=1

hfw(A)hfw(B)Ip, for A,B ∈ A.

Second, the process must be shown to be tight.
For the first objective we apply the Lindeberg-

Levy multivariate central limit theorem studied e.g. in

Van der Vaart [24], pp. 16. LetA1, · · · , Ar be any con-
vex sets inA and letc1, . . . , cr be any real numbers.
We consider the asymptotic distribution of the general
linear combination

Un :=
r∑

k=1

ckΣ−1/2prWnHZp
Vn(E(Ξn))(Ak)

=
r∑

k=1

ckΣ−1/2(prWnHZ
Tn(ε(i)(Ξn))(Ak))

p
i=1. (5)

SinceE(Un) = 0, by the standard theory of multivari-
ate analysis, it holds

V ar(Un) =
r∑

k,`=1

ckc`Σ−1/2E(prWnHZp
Vn(E(Ξn))(Ak)×

pr>WnHZp
Vn(E(Ξn))(A`))Σ−1/2

=
r∑

k,`=1

ckc`Σ−1E((Bi(Ak)Bj(A`))
p
i,j=1),

where Bi(Ak) := prWnHZ
Tn(ε(i)(Ξn))(Ak), i =

1, . . . , p andk = 1, . . . , r. Next, for fixedk and `,
we have by the definition ofprWnHZ

,

EBi(Ak)Bj(A`) =
m∑

w,w′=1

E

∫ R

I
s̃(n)
w dTn(ε(i)(Ξn))

×
∫ R

I
s̃
(n)
w′ dTn(ε(j)(Ξn))h

s̃
(n)
w

(Ak)hs̃
(n)

w′
(A`),

where by referring to Bischoff and Somayasa [6], for
(t, s) ∈ I,

Tn(ε(i)(Ξn))(t, s) :=

1
n

[ns]∑

k=1

[nt]∑

`=1

ε
(i)
n`k +

(nt− [nt])
n

[ns]∑

k=1

ε
(i)
n[nt]+1,k

+
(ns− [ns])

n

[nt]∑

`=1

εn`,[ns]+1

+
(nt− [nt])(ns− [ns])

n
ε
(i)
n[nt]+1,[ns]+1.

Hence, by the definition of the Riemann-Stieljes inte-
gral (cf. Stroock [20], pp. 7–17) and by the indepen-
dence of{εn`k : 1 ≤ `, k ≤ n}, we further get

E(
∫ R

I
s̃(n)
w dTn(ε(i)(Ξn))

∫ R

I
s̃
(n)
w′ dTn(ε(j)(Ξn)))

=
n∑

u,v,u′,v′=1

s̃(n)
w (

u

n
,
v

n
)

1
n2

E(ε(i)
nuvε

(j)
nu′v′)s̃

(n)
w′ (

u′

n
,
v′

n
)

=
1
n2

n∑

u,v=1

s̃(n)
w (

u

n
,
v

n
)σij s̃

(n)
w′ (

u′

n
,
v′

n
).
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Because of the convergence‖s̃(n)
w − fw‖∞ n→∞−→ 0, for

w = 1, . . . , m (see [6]), the right hand side of the last
equation converges to

σij

∫

I
fwfw′dλ = σij〈fw, fw′〉L2 = σijδww′ ,

whereδww′ = 1 if w = w′, andδww′ = 0 if w 6= w′.
Also we get

h
s̃
(n)
w

(Ak)hs̃
(n)

w′
(A`)

n→∞−→ hfw(Ak)hfw′ (A`).

Hence, by combining these two results we have

E(Bi(Ak)Bj(A`))
n→∞−→ σij

m∑

w=1

hfw(Ak)hfw(A`).

Let D :=
∑m

w=1 hfw(Ak)hfw(A`)11> and let¯ de-
note the Hadarmard product defined e.g. in Magnus
and Neudecker [16], pp. 53–54. Then by the preceding
results and by the properties of̄, V ar(Un) satisfies

V ar(Un) n→∞−→
r∑

k,`=1

ckc`Σ−1/2(Σ¯D)Σ−1/2 =

r∑

k,`=1

ckc`C(Ak, A`) = V ar
r∑

k=1

ck(pr∗WHZp
Zp)(Ak).

Next we investigate that the Lindeberg condition is ful-
filled by the central limit theorem. We observe thatUn

can also be written as

Un =
n∑

u,v=1

r,m∑

k,w=1

ck

n
Σ−1/2s̃(n)

w (
u

n
,
v

n
)Enuvhs̃

(n)
w

(Ak).

Hence we get

n∑

u,v=1

‖
r,m∑

k,w=1

ck

n
Σ−1/2s̃(n)

w (
u

n
,
v

n
)Enuvhs̃

(n)
w

(Ak)‖2
IRp

≤
n∑

u,v=1

‖rmMγ2
f

1
n
Σ−1/2Enuv‖2

IRp

= (rmMγ2
f )2‖Σ−1/2‖2 1

n2

n∑

u,v=1

‖Enuv‖2
IRp ,

where

M := max
1≤k≤r

{ck} and γf := max
1≤w≤m

‖fw‖∞.

That why by considering the stochastically indepen-
dent property of the array of thep-vector of the ran-
dom errors and the well-known bounded convergence

theorem, for everyε > 0 it holds

0 ≤ lim
n→∞

n∑

u,v=1

E(‖rmMγ2
fΣ

−1/2 1
n
Enuv‖2

IRp

×1{‖rmMγ2
f
Σ−1/2 1

n
Enuv‖IRp≥ε})

≤ (rmMγ2
f )2‖Σ−1/2‖2 lim

n→∞E(‖En11‖2
IRp

×1{‖En11‖IRp≥ εn

rmMγ2
f
‖Σ−1/2‖2

}) = 0.

The last result implies that the Lindeberg con-
dition is satisfied. Therefore it can be con-
cluded that the finite dimensional distribution of
Σ−1/2prWnHZp

Vn(E(Ξn)) converges to that of

pr∗WHZp

Zp.

To show the tightness of the process we define
the modulus of continuity of thep-dimensional process
Zn := (Z(i)

n )p
i=1 := Σ−1/2prWnHZp

Vn(E(Ξn)) by

w(Zn, δ) := sup
{A,B∈A:dλ(A,B)<δ}

dZn(A,B),

where dZn(A,B) := ‖Zn(A) − Zn(B)‖IRp , for

A,B ∈ A. Sincew(Zn, δ) ≤ ∑p
i=1 w(Z(i)

n , δ), then
two show the tightness ofZn it is sufficient to investi-
gate the tightness ofZ(i)

n for all i. In other word, the
one-dimensional component ofZn must be tight in or-
der to make thep-dimensional process to be tight. By
Theorem 2.3 in [4] we need the sufficient condition in
thatZ(i)

n converges toZ(i), for all i. The proof is fin-
ished with Theorem 2.2 of Somayasa [22].

By Theorem 1 and the well-known continuous
mapping theorem (cf. Theorem 5.1 in [4]) the
sampling distribution of the statisticsKSn,A and
CMn,A can be immediately approximated by those

of supA∈A
∥∥∥ZH0

p,f (A)
∥∥∥
IRp

and
∫
I ‖ZH0

p,f (A)‖2
IRpdA, re-

spectively.
The test procedures derived above are consistent in

the sense the power of the test under the competing al-
ternative converges to 1. Consequently the behavior of
the test can not be observed as the model moves away
from H0. Therefore without altering the test problem
for (2) and (3) to be able to investigate how good our
tests perform under the alternatives we consider a lo-
calized model defined by

Y(Ξn) =
1
n
glocal(Ξn) + E(Ξn)

whereglocal(Ξn) := 1
ng(Ξn) = 1

n(g(i)(Ξn))p
i=1.

Theorem 2 Let {f1, . . . , fm} be an ONB ofW and
for all i = 1, . . . , p, g(i) have bounded variation in
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the sense of Vitali onI. If f1, . . . , fm are continuous
and have bounded variation in the sense of Hardy on
I. Then under the alternative we have

Σ−1/2Vn(R(Ξn)) D−→ Σ−1/2prW⊥
HZp

hg + ZH0
p,f ,

where

prW⊥
HZp

hg = hg −
m∑

w=1

(〈hfw , hg(i)〉HZ
)p
i=1hfw

hg := (hg(i))p
i=1 : A → IRp,

with

hg(i)(B) :=
∫

B
g(i) dλ, B ∈ A.

Proof: UnderH1 we have

R(Ξn) = pr
Wp⊥

n

1
n
g(Ξn) + pr

Wp⊥
n
E(Ξn).

Hence by applying Lemma 5.1 in [22] and by consid-
ering the definition of thep-dimensional set-indexed
partial sums operatorVn, we further get

Σ−1/2Vn(R(Ξn)) = Σ−1/2prW⊥
nHZp

1
n
Vn(g(Ξn))

+prW⊥
nHZp

Σ−1/2Vn(E(Ξn).

Because of Theorem 1, we only need to proof
prW⊥

nHZp

1
nVn(g(Ξn)) converges topr

Wp⊥
HZp

hg. By

the definition of the component-wise projection and by
the fact that〈·, ·〉 restricted toHZ coincides to〈·, ·〉HZ

(cf. Proposition 2.1 in [22]), thei-th component of
prW⊥

nHZp

1
nVn(g(Ξn)) has the representation

1
n
Tn(g(i)(Ξn))−

m∑

w=1

〈hs̃(n)
w ,

1
n
Tn(g(i)(Ξn))〉HZ

hs̃(n)
w

where the terms1nTn(g(i)(Ξn)) andhs̃
(n)
w converge to

hg(i) :=
∫
I g(i)dλ andhfw , asn → ∞, respectively,

for i = 1, . . . , p. The continuity of the inner product
〈·, ·〉HZ

implies 〈hs̃
(n)
w , 1

nTn(g(i)(Ξn))〉HZ
hs̃

(n)
w con-

verges to〈hfw , hg(i)〉HZ
hfw , asn → ∞, for all w.

This convergence results finally implies

Σ−1/2prW⊥
nHZp

1
n
Vn(g(Ξn)) n→∞−→ Σ−1/2pr

Wp⊥
HZp

hg.

The power function of the asymptotically sizeα
K.S. and C.M.-tests can now be approximated respec-
tively by the computation of the probabilities of the

form

P{sup
A∈A

‖prW⊥
HZp

(Σ−1/2hg + ZH0
p,f )(A)‖IRp ≥ q1−α}

and

P{
∫

I
‖prW⊥

HZp

(Σ−1/2hg + ZH0
p,f )(A)‖2

IRpdA ≥ c1−α}

whereq1−α and c1−α are the1 − α quantiles of the
limiting distribution ofKSn,A andCMn,A underH0,
respectively.

Remark 3 In the application Σ is sometimes un-
known. In this caseΣ can be directly replaced with
a consistent estimator without altering the asymptotic
results, for example with that defined in Arnold [2],
i.e.,Σ̂n := Σ̂V>

n Σ̂V
n .

In the computation we dealt with the partial sums
process indexed by the family of closed rectangles
U := {[0, t]× [0, s] : 0 ≤ t ≤ 1, 0 ≤ s ≤ 1} ⊂ A as a
spacial case. The limit process is conveniently written
asZH0

p,f )(t, s) instead ofZH0
p,f ([0, t]×[0, s]). In the prac-

tice ZH0
p,f (t, s) is approximated by thep-dimensional

partial sums process

Σ−1/2Vn(R(Ξn))([nt]/n, [ns]/n), (t, s) ∈ I,

where[x] := max{z ∈ Z : z ≤ x}. The validity of
the approximation is relied on the result that

Σ−1/2Vn(R(Ξn))([nt]/n, [ns]/n) D−→ BH0
p,f (t, s)

for every(t, s) ∈ I, whereBH0
p,f (t, s) := prW∗⊥

HZp

Bp.

TherebyBp is the p-dimensional standard Brownian
(2) motion with the covariance function

KBp((t, s); (t
′, s′)) = (t ∧ t′)(s ∧ s′)Ip.

To this end we refer the reader to Somayasa [21]. Fur-
thermore, by the property of the partial sums, the ana-
logues definition of the Kolmogorov-Smirnov and the
Cramer-von Mises statistics are given respectively by

KSn := max
1≤`,k≤n

‖Σ−1/2Vn(R(Ξn))(`/n, k/n)‖IRp ,

CMn :=
1
n2

n∑

`,k=1

‖Σ−1/2Vn(R(Ξn))(`/n, k/n)‖2
IRp .

III. EXAMPLES OF THE LIMIT PROCESSES

For illustrative purpose we present examples of
the limit process associated to the model underH0

andH1. The assumed regression models are restricted
to the polynomial relationship between the response
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variables and the explanatory variables.

A. Example 1

We consider the hypothesisH0 : g ∈ [f1]p, against
H1 : g ∈ [f1, f2, f3]p, where for(t, s) ∈ I, f1(t, s) =
1, f2(t, s) = t, andf3(t, s) = s. Hence for anyB ∈
A, hf1(B) = λ(B) and〈hf1 , Z

(i)〉 = Z(I). Therefore
the limit process underH0 is given by

ZH0
p,f1

(B) = Zp(B)− λ(B)Zp(I), B ∈ A
having the covariance function

KZf1
(B1, B2) = (λ(B1 ∩B2)− λ(B1)λ(B2))Ip.

The limit process underU is give by

ZH0
p,f1

(t, s) = Bp(t, s)− tsBp(1, 1), (t, s) ∈ I

which is the well knownp-dimensional Brownian (2)
bridge, having the covariance function

KZf1
((t, s), (t′, s′)) = ((t ∧ t′)(s ∧ s′)− tst′s′)Ip.

For this type ofH1 we get the limit process as

1
2
Σ−1/2(β̃2(t2s− ts) + β̃3(ts2 − ts)) + ZH0

p,f1
(t, s),

where forj = 2, 3, β̃j = (β1j , · · · , βpj)> ∈ IRp is a
vector of unknown constants.

B. Example 2

In the second example we suppose that a first order
multivariate model is observed underH0, whereas un-
derH1 a second order multivariate model is assumed.
That is we considerH0 : g ∈ [f1, f2, f3]p, against
H1 : g ∈ [f1, f2, f3, f4]p, with f1(t, s) = 1, f2(t, s) =
t, f3(t, s) = s andf4(t, s) = ts. The orthonormal
set obtained from{f1, f2, f3} is given byf̃1(t, s) = 1,
f̃2(t, s) =

√
3(2t − 1), and f̃3(t, s) =

√
3(2s − 1).

SinceZp(t, s) = 0 for t = 0 or s = 0, then by the
definition of〈·〉 we get

〈hf̃1
, Z(i)〉 = Z(i)(I),

〈hf̃2
, Z(i)〉 =

√
3Z(i)(I)− 2

√
3

∫

[0,1]
Z(i)(t, 1)dt,

〈hf̃3
, Z(i)〉 =

√
3Z(i)(I)− 2

√
3

∫

[0,1]
Z(i)(1, s)ds.

Hence the correspondingp-dimensional set-indexed
PSPLSR underH0 is given by

ZH0
p,f3

)(B) = Zp(B)− λ(B)Zp(I)

−(
√

3Zp(I)− 2
√

3
∫

[0,1]
Zp(t, 1)dt)hf̃2

(B)

−(
√

3Zp(I)− 2
√

3
∫

[0,1]
Zp(1, s)ds)hf̃3

(B).

The covariance function of this process is given by

KZf3
(B1, B2) = KZf1

(B1, B2)

−(3
∫

B1

(2t− 1)dλ

∫

B2

(2t− 1)dλ)Ip

−(3
∫

B1

(2s− 1)dλ

∫

B2

(2s− 1)dλ)Ip.

The ordinary version of the limit process takes the form

ZH0
p,f3

)(t, s) = Bp(t, s)− tsBp(I)

−6(Bp(I)− 2
∫

[0,1]
Bp(t, 1)dt)ts(t− 1)

−6(Bp(I)− 2
∫

[0,1]
Bp(1, s)ds)ts(s− 1).

with the covariance function

KZf3
((t, s), (t′, s′)) = KZf1

((t, s), (t′, s′))

−3tst′s′(t− 1)(t′ − 1)Ip − 3tst′s′(s− 1)(s′ − 1)Ip.

After some algebraic computation we get the limit pro-
cess for the localized model underH1 as

1
4
Σ−1/2β̃4(t2s2 − t2s− ts2 + ts) + ZH0

p,f3
)(t, s),

for some unknowñβ4 = (β14, . . . , βp4)> ∈ IRp.

IV. SIMULATION STUDY

In this section we investigate the finite sample
size behavior of the tests by conducting Monte Carlo
simulation. We consider three different cases.

A. Simulation 1

In our first simulation we consider the hypothesis
defined in Example withp = 2. The samples are gen-
erated from the localized model

Yn`k = gn`k/n + En`k,

where for1 ≤ `, k ≤ n, g(1)(`/n, k/n) = 5 + ρ`/n +
ρk/n andg(2)(`/n, k/n) = 3 + γ`/n + γk/n. Hence,
the sample is clearly fromH0 if and only if ρ = 0 = γ.
Conversely, ifρ 6= 0 andγ 6= 0, then the sample is
from H1. In this example the vector of random errors
En`k are drawn independently from a centered bivariate
normal distribution with the covariance matrix

Σ1 =

(
6.26 −0.50
−0.50 6.25

)
.
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Table 1: Probabilities of rejection ofH0 (Simulation
1) for α = 0.01, whereEn`k ∼ N2(0,Σ1) simulated
under 10000 runs.

n× n ρ γ KS
(2)
n;U CM

(2)
n;U Λn

α = 0.01
30× 30 0 0 0.0096 0.0156 0.0098

5 10 0.0792 0.1216 0.1216
5 30 0.8538 0.9580 0.9580
10 5 0.0850 0.1178 0.1178
30 5 0.8520 0.9624 0.9624

50× 50 0 0 0.0099 0.0098 0.0089
5 10 0.1048 0.1592 0.1184
5 30 0.8928 0.9668 0.9602
10 5 0.1054 0.1574 0.1184
30 5 0.8882 0.9694 0.9610

70× 70 0 0 0.0148 0.0112 0.0104
5 10 0.1158 0.1648 0.1194
5 30 0.9026 0.9648 0.9580
10 5 0.1150 0.1556 0.1112
30 5 0.9058 0.9710 0.9640
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Figure 1: Approximated power functions of the K.S.
(straight line), C.M. (dashed line), and L.R. (dotted
line) tests for Simulation 1 with50 × 50 lattice points
simulated under 10000 runs
.

Table 2: Probabilities of rejection ofH0 (Simulation
1) for α = 0.05, whereEn`k ∼ N2(0,Σ1) simulated
under 10000 runs.

n× n ρ γ KS
(2)
n;U CM

(2)
n;U Λn

α = 0.05
30× 30 0 0 0.0408 0.0544 0.0492

5 10 0.2076 0.3276 0.2824
5 30 0.9526 0.9914 0.9896
10 5 0.2206 0.3316 0.2788
30 5 0.9544 0.9888 0.9882

50× 50 0 0 0.0460 0.0548 0.0508
5 10 0.4550 0.5704 0.5334
5 30 0.9678 0.9908 0.9886
10 5 0.4498 0.5804 0.5338
30 5 0.9676 0.9912 0.9910

70× 70 0 0 0.0556 0.0480 0.0450
5 10 0.2678 0.3240 0.2878
5 30 0.9696 0.9906 0.9926
10 5 0.2672 0.3222 0.2834
30 5 0.9708 0.9892 0.9896

Table 1 and Table 2 present the probabilities of re-
jection of H0 for α = 0.01 and α = 0.05, respec-
tively, and for several varied number of lattice points,
ρ, andγ. The simulation shows that for each choice
of the sample size, whenρ is fixed the power of the
tests increases as the values ofγ get large. Similarly,
for fixed γ, the power increases as the values ofρ get
large. This means that the tests have a good ability
to rejectH0 when the samples are actually fromH1.
WhenH0 is true the level of significance is well ap-
proximated by the three tests. Fig.1 exhibits the graphs
of the power function of the tests forα = 0.05. The
curves are drawn under the modelg(1)(`/n, k/n) =
5+ρ`/n+ρk/n andg(2)(`/n, k/n) = 3+ρ`/n+ρk/n
by joining the points(ρ, F (ρ)) for 20 chosen values of
ρ, whereF (ρ) is the percentage of timeH0 is rejected.
In general there is a tendency that the L.R.-test (dot-
ted line) and the C.M.-test (dashed line) almost have
the same power. Among the three tests, the K.S. test,
which is represented by a straight line, has the smallest
power.

B. Simulation 2

In our next example we assume underH0 the
first-order model against a more general nonparamet-
ric alternative. We consider the casep = 3. Sup-
pose the samples are generated independently from
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Table 3: Probabilities of rejection ofH0 (Simulation 2)
for α = 0.01 andα = 0.05 with 50× 50 lattice points,
whereEn`k ∼ N3(0,Σ2) simulated under 10000 runs.

ρ γ δ KS
(3)
n;U CM

(3)
n;U KS

(3)
n;U CM

(3)
n;U

α = 0.01 α = 0.05
0 0 0 0.0094 0.0104 0.0378 0.0504
10 5 5 0.0124 0.0142 0.0494 0.0678
20 5 5 0.0202 0.0406 0.0778 0.1286
40 5 5 0.1092 0.3592 0.2856 0.5936
60 5 5 0.4650 0.9072 0.7478 0.9736
5 10 5 0.0106 0.0176 0.0510 0.0732
5 15 5 0.0114 0.0350 0.0664 0.1149
5 20 5 0.0190 0.0714 0.0932 0.2070
5 40 5 0.2664 0.7674 0.5378 0.9012
5 60 5 0.9054 0.9990 0.9814 0.9996
5 5 10 0.0208 0.0722 0.0934 0.2084
5 5 15 0.0788 0.3324 0.2336 0.5680
5 5 20 0.0274 0.7576 0.5540 0.9909
5 5 40 0.9996 1.0000 1.0000 1.0000

a three-variate norma random vector with the mean
g(`/n, k/n)/n, where for1 ≤ `, k ≤ n,

g(`/n, k/n) =




2 + `
n + k

n + ρ sin( lk
n2 )

−1 + 2 `
n + 3 k

n + γ exp( lk
n2 )

3 + `
n − 2 k

n + δ exp( lk
n2 ) sin( kl

n2 )




and the covariance matrix

Σ2 :=




1 1 1
1 3 2
1 2 2


 .

ThenH0 holds true if and only ifρ = γ = δ = 0.
The simulation results are presented respectively

in Table 3 and Table 4 for50× 50 and75× 75 lattice
points, respectively. Fig.2 exhibits the graph of the ap-
proximated power function of the tests simulated under
the model

g(`/n, k/n) =




2 + `
n + k

n + ρ sin( lk
n2 )

−1 + 2 `
n + 3 k

n + ρ exp( lk
n2 )

3 + `
n − 2 k

n + ρ exp( lk
n2 ) sin( kl

n2 )


 .

The simulation result shows that the power of the
tests increases as the model moves away fromH0.
More precisely, for each sample size there exist a ten-
dency that the power increases when the values of ei-
ther ρ, δ or γ get large. Whenρ, γ and δ are set to
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Figure 2: Approximated power functions of the K.S.
(straight line) and C.M. (dashed line)-tests for Simula-
tion 2 with50×50 lattice points simulated under 10000
runs.

zero, the power fluctuates around the nominal levels of
the significance. We note that in this case the power of
the K.S. and C.M.-tests can not be compared with that
of the L.R.-test, because underH1 we consider a non-
parametric model. Based on Table 3, Table 4 and Fig.2
it can be concluded that the C.M.-test is more powerful
than the K.S.-test independent to the sample sizes and
also to the choice ofα.

C. Simulation 3

For the second case we consider hypothesis of the
form H0 : g ∈ [f1, f2, f3, f4, f5, f6]3 againstH1 :
g ∈ [f1, f2, f3, f4, f5, f6, f7, f8]3, where for(t, s) ∈ I,
f1(t, s) = 1, f2(t, s) = t, f3(t, s) = s, f4(t, s) =
t2, f5(t, s) = s2, f6(t, s) = ts, f7(t, s) = t3, and
f8(t, s) = s3. Suppose the data are generated from
the localized model with the regression functiong =
(g(1), g(2), g(3))> defined respectively by

5− 10
k

n
+ 15

`

n
+ 6

k2

n2
+ 8

`2

n2
+ 5

`k

n2
+ ρ

`3

n3
+ ρ

k3

n3

6 + 5
k

n
+ 10

`

n
+ 6

k2

n2
− 5

`2

n2
+ 5

`k

n2
+ ρ

`3

n3
+ ρ

k3

n3

10− 5
k

n
+ 5

`

n
+ 6

k2

n2
− 10

`2

n2
− 5

`k

n2
+ ρ

`3

n3
+ ρ

k3

n3

Hence, the observations are clearly fromH0 if and only
if ρ = 0, otherwise they are fromH1.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 708



Table 4: Probabilities of rejection ofH0 (Simulation 2)
for α = 0.01 andα = 0.05 with 75× 75 lattice points,
whereEn`k ∼ N3(0,Σ2) simulated under 10000 runs.

ρ γ δ KS
(3)
n;U CM

(3)
n;U KS

(3)
n;U CM

(3)
n;U

α = 0.01 α = 0.05
0 0 0 0.0094 0.0080 0.0580 0.0458
15 5 5 0.0168 0.0222 0.0790 0.0856
20 5 5 0.0246 0.0386 0.0938 0.1316
40 5 5 0.1230 0.3512 0.3276 0.5974
60 5 5 0.5198 0.9126 0.7918 0.9750
5 10 5 0.0174 0.0172 0.0632 0.0740
5 15 5 0.0202 0.0308 0.0780 0.1170
5 20 5 0.0264 0.0668 0.1048 0.1990
5 40 5 0.3114 0.7596 0.5960 0.9006
5 60 5 0.9156 0.9996 0.9834 1.0000
5 5 10 0.0246 0.0726 0.1090 0.1950
5 5 15 0.0874 0.3240 0.2648 0.5462
5 5 20 0.2918 0.7474 0.5760 0.8920
5 5 40 1.0000 1.0000 0.9998 1.0000
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Figure 3: Approximated power functions of the K.S.
(straight line), C.M. (dashed line), and L.R. (dotted
line) tests for Simulation 3 with50 × 50 lattice points
simulated under 10000 runs.

Table 5: The Pearson’s correlation matrix of the per-
centages of Ni, CaO and SiO2.

Ni CaO SiO2
Ni +1.0000 −0.1285 −0.0004
CaO −0.1285 +1.0000 +0.3949
SiO2 −0.0004 +0.3949 +1.0000

The graphs of the approximated power function
for the three tests (K.S, C.M. and L.R. tests) are ex-
hibited in Fig. 3. Compared to Simulation 1 and Simu-
lation 2, there is also a similar tendency in Simulation
3 that the power of the tests increases as the values of
ρ get large. The power of the tests increases as the
model moves away fromH0. Whenρ = 0, the power
achieves the nominal levels of the significance. The
simulation also shows that C.M.-test is more powerful
than K.S.-test.

V. APPLICATION TO MINING DATA

In this section we apply the proposed method to a
mining data provided by PT. ANTAM Tbk., studied in
Tahir [23]. The company aims to predict the percent-
age of nickel (Ni) contained in the exploration region.
The sample was obtained by drilling bores positioned
according to a7×14 regular lattice with 7 equidistance
rows running west to east and 14 equidistance column
running south to north. A laboratory analysis resulted
in not only the percentage of Ni but at the same time
there appeared also other substances such as calcium-
monoxide (CaO) and Silicon-dioxide (SiO2) as impuri-
ties that must be incorporated in the statistical analysis.

As preliminary investigation we present the pairs
scatter plot of the percentages of Ni, CaO and SiO2 in
Fig. 4. The Pearson’s correlation coefficient among
the three variables is exhibited in Table 5. It is shown
that there exists strong correlation between Ni and CaO
and between CaO and SiO2. By this reason the correla-
tion matrix must be taken into account in the statistical
modelling of the variables. Furthermore from the indi-
vidual scatter plot of the percentages of Ni, CaO and
the logarithm of the percentage of SiO2 presented re-
spectively in Fig. 5, Fig. 6 and Fig. 7 we can infer that
polynomial of lower order especially first-order model
seems to be adequate to represent the data.
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Figure4: The pairs plot of the percentage of Ni, CaO
and LogSiO2. The data is compiled in the exploration
region of PT. Antam Tbk in Southeast Sulawesi
.

Figure5: The scatter plot of the percentage of Ni
.

Figure6: The scatter plot of the percentage of CaO
.

Figure7: The scatter plot of the logarithm of the per-
centage of SiO2
.
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Table 6: The values ofKS
(3)
7×14 andCM

(3)
7×14 for Ni,

CaO and LogSiO2 associated to constant, first-order
and second-order model.

KS
(3)
7×14 CM

(3)
7×14

Model Data p-value Data p-value
Constan 4.5244 0.0376 4.2910 0.0248
1st-order 2.0354 0.6216 0.6388 0.5913
2nd-order 2.7491 0.0174 0.7996 0.0381

The values of the statisticsKS
(3)
7×14 andCM

(3)
7×14

for the Ni, CaO and SiO2 data together with their ap-
proximatedp-values for the assumed models are pre-
sented in Table 6 below. The constant as well as
second-order polynomial models are clearly not plau-
sible when tested using either K.S.-test or C.M.-test
because both tests give relatively smallp-values. The
KS-test clearly rejects the constant (resp. second-
order) model forα > 3.76% (resp. α > 1.74%),
whereasC.M.-test rejects the constant (resp. second-
order) model forα > 2.48% (resp. α > 3.81%).
Next by the largep-values of the K.S. and C.M.-test
associated with the first-order model, we conclude that
the first-order polynomial is appropriate. Hence by the
least squares method, the fitted model is



Ni(t, s)
CaO(t, s)
SiO2(t, s)


 =




0.8250 + 0.1507t + 0.2146s
0.7533 + 0.0015t− 0.0316s
3.4123 + 0.0063t− 0.0703s




In the practice the company should use such a fitted
model for the prediction of the unobserved points.

VI. CONCLUSION

The limit process of the sequence ofp-dimensional
set-indexed L.S.R.P.S.P. can be derived under a mild
assumption by applying the vectorial version of Pro-
horov’s theorem. Our technique leads to the same limit
process as the geometric approach proposed in [6] for
the spatial regression with single response and in [21]
for MSR with correlated responses did. The limit pro-
cesses can be represented and calculated in a simple
way since it is a projection of thep-dimensional set-
indexed Brownian sheet. The simulation study shows
that the K.S. and C.M.-tests provide reasonable statis-
tics to check the adequacy of the assumed models in

the sense they achieve the level of significance as the
LR-test did when the response is normally distributed.
It is also shown by simulation that C.M.-test tends to
have more power than the K.S.-test has. The applica-
tion of the method to the Ni, CaO and SiO2 data shows
that the K.S. and C.M.-test have a good power in de-
tecting the appropriateness of the assumed model to
the sample. The MSR dealt with in this paper is that
with correlated responses each of which has the same
basis. In our future study we consider the model in
which the responses have different bases with random
experimental design rather than fixed.

APPENDIX

Theorem A.1 (Invariant Principle) Forn ≥ 1, let

Xnd×p :=
{
X

n j
n

:= (X(i)

n j
n

)p
i=1 : 1 ≤ j ≤ n1

}
,

be a pyramidal arrays of independent and identically
distributed random vectors withE(X

n j
n
) = 0 ∈ IRp

andCov(X
n j

n
) = Σ, whereΣ is assumed to be posi-

tive definite, andj := (jk)d
k=1. LetZp := (Z(i))p

i=1 be
a centered Gaussian process inCp(A) with the covari-
ance function

Cov(Zp(A),Zp(B)) = λd(A ∩B)Ip, A, B ∈ A.

Then it holds true

Σ−1/2V(d)
n (Xnd×p)

D−→ Zp, n →∞,

where forA ∈ A,

V(d)
n (Xnd×p)(A) :=

∑

1≤j≤n1

√
ndλd(A ∩ C j

n
)X

n j
n
,

with C j
n

:= ×d
k=1

(
jk−1

n , jk
n

]
. HereΣ−1/2 denotes the

root square ofΣ−1, that isΣ−1/2Σ−1/2 = Σ−1, A is
the family of convex sets inId := ×d

j=1[0, 1] × [0, 1],
andλd is the Lebesgue measure onId.

Proof: (1) We show that the sequence of the finite
dimensional distribution ofΣ−1/2V(d)

n (Xnd×p) con-
verges to those ofZp. For this purpose we use the
well-known multivariate Lindeberg-Feller central limit
theorem (cf. [24], p. 20). LetB1, . . . , Bm be any Borel
subset inA anda1, . . . , am be any constants. It must
be shown forn →∞, that

m∑

j=1

ajΣ−1/2V(d)
n (Xnd×p)(Bj)

D−→
m∑

j=1

ajZp(Bj),

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 711



where
∑m

j=1 ajZp(Bj) follows ap-variate normal dis-
tribution having zero mean and the covariance matrix

Cov(
m∑

j=1

ajZp(Bj)) =
m∑

i=1

m∑

j=1

aiajλ
d(Bi ∩Bj)Ip.

It suffices to show the covariance of

Fn :=
m∑

j=1

ajΣ−1/2V(d)
n (Xnd×p)(Bj)

converges to that of
∑m

j=1 ajZp(Bj), andFn satisfies

Lindeberg condition. By the definition ofV(d)
n , Fn can

be represented as

Fn =
m∑

j=1

ajΣ−1/2
∑

1≤j≤n1

√
ndλd(Bj ∩ C j

n
)X

n j
n

=
1√
nd

∑

1≤j≤n1

γ
n j

n
Σ−1/2X

n j
n
,

where

γ
n j

n
:=

m∑

i=1

ain
dλd(Ai ∩ C j

n
) =

m∑

i=1

ai

λd(Ai ∩ C j
n
)

λd(C j
n
)

.

Hence, by using the i.i.d. property ofX
n j

n
, for 1 ≤

j ≤ n1, we have

Cov(Fn) =
1
nd

∑

1≤j≤n1

γ2
n j

n

Ip.

Let ψn be a nonnegative function onId defined by

ψn(t) :=

{
γ2

n j
n

; t ∈ C j
n

0 ; otherwise

There exists anM :=
∑m

i=1 |ai| such that|ψn| is
bounded uniformly byM2. Also we have

∫

Id
ψn(t) λd(dt)Ip = Cov(Fn)

Then by the higher dimensional Lebesgue density the-

orem (cf. [26], p. 148) applied to the ratio
λd(Ai∩C j

n
)

λd(C j
n

)
,

and the well-known Lebesgue dominated convergence
theorem, we get

lim
n→∞Cov(Fn) =

∫

Id
lim

n→∞ψn(t)λd(dt)Ip

=
∫

Id
(

m∑

j=1

aj1Bj )
2 λd(dt)Ip

=
m∑

i=1

m∑

j=1

aiajλ
d(Bi ∩Bj)Ip,

where1A stands for the indicator of a setA. Next we
show Lindeberg condition. That is∀ε > 0,

lim
n→∞

∑

1≤j≤n1

E(‖ 1√
nd

γ
n j

n
Σ−1/2X

n j
n
‖2
IRp ×

1{‖ 1√
nd

γ
n

j
n
Σ−1/2X

n
j
n
‖IRp>ε}) = 0.

By the property of the Euclidean norm

‖ 1√
nd

γ
n j

n
Σ−1/2X

n j
n
‖2
IRp ≤ M2

nd
‖Σ−1/2X

n j
n
‖2
IRp .

Also ‖ 1√
nd

γ
n j

n
Σ−1/2X

n j
n
‖IRp > ε implies

‖Σ−1/2X
n j

n
‖IRp ≥ nd/2ε

M
.

Therefor we get

0 ≤
∑

1≤j≤n1

E(‖ 1√
nd

γ
n j

n
Σ−1/2X

n j
n
‖2
IRp ×

1{‖ 1√
nd

γ
n

j
n
Σ−1/2X

n
j
n
‖IRp>ε})

≤ M2E(‖Σ−1/2Xn 1
n
‖2
IRp1{‖Σ−1/2X

n 1
n
‖IRp> εnd/2

M
}).

By the bounded convergence theorem (cf. Corollary
2.3.13 in [3]), we see that

0 ≤ lim
n→∞

∑

1≤j≤n1

E(‖ 1√
nd

γ
n j

n
Σ−1/2X

n j
n
‖2
IRp ×

1{‖ 1√
nd

γ
n

j
n
Σ−1/2X

n
j
n
‖IRp>ε})

≤ M2E( lim
n→∞ ‖Σ

−1/2Xn 1
n
‖2
IRp ×

1{‖Σ−1/2X
n 1

n
‖IRp> εnd/2

M
}) = 0.

(2) We show that{Vn(Xnd×p) : n ≥ 1} is tight.
Since for eachn ≥ 1, Vn(Xnd×p) has the sample path
in Cp(A), the suitable definition of the modulus of con-
tinuity of Vn(Xnd×p) is

w(Vn(Xnd×p); δ) := sup
{A,B∈A: d

λd (A,B)<δ}
Υ(A, B),

whereΥ : A×A → IR≥0, defined by

Υ(A,B) :=
∥∥∥Vn(Xnd×p)(A)−Vn(Xnd×p)(B)

∥∥∥
IRp

for any A,B ∈ A. The i-th component of thep-
dimensional processVn(Xnd×p) is given by

V(i)
n (X(i)

nd×p
) :=

1√
nd

∑

1≤j≤n1

γ2
n j

n

X
(i)

n j
n

, i = 1, . . . , p
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that satisfies

w(Vn(Xnd×p); δ) ≤
p∑

i=1

w(V(i)
n (X(i)

nd×p
); δ).

Hence, in order to establish the tightness of the
set-indexed process{Vn(Xnd×p)(B) : B ∈ A} it

suffices to show thatV(i)
n (X(i)

nd×p
) is tight, for each

i = 1, . . . , p. We finish the proof by referring to the
uniform central limit theorem for the one dimensional
set-indexed process investigated in [1] and [17].
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