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Multidimensional Set-Indexed Partial Sums Method for Checking
the Appropriateness of a Multivariate Spatial Regression

W. Somayasa, Gusti N.A. Wibawa, and Yulius. B. Pasolon

the residual of the observation or variant of it is com-

Abstract—n this paper we propose an asymp- monly investigated. We refer the reader to Box and
totic procedure for diagnosing the appropriateness of aDraper [7], Christensen [9], pp. 9-21 and Johnson and
multivariate spatial regression with correlated responsesWichern [11], pp. 323-328 for the case where the ob-
based on the so-called multidimensional set-indexed leasservations are assumed to be normally distributed and
squares residual partial sums processes of the observationérnold [2] for an asymptotic approach.
The limit process which is a projection of the higher In this paper we aim to demonstrate the applica-
dimensional set-indexed Brownian sheet is derived bytion of a technique that based on the partial sums (cu-
applying the vectorial analogue of Prohorov's theorem. mulative sum = CUSUM) of the least squares residu-
The adequacy of the assumed model is tested by using thals to verify whether or not the assumed model is ade-
Kolmogorov-Smirnov and Craém-von Mises functional of — quate. The application of CUSUM technique can also
the processes. Simulation based investigation are conductetie found in the problem of quality control in indus-
in studying the finite sample size performance of the teststry using control chart as the tool in detecting whether
by comparing with that of the classical likelihood ratio a change occurs during the production process. The
test. Finally we attempt to apply the proposed method to comparison between the CUSUM and Shewart's con-
a mining data supplied by a mining industry in Southeasttrol chart has been established in Kovarik and Sarga
Sulawesi [12] by a case study.

Let us consider a multivariate spatial process

Keywords—Multivariate spatial regression, set- v P . 4. (ind d d

indexedy partial sums process, least squares residuals{,Y(t) = (i(®))izy o 1= (8)j= € [0, b7 CIRTY

multidimensional set-indexed Brownian sheet, model- where [a, b]d = la1,b1] x -+ X [ag,bg) =: E is
check, Kolmogorov-Smirnov, Craen-von Mises. a fixed experimental region. Throughout we write
any p-column vector of real numbers or real functions
w = (w1, ..., wp) by (w;)Y_, for convenient. We as-
| INTRODUCTION sume thaly follows a nonparametric spatial regression
model
Multivariate spatial regression (M.S.R.) analysis Y(t) =gt)+ &), t €E, 1)

is frequently utilized as a statistical tool for empiri- , _

cal model building in applied sciences such as in geo-Whereg = (¢”);_; : E — IR” is the true-unknown

sciences and industry. As evidenced in the literaturesfegression function, anfl := (¢()?_, is the vector of

checking the appropriateness of an assumed model igandom errors with(£) = 0 € IR?, andCov(&) =

important before the fitted model is further used suchX which is unknown and positive definite.

as in the prediction of future observations. Tothisstage  In the framework of model-check for multivari-

ate linear regression in the first step we assume that
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based on a sample taken according to a design. LeHere(-,

{Y,; :=Y(t,;): 1 <j<nl},n>1Dbeasequence
of independent observations of Model 1 on a regular
lattice withn points

En = {tng = (tnj)kms € By 1 < i <},
wheret,;, == ay + (b, —ay), k = 1,...,d. Here
1 denoteg1,...,1)" € Z¢ andj := (j1,...,ja) " €
24, Thus the se¥ (E%) := {Y,;: 1 <j < nl}

is a "pyramidal array” op-random vectors indexed by
the lattice ofd-dimensional positive integer that sat-
isfies the modelY,; = g(t;) + £n5, Where&,; is
the array of independent and identically distributed er-
ror vectors withE(€,;) = 0 and Cov(&y;) = X.
Without loss of generality and for notational conve-
nience we consider in this paperx n-regular lattice
E, ={{/n,k/n) : 1 < ¢k < n}inthe unit rectan-
gleI := [0,1] x [0, 1] as the experimental condition.

Our result can be immediately extended to the higher

dimensional case.
In the classical multivariate analysis whefgy;
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-)rnxn denotes the inner productiR™*", de-
fined by

A, B)gnxn :=trace(ATB), A, B € R™™.

Several test procedures have been proposed for
testing Hypothesis 3 (see [11] pp. 396—-398). One of
them is the classical likelihood ratio (L.R.)-test using
the modified Wilk’s lambda statistic defined by

Ay i= W—q—§<p—q+m+1>11n{j:g§vv},
where
SWooi= (Y, — XX X)X Y ,2) T
(Y2 = X (X Xim) "' X, Y 02) /0
oY= (Y, (XIXq)‘IXJYnz)
(Ynz — X (X) X)X Y 2) /0.

Thereby we define the matrices

are assumed to be normally distributed, a more specific

hypothesis than (2) is considered. That is
Hy: g € WP against Hy : g € VP, 3)

where V [f1,-o s fms frnt1s o0 fo W.
The set{fm+1,...,f;} are the set of additional
known regression functions ile(Ar) needed to
represengg. LetW,, := [f1(E,),..., fm(En)], and
V= [fl(En>a ooy fm(Bn)s fnt1(Bn)s - 7fq(En)]

be subspaces ofR"™*™ generated respectively by

= )

the set ofn x m-matrixes {f1(Z,),..., fm(Zn)}
and {fl(En)v cee 7fm(En)) fm+1(En), e fq(En)}’
where f;(En) = (fj({/n,k/n))jp—y € R™"

is obtained by evaluating; to every point inZ,,

j =1,...,q. Furthermore, leW? := x?_'W,, and
VP .= x?_ 'V, be the product op copies ofW,, and
V., respectively. Lepry» be the component-wise
orthogonal projector ontdGV2. Then by using the
analogous argument as the estimation procedur
defined in [9], pp. 1-5. and [11], pp. 314-328, the
ordinary least squares residual of the arM{=,,) is
given by
R(Ep) == (rnﬁk)?,lczl =Y (E,

1)

)—prwz Y (En), (4)

O T for 1 < £k < n.
.+, fm(Ey)} builds an orthonormal
(: ) can be equivalently
VEn)z € XTIV,

wherer,, ;. := (r
Suppose f1(En), -
basis (ONB) forW,,, then
expressed aR(Z,) = (R!

where fori =1,....p

n
)

n) = Y(i)(En)

—
—

RY(=

YO(Z,)) mnxn £5(Zn)-
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Y,z = (vee(YD(Z,)), ..., vec(YP(E,))),
X = (vee(f1(Zn)), - - ., vee(fm(En))),
X, = (vee(f1(En)), ..., vec(fe(En))),

where "vec” denotes the vec operator defined e.g. in
Magnus and Neudecker [16], pp. 34—-36. The test will
reject Hy at levela € (0,1), if and only if A,, >

]2;((611__7‘3, Where><2((1 a)) is the(1—«)-quantile of cen-
tral chi-square distribution withh(¢ — m) degrees of
freedom.

The L.R.-test defined above has restriction in the
implementation in that the population under study must
be normally distributed. However such a distributional
simplification is frequently found to be unrealistic es-
pecially in the statistical modelling of geosciences (cf.
Christensen [9], pp. 263—299 and Cressie [10], pp 105—

6183). In the forecasting problem of times series regres-

sion, normality assumption possibly leads to spurious
results. Alternative approaches with Grey and ARIMA
models under modified residuals was proposed in Shu
and Hsu [19].

In contrast to this classical approach, for our pro-
posed method we do not need such normality assump-
tion. We only consider the partial sums of the array
of the residuals instead. Precisely, Jéte the family
of convex subset df, andd) be the Lebesgue pseudo-
metric on.A. LetC(.A) be the set of continuous func-
tions on.A with respect taly. We embed®R (Z,,) into
a stochastic process indexed Aydefined by

:ZZn)\ BﬂCgk o, B €A
(=1 k=1

V,(R(Z
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whereCy, := (¢ — 1)/n,¢/n] x ((k — 1)/n, k/n]. has been already studied in [22]. In this paper we
Thei-th one dimensional component &, (R(Z,)) derive the limit process of the multidimensional set-

is defined by indexed L.S.R.P.S.P. by applying the vectorial exten-
sion of Prohorov’s theorem (cf. Billingsley [4], pp. 35—
(i) (= _ & (i) 40).
T (B (En))(B) = ; Z_: (BN O ) The rest of the present paper is organized as fol-

lows. In Section Il we establish a limit theorem for

Results Concerning the properties ®f, was stud- the p-dimensional set-indexed L.S.R.P.S.P. undkgr
ied in the work of Somayasa, Ruslan, Cahyono andas wellas undek; . For this purpose we generalize the
Ngko|man| [22] Interested reader is also suggested.lnlform central limit theorem of Alexander and Pyke
to see Bischoff and Somayasa [6] for the case of thell] to higher dimensional case, see Appendix. Exam-
ordinary partial sums process. ples of the limit process undéf, and H; associated

By the definition of the operatdV,,, the process t0 polynomial models are studied in Section IlI. Sim-
{V,.(R(E,))(B) : B e A} induces the sample path ulation study is devoted in Section IV. Application of
in the Spac@p(A) As a convention we call this pro- the method to real data is presented in Section V. The
cess g-dimensional least squares residual partial sumpaper is closed in Section VI with a conclusion and
process (L.S.R.P.S.P.) indexed My In the present pa- Suggestion for future work.
perCP(A) is furnished with the uniform topology in-
duced by the metrigp defined by

Il. THE LIMIT OF KS,, 4 AND CM,, 4

p
= Z [ui —will 4, A processZ, := {(ZMW(A),...,Zz@A)T .
=1 A € A} is called thep-dimensional set-indexed Brow-
nian sheet indexed by, if and only if it is centered

for u := andw := _, € CP(A), where : ) . .
o (u)izs v (w)izy (A) Gaussian process with the covariance function

fori=1,...,p,
s = willa = sup fus(4) = wi A)] CovlZy( ), Zp(A2)) = MAN A2y, Ar, Az € A
€
wherel,, is thep x p-identity matrix. The existence of
We propose the Kolmogorov-Smirnov (K.S.) and this process can be shown by generalizing the uniform
Crangr-von Mises (C.M.) functionals of the sequence central limit theorem of Alexander and Pyke [1] and
of the p-dimensional L.S.R.P.S.P. as the test statisticsPyke [17] to vectorial processes indexed by sets. As

for testing (2) defined by a result in probability theory it must be well known.
However we can not find a reference where it is stated.
KSp 4= sup 1272V, (R(E,))(B)||re Therefor we present the theorem together with the
proof in the appendix.
CMpp = — Z b /2y 2(R(E ))(B)H%Rpa Now we are ready to state the limit process of the

sequence gf-dimensional set-indexed L.S.R.P.S.P. for

BeA
© the model specified undéf, as well as undef;.

whereX~1/2 ap x p-symmetric matrix that satisfies
»-1/25-1/2 — »-1." The K.S.-test (resp. C.M.- Theoremllet {f,..., f,} be an orthonormal

test) will rejectH, at a levela € (0,1) if and only ~ bases (ONB) oW andhy, a function inC(A) defined

if K5, 4> q1_q (resp.CM,, 4 > c1_,), Whereg,_,, by hy, (A) = f_A fidA. It f; is continuous and have

(resp. c1_q) is the (1 — «)-th quantile of the limiting bounded variation in the sense of Hardy (cf. [8]), that

distribution of K'S,, 4 (resp.C M, 4). is f; € BVg(I),j =1,...,m, then undetH, it holds
The properties of the one- -dimensional version of true

the C.M.-test for spatial data was firstly investigated in _ | /9 _ D o H, .

MacNeill and Jandhyalla [15]. The results was gener-2 Va(R(En)) — Zy,y =12y~ erHZp Zy.

alized to one dimensional set-indexed LSRPSP by Xie

and MacNeill [25]. They got the limit processes by ap- where

plying the approach of MacNeill [13, 14]. In [6] the ) -

limit process of the sequence of ordinary L.S.R.P.S.P. DPT'w,,, Zp = (Prw,,, A T DTW,, AL

for univariate spatial regression was derived by gener-

alizing the geometric approach of Bischoff [5]. The constitutes a component-wise projectionZyf in the

extension of the method to the set-indexed L.S.R.P.S.Psense of Rudin [18]. Thereby for evary= C(.A) and

ISSN: 1998-0140 702
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Ae A,
(pTikNHZ Z hfj’ th

Here fR denotes the Riemann-Stieltjes integral, and
for (t,s) € I, u(t,s) := u([0,t] x [0,s]). Moreover

Z,r is a centered Gaussian process with the covari-

ance function given by

Ky (4, B) := (MAN B) th] )hy, (B

wherehy, (A) := [, fjd\.

Proof: UnderH,, Equation 4 is equivalent to
Vo(R(Zn)) = Va(E(En)) — Va(prweE(En)).

Next by Lemma 5.1 in [22], we further get

Vi (prwr € (En)) = (0rw, Tn(e® (E0)1,
= PI'Wo, V.(E(EL)),
where W3¢, [hny,---,h.m] IS subspace
EN S
of C(A) generated by {h, (), Jh <n)} with
B = [450 (Wd, for some orthonormal set

of step functlons{s1 ..., } C BVy(I) that

satisfy”ég‘) — fwlleo = 0,880 — 00, w =1,...,m.
Interested reader is referred to Lemma A.8 and Lemm
A.9 in [6] for the definition ofégl) and their properties
useful for obtaining the result.

By considering Theorem A.1 we only need to

show that the process satisfies the weak convergence

_ —_ D
3 1/2pTWnHZp Vn(g(:n)) - pT%VHZp Zpa n — o0.

For this we apply Prohorov’s theorem that sug-

gests to show two conditions. First, we have

to show that the finite dimensional distribution

of X1 2prw iy, Vn(E(En)) converges to that of
Zp

Priw,,, Zp, Where foreveryd € A, (p?“w Z,)(A)

follows a centerecp-variate normal dlstrlbutlon with
the covariance matrix

= i hy, (A)h

Second, the process must be shown to be tight.
For the first objective we apply the Lindeberg-
Levy multivariate central limit theorem studied e.g. in

B)IL,, for A,B € A.

ISSN: 1998-0140 703
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Van der Vaart [24], pp. 16. Led, - - -, A,. be any con-
vex sets ind and letcy, ..., c¢. be any real numbers.
We consider the asymptotic distribution of the general
linear combination

U= Y as 2prW ey Vin(E(En))(Ar)
k=1

= R 2 (orw o, Tu(e® (E0) (AR
k=1

SinceE(U,,) = 0, by the standard theory of multivari-
ate analysis, it holds

Var(U ) =

Z cheeE ™ UZE(pTWnHZ Vo (EE))(AL) X
k=1

PPV, ValE(E))(A0) B2

(5)

= 3 oS B(Bi(A)B

k=1

where Bi(Ay) = prw,,, Ta(e®(Zn))(Ar), i
1,...,pandk = 1,...,r. Next, for fixedk and/,
we have by the definition gfrw,,,, .

E/
w,w’=1
e
X/I S AT (D (Zn))h 500 (Ax) o) (Ag),

where by referring to Bischoff and Somayasa [6], for
t,s) €1,

T, (e (2))(t, s) ==

(Af))zj 1)

EB;i(A)B I(En))

[ns [nt] nt— nt
Z Z nfk Z En [nt]+1,k
k: 14=1
[nt]
(ns — [ns])
+T Z €nt,[ns]+
(=1

(nt — [nt])(ns — [ns]) @)
+ n En[mﬁ]—l—l,[ns]—l—l
Hence, by the definition of the Riemann-Stieljes inte-
gral (cf. Stroock [20], pp. 7-17) and by the indepen-
dence of{e : 1 < ¢,k < n}, we further get

B( / §MdT,(c9(Z,)) / " 4T, (0 (=,)))

I I

- u v, 1 N () N~ )u/ v
= /Z/ Sgl)(gaﬁ)ﬁE(Sq%&yfm )55/ (gvg)
u,v,u’ v'=1
L & oy vy vV
=2 Z Sw (;ag)aijsw/ (gag)
u,v=1
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n—oo

Because of the convergenﬁzéff) — fwlleo — 0, for
w=1,...,m (see [6]), the right hand side of the last
equation converges to

Oij Afwfw’dA = Uij<fw7fw’>L2 = O'ij(gww’a

whered = 11if w = w', andd,, = 0if w # w'.
Also we get

hgon (Ak) R (Ae) "= hy, (Ap)hy,, (Ae).

Hence, by combining these two results we have
E(Bi(Ar)Bj(Ar)) "= 015 > hy, (Ar)hy, (Ar).
w=1

LetD := 3", hy, (Ax)hy, (A)117 and leto de-

note the Hadarmard product defined e.g. in MagnusZn = (

Volume 9, 2015

theorem, for every > 0 it holds

0 < lim

n—oo

n
1501
> BllrmMA3S 2l

w,v=1

XL A2 5121 € lp >e})

< (rmMAR? S22 tim E(En1
})

Xl{HEnuHmpzm
The last result implies that the Lindeberg con-
dition is satisfied. Therefore it can be con-
cluded that the finite dimensional distribution of
2_1/2pTWnHZan(5(En)) converges to that of
pr{,VHZpr.

To show the tightness of the process we define
the modulus of continuity of the-dimensional process
(z))p — 2_1/2PTW7LHZP V., (E(E)) by

and Neudecker [16], pp. 53-54. Then by the preceding

results and by the properties@f Var(U,,) satisfies

Var(U,) == Z aeS VAT eoD)n V2 =
k=1

Z creeC(Ag, Ag) = Var Z ck(prikNHZ Z,)(Ag).
k=1 k=1 P

Next we investigate that the Lindeberg condition is ful-
filled by the central limit theorem. We observe that
can also be written as

u,v=1 k,w=1

u v
-, — n (Ag).
n’ n)gnuvhg’(w)( k)

Hence we get

n r,m Ck—1/9~(n) /W U
Z || Z EZ 1/2850)(57E)gnuv%‘7)(Ak)”%Rp

u,v=1 kw=1
n 1
< 3 lrmMA3 =28, ke
u,v=1 n
1 n
= (rmMAP ISP = 37 €l
u,v=1
where
M = 12113%(7~{Ck} and Vfoi= 12Ua§)<m | foo | o

That why by considering the stochastically indepen-
dent property of the array of thevector of the ran-

dom errors and the well-known bounded convergencefor all ¢

ISSN: 1998-0140 704

n)i=1"
w(Zp,0) = sup dz (A, B),

{A,BeA:dy(A,B)<d}

where dz (A, B) 12n(A) — Zn(B)[lwre, for

A,B € A. Sincew(Z2,,5) < S w(z,5), then
two show the tightness of,, it is sufficient to investi-
gate the tightness cﬂ,’,sz) for all 7. In other word, the
one-dimensional component 8f, must be tight in or-
der to make the-dimensional process to be tight. By
Theorem 2.3 in [4] we need the sufficient condition in

that Z\” converges t&Z(®, for all i. The proof is fin-
ished with Theorem 2.2 of Somayasa [22].

By Theorem 1 and the well-known continuous
mapping theorem (cf. Theorem 5.1 in [4]) the
sampling distribution of the statistic'S,, 4 and
CM, 4 can be immediately approximated by those
of supaca [Z/3(A)|  and [y 1Z13(A) [} dA, re-
spectively.

The test procedures derived above are consistent in
the sense the power of the test under the competing al-
ternative converges to 1. Consequently the behavior of
the test can not be observed as the model moves away
from Hy. Therefore without altering the test problem
for (2) and (3) to be able to investigate how good our
tests perform under the alternatives we consider a lo-
calized model defined by

_ l local (= -
)= ng (En) +E(En)

Lg(

n

p
i=1"

—_
—

—n

whereg*!(Z,,) := )= +(gD(En))
Theorem 2 Let {f1,..., fm} be an ONB ofW and
1,...,p, ¢ have bounded variation in
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the sense of Vitali od. If f1,..., f,, are continuous form
and have bounded variation in the sense of Hardy on o .
I. Then under the alternative we have P{/Slua lprws  (572hg + Z2)(A)llwe = q1-a)
€ Zp
»-12V, (R(E,)) D, 2_1/2p7ﬂw7§ hg + Zzljg’ and
Zp ’

P{/I lprwy, (7 2hg + 219 (A)|[wdA > 10}
where .,
- whereq;_, and¢;_, are thel — o quantiles of the
h, = h, — hit, b P limiting distribution of K'S,, 4 andC'M;, 4 underHy,
prwﬁzp g g 1;(< fw? g( )>HZ)Z=1 fu,v respectlvely

— (B P o : .
h = (hg )iy + A — RP, Remark 3 In the application X is sometimes un-

known. In this cas& can be directly replaced with
@) a consistent estimator without altering the asymptotic
hg(i)(B) = /Bg dA, B € A. results, for example with that defined in Arnold [2],
e, S, = SVTsY,

with

Proof: UnderH; we have

In the computation we dealt with the partial sums
process indexed by the family of closed rectangles
U:={[0,t] x[0,s]:0<t<1,0<s<1}cC.Aasa

. . _ ial . The limit [ ientl itt
Hence by applying Lemma 5.1 in [22] and by consid- ZE;%?) ((;aj)e inst;&rglzzp{?z?; st]s;sioci]rl)velzlfhne yr\gg_ en
ering the definition of they-dimensional set-indexed pf/\" pf A ol P

partial sums operatdv ,,, we further get tice Z!"3(t, s) is approximated by the-dimensional
partial sums process

= 1 -
R(En) = pryps —8(En) +pryypt E(En).

_ —_ — 1 s
S2V,(R(E,)) =2 1/2pTWL ;Vn(g(:n»

n?'tzp

=2V, (REW) (0t /s [ns)/n), (t,s) € L

—1/2 —_
+P7’W7§HZ STAVL(E(En). where[z] := max{z € Z : z < z}. The validity of
D . . . .
the approximation is relied on the result that
Because of Theorem 1, we only need to proof -
Prwt, 1V, (g(Z,)) converges tQ?T‘W%J_Z hg. By » 2V, (R(E,))([nt] /n, [ns]/n) — ng(t, s)
y

the definition of the component-wise projepction and by Ho
the fact that’, ) restricted taH; coincides to(-, -y, O €Very(t,s) € I, whereB 2(t, s) := Prws, Bp.
(cf. Proposition 2.1 in [22]), the-th component of  Thereby B, is the p-dimensional standard Brownian
Prwe, +V,,(g(E,)) has the representation (2) motion with the covariance function

P

1 m 1 Ks,((t,5); (') =Nt (s NS,
T, (¢9(=,))— h3™. T, (¢(Z, B3
n (g (En)) wZ:l< W (97 (En))irezhSs To this end we refer the reader to Somayasa [21]. Fur-
thermore, by the property of the partial sums, the ana-
logues definition of the Kolmogorov-Smirnov and the

where the terms T, (¢ (Z,,)) andhs{" converge to : I _ ;
m Cramer-von Mises statistics are given respectively by

hyw = [;9"dX andhy,, asn — oo, respectively,

fori = 1,...,p. The continuity of the inner product — -

SN SANG g g 0 con. 1S = e [BTVAVARE) ¢/ k)

(-, )1, implies (h3y ", - T, (9'"(Zn)))H,h5w  cON <lk<

verges to(hy, , h )1, hy,, 8Sn — oo, for all w. 1 - _

This convergence results finally implies CMp = — YT AVLR(ED)) (¢/n, k/n) e
k=1

— 1 —_ n—oo —
= Pprws  —Va(@(En)) =5 27 pro. hg. Il EXAMPLES OF THE LIMIT PROCESSES
) 2

For illustrative purpose we present examples of

The power function of the asymptotically size  the limit process associated to the model unégr
K.S. and C.M.-tests can now be approximated respecand H;. The assumed regression models are restricted
tively by the computation of the probabilities of the to the polynomial relationship between the response

ISSN: 1998-0140 705
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variables and the explanatory variables.
A. Example 1

We consider the hypothest, : g € [f1]?, against
Hy : g € [fi, f2, f3]P, where for(t, s) € I, fi(t,s) =
1, fa(t,s) = t, andf3(t,s) = s. Hence for anyB €
A, hf,(B) = A(B) and(hy,, Z®) = Z(I). Therefore
the limit process undefl is given by

Z,4, (B) = Z,(B) — \(B)Z,(I), B € A
having the covariance function
Kzfl (Bl, Bg) = ()\(Bl N Bg) — )\(Bl))\(BQ))Ip

The limit process undé is give by

Z;{% (t78) - Bp(t,S) B tSBP(]-a 1)7 (tv S) el

which is the well knowrp-dimensional Brownian (2)
bridge, having the covariance function

Kz, ((t,s),(t',s") = ((EAE)(sAS") —tst's),,.
For this type ofH; we get the limit process as

L _
ST Bt — 1) + Ba(ts? — 1)) + Bl (1, 9)

where forj = 2,3, 3; = (B1j, -
vector of unknown constants.

,Bp)T € RPis a

B. Example 2

In the second example we suppose that a first order

multivariate model is observed undHy, whereas un-

der H; a second order multivariate model is assumed.

That is we considef : g € [fi1, f2, f3]P, against
Hy g € [f1, fo, f3, falP, with fi(t,s) = 1, fa(t, s) =
t, f3(t,s) = s and fy(t,s) = ts. The orthonormal
set obtained frond f1, f2, f3} is given byfi (¢, s) = 1,
fa(t,s) = V3(2t — 1), and f3(t,s) = v/3(2s — 1).
SinceZ,(t,s) = 0fort = 0 or s = 0, then by the
definition of (-) we get

(hi, 20y = V3zO(1) -2v3 o Z9(t,1)dt,
(hj, 2Dy = V3Z0(I)-2V3 o 79 (1, 5)ds.
Hence the corresponding-dimensional set-indexed

PSPLSR undefi; is given by

Z,%0 )(B) = Zy(B) — \(B)Zy(I)

—(V/3Z,(I) — 2\/§/[O , Zy(t,1)dt)h, (B)

—(VBZy(I) = 2V3 | Z,(1,5)ds)h;, (B).
0,1

1]
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The covariance function of this process is given by
Kz, (B1, B2) = Kz, (B1, B2)
—(
—(

(2t — 1)dA
B1 B2

(25 — 1)dA
B B

(2t — 1)dM\)I,
(25 — 1)dN)I,,.

The ordinary version of the limit process takes the form

Z,%0 )(t,5) = By(t,s) — tsBy(I)

—6(B,(I) —2 [ B,(t,1)dt)ts(t — 1)
[0,1]

—6(B,(I) — 2 B,(1,s)ds)ts(s — 1).

J10,1]

with the covariance function

Kzf3 ((t,s), (tlv S,)) = Kzf‘l ((£,9), (t/7 3/))
—3tst’s'(t — 1)(t' — 1)L, — 3tst's'(s — 1)(s' — 1)I,,.

After some algebraic computation we get the limit pro-
cess for the localized model undgj as

1. . H,
TE VB — s — 15 4 15) + ZJ1 ) (1, 9),

for some unknowry = (B4, ..., Bp) " € IRP.

IV. SIMULATION STUDY

In this section we investigate the finite sample
size behavior of the tests by conducting Monte Carlo
simulation. We consider three different cases.

A. Simulation 1

In our first simulation we consider the hypothesis
defined in Example withp = 2. The samples are gen-
erated from the localized model

Yook = 8nek/n + Enks

where forl < ¢,k <n, gV (/n,k/n) =5+ pl/n +
pk/nandg® (¢/n,k/n) = 3+vL/n+~vk/n. Hence,
the sample is clearly fromil if and only if p = 0 = ~.
Conversely, ifp # 0 andy # 0, then the sample is
from H;. In this example the vector of random errors
Ener are drawn independently from a centered bivariate
normal distribution with the covariance matrix

6.26 —0.50
> = ( —0.50 6.25 )



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Table 1: Probabilities of rejection dffy (Simulation
1) for « = 0.01, where&,s, ~ N2(0,X;) simulated
under 10000 runs.

nxn | p 7y K Sffg, CMT(L?L){ A,
a=0.01

30x30| 0 O 0.0096 0.0156 0.0098
5 10 0.0792 0.1216 0.1216
5 30 0.8538 0.9580 0.9580
10 5 0.0850 0.1178 0.1178
30 5 0.8520 0.9624 0.9624

50x50| 0 O 0.0099 0.0098 0.0089
5 10 0.1048 0.1592 0.1184
5 30 0.8928 0.9668 0.9602
10 5 0.1054 0.1574 0.1184
30 5 0.8882 0.9694 0.9610

x7 (10 O 0.0148 0.0112 0.0104
5 10 0.1158 0.1648 0.1194
5 30 0.9026 0.9648 0.9580
10 5 0.1150 0.1556 0.1112
30 5 0.9058 0.9710 0.9640

alpha=0.05

Probability of rejection
0.6 0.8 1.0
| |

04

0.2

Figure 1: Approximated power functions of the K.S.
(straight line), C.M. (dashed line), and L.R. (dotted
line) tests for Simulation 1 with0 x 50 lattice points
simulated under 10000 runs
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Table 2: Probabilities of rejection dffy (Simulation
1) for « = 0.05, where&, ;. ~ N2(0,3X;) simulated
under 10000 runs.

nxn | p v KSSZ)/I CMT(L?& Ay
a = 0.05

30x30] 0 O 0.0408 0.0544 0.0492
5 10 0.2076 0.3276 0.2824
5 30 09526 0.9914 0.9896
10 5 0.2206  0.3316 0.2788
30 5 0.9544  0.9888 0.9882
50 x 50 0 0.0460 0.0548 0.0508

0

5 10 04550 0.5704 0.5334
5 30 09678 0.9908 0.9886
0.4498 0.5804 0.5338
30 5 0.9676  0.9912 0.9910
70x71] 0 O 0.0556  0.0480 0.0450
5 10 0.2678 0.3240 0.2878
5 30 09696 0.9906 0.9926
10 5 0.2672 0.3222 0.2834
30 5 0.9708 0.9892 0.9896

=
o
(6]

Table 1 and Table 2 present the probabilities of re-
jection of Hy for « = 0.01 anda = 0.05, respec-
tively, and for several varied number of lattice points,
p, and~. The simulation shows that for each choice
of the sample size, when is fixed the power of the
tests increases as the valuesyajet large. Similarly,

for fixed -, the power increases as the value gfet
large. This means that the tests have a good ability
to reject Hy when the samples are actually frofh .
When Hj is true the level of significance is well ap-
proximated by the three tests. Fig.1 exhibits the graphs
of the power function of the tests far = 0.05. The
curves are drawn under the modgh (¢/n, k/n) =
5+pl/n+pk/nandg® (¢/n, k/n) = 3+pl/n+pk/n

by joining the pointg p, F'(p)) for 20 chosen values of

p, whereF (p) is the percentage of tim#) is rejected.

In general there is a tendency that the L.R.-test (dot-
ted line) and the C.M.-test (dashed line) almost have
the same power. Among the three tests, the K.S. test,
which is represented by a straight line, has the smallest
power.

B. Simulation 2

In our next example we assume und€y the
first-order model against a more general nonparamet-
ric alternative. We consider the cage= 3. Sup-
pose the samples are generated independently from
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alpha=0.05

Table 3: Probabilities of rejection df, (Simulation 2)
for a = 0.01 andar = 0.05 with 50 x 50 lattice points, =
where&, ;. ~ N3(0,X2) simulated under 10000 runs.

p v 6| KSY, oM%Y, KST), oMb,
a =001 a =0.05

0 0 0.0094 0.0104 0.0378 0.0504 ¢
10 5 0.0124 0.0142 0.0494 0.0678 3 . |
20 5 0.0202 0.0406 0.0778 0.1286 <& °
40 5 0.1092 0.3592 0.2856 0.5936

60 5 0.4650 0.9072 0.7478 0.9736 =

0.0106 0.0176 0.0510 0.0732
0.0114 0.0350 0.0664 0.1149 ‘ ‘ ‘ ‘ ‘
0.0190 0.0714 0.0932 0.2070 _

0.2664 0.7674 0.5378 0.9012

0.9054 0.9990 0.9814 0.9996 _ _ _ .
00208 0.0722 0.0934 02084 rigure 2: Approximated power functions of the K.S.

00788 0.3324 0.2336 05680 (straightline) and C.M. (dashed line)-tests for Simula-
00274 0.7576 05540 0.9909 ton2with50x50 lattice points simulated under 10000

0.9996 1.0000 1.0000 1.0000 'uns.

N
o

N PR

S oooao

o1 o1 o1 o1 o1 o1 o1 OOl
2]
o

N
o

zero, the power fluctuates around the nominal levels of
the significance. We note that in this case the power of
the K.S. and C.M.-tests can not be compared with that

a three-variate norma random vector with the mean
g(l/n,k/n)/n, where forl < ¢,k <n,

2+ L4+ 54 psin(dh) of the L.R.-test, because und&i we consider a non-
gl/n,k/n)=| -1+ 2£ T 3% + Vexp(%) parametric model. Based on Table 3, Table 4 and Fig.2
34 % - 2% N 5exp(%) sin(%) it can be concluded that the C.M.-test is more powerful
than the K.S.-test independent to the sample sizes and
and the covariance matrix also to the choice af.
1 1 1
o= 1 3 2
1 2 2 C. Simulation 3

The%@ 2%%?;;‘:; h;:;ﬂtgnggongeitg d:rgépectively For the second case we consider hypothesis of the
. , form Hy : g € [f1, fo, f3, f4, f5, fs]® againstH; :
in Table 3 and Table 4 fo50 x 50 and75 x 75 lattice gelf 0f2 ?3 f1 [j% ;Z }E ;:]3f5wjr816(ire fgr(t ) elI
points, respectively. Fig.2 exhibits the graph of the ap- (t 8)’:’1 ’f (775 53 _ t7f (t’ ) = s f (’t 5) _
proximated power function of the tests simulated undertz1 }5@ 5) _ 52 7f6(t 5) ’:3753’ Falt S)’ :4 té and

the model fa(t,s) = s3. Suppose the data are generated from

2+ % + % + psin(&) the localized model with the regression functign=
g(t/n,k/n) = | —142L 13k 4 pexp(Lk) o (W, 9, gBNT defined respectively by
3+ L2k 1 pexp(E)sin( K
w~ Zuh ooy sinGa) N B B X
n n n n n n
k l k? 72 lk /3 k3
6+5—+10—+6— —5— +5— +p—
: ; n  n? n?2 a2 "nd3 nd
The simulation result shows that the power of the , 2 02 Ik /3 13
tests increases as the model moves away fidgn 10 — 5— + 5— + 6— — 10— —5— +p—
More precisely, for each sample size there exist a ten- n n n n n

dency that the power increases when the values of ei; : :
ther . 6 or v get large. Wherp, v and are set to Hence, the observations are clearly fréfpif and only

if p = 0, otherwise they are fromf;.

n3 n3

ISSN: 1998-0140 708



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Table 4: Probabilities of rejection df, (Simulation 2)
for « = 0.01 anda = 0.05 with 75 x 75 lattice points,
where&, ;. ~ N3(0,X2) simulated under 10000 runs.

p v 8| KSY, CM3, KSU, CMS,
a=0.01 a=0.05
O O 0] 0.0094 0.0080 0.0580 0.0458
15 5 51]0.0168 0.0222 0.0790 0.0856
20 5 5] 0.0246 0.0386 0.0938 0.1316
40 5 5] 0.1230 0.3512 0.3276 0.5974
60 5 505198 0.9126 0.7918 0.9750
5 10 5] 0.0174 0.0172 0.0632 0.0740
5 15 5] 0.0202 0.0308 0.0780 0.1170
5 20 5| 0.0264 0.0668 0.1048 0.1990
5 40 5] 0.3114 0.7596 0.5960 0.9006
5 60 509156 0.9996 0.9834 1.0000
5 5 10| 0.0246 0.0726 0.1090 0.1950
5 5 15| 0.0874 0.3240 0.2648 0.5462
5 5 20| 0.2918 0.7474 0.5760 0.8920
5 5 40| 1.0000 1.0000 0.9998 1.0000
alpha=0.05
o

c —

2

§ S

L ©

S o 7]

)

£ < |

Q9 o

@©

| N |

a ©°

T T T

rho

Figure 3: Approximated power functions of the K.S.
(straight line), C.M. (dashed line), and L.R. (dotted
line) tests for Simulation 3 with0 x 50 lattice points
simulated under 10000 runs.
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Table 5: The Pearson’s correlation matrix of the per-
centages of Ni, CaO and SjO

| Ni CaO  Si02
Ni | +1.0000 —0.1285 —0.0004
CaO | —0.1285 +1.0000 +0.3949

Si02| —0.0004 +0.3949 +1.0000

The graphs of the approximated power function
for the three tests (K.S, C.M. and L.R. tests) are ex-
hibited in Fig. 3. Compared to Simulation 1 and Simu-
lation 2, there is also a similar tendency in Simulation
3 that the power of the tests increases as the values of
p get large. The power of the tests increases as the
model moves away fromily. Whenp = 0, the power
achieves the nominal levels of the significance. The
simulation also shows that C.M.-test is more powerful
than K.S.-test.

V. APPLICATION TO MINING DATA

In this section we apply the proposed method to a
mining data provided by PT. ANTAM Tbk., studied in
Tahir [23]. The company aims to predict the percent-
age of nickel (Ni) contained in the exploration region.
The sample was obtained by drilling bores positioned
according to & x 14 regular lattice with 7 equidistance
rows running west to east and 14 equidistance column
running south to north. A laboratory analysis resulted
in not only the percentage of Ni but at the same time
there appeared also other substances such as calcium-
monoxide (CaO) and Silicon-dioxide (Sias impuri-
ties that must be incorporated in the statistical analysis.

As preliminary investigation we present the pairs
scatter plot of the percentages of Ni, CaO and SiO2 in
Fig. 4. The Pearson’s correlation coefficient among
the three variables is exhibited in Table 5. It is shown
that there exists strong correlation between Niand CaO
and between CaO and SiCBYy this reason the correla-
tion matrix must be taken into account in the statistical
modelling of the variables. Furthermore from the indi-
vidual scatter plot of the percentages of Ni, CaO and
the logarithm of the percentage of SiPresented re-
spectively in Fig. 5, Fig. 6 and Fig. 7 we can infer that
polynomial of lower order especially first-order model
seems to be adequate to represent the data.
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Figure4: The pairs plot of the percentage of Ni, CaO
and LogSiQ. The data is compiled in the exploration
region of PT. Antam Tbk in Southeast Sulawesi

Figure6: The scatter plot of the percentage of CaO

Figure7: The scatter plot of the logarithm of the per-
Figure5: The scatter plot of the percentage of Ni ~ centage of Si@
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the sense they achieve the level of significance as the

Table 6: The values ok S\, andCMY,, for Ni, | R-test did when the response is normally distributed.
CaO and LogSiO2 associated to constant, first-ordeilt is also shown by simulation that C.M.-test tends to
and second-order model. have more power than the K.S.-test has. The applica-
3 3 tion of the method to the Ni, CaO and Si@ata shows
K 57514 CM7 14 that the K.S. and C.M.-test have a good power in de-
Model Data p-value Data p-value tecting the appropriateness of the assumed model to

Constan  4.5244 0.0376 4.2910 0.0248 the sample. The MSR dealt with in this paper is that
1st-order 2.0354 0.6216 0.6388 0.5913 With correlated responses each of which has the same
ond-order 2.7491 0.0174 0.7996 0.0381 Dbasis. In our future study we consider the model in
which the responses have different bases with random
experimental design rather than fixed.

APPENDIX

. Theorem A.1 (Invariant Principle) Forn > 1, let
The values of the statlstlczS’SS;)14 andCM7(‘ri)14 (Invar inciple) "=

for the Ni, CaO and Si@data together with their ap- ) p )
proximatedp-values for the assumed models are pre- Xpdxp = {Xni = (Xni)izl 1<) < nl} )
sented in Table 6 below. The constant as well as "

second-order polynomial models are clearly not plau-pe a pyramidal arrays of independent and identically
sible when tested using either K.S.-test or C.M.-testdistributed random vectors witB(X_ ;) = 0 € IR?

because both tests give relatively smallalues. The B . " .
K S-test clearly rejects the constant (resp. second-andCOU(XN;'%) = ¥, where} is assumed to be posi-
order) model fora > 3.76% (resp. « > 1.74%), tive definite, ang := (jix){_,. LetZ, := (Z)_, be
whereasC. M .-test rejects the constant (resp. second-a centered Gaussian procesgi.A) with the covari-
order) model fora > 2.48% (resp. a > 3.81%). ance function

Next by the largep-values of the K.S. and C.M.-test

associated with the first-order model, we conclude that Cov(Z,(A), Z,(B)) = A (AN B)1,, A, B € A.

the first-order polynomial is appropriate. Hence by the

nd

least squares method, the fitted model is Then it holds true
Ni(t, s) 0.8250 + 0.1507¢ + 0.2146s SV (X ) o Zp, 10— 00,
CaO(t,s) | = | 0.7533 4+ 0.0015¢ — 0.03165s
SiOs(t, s) 3.4123 + 0.0063t — 0.0703s where forA € A,
In the practice the company should use such a fitted V(@) (Xpaxp)(A) = Z Vi i(AN C;)X i,
model for the prediction of the unobserved points. 1<j<nl " "
with C; = x¢_, (%, %} HereX~!/2 denotes the
root square oB 1, that is¥ /2212 = -1, Ais
VI. CONCLUSION the family of convex sets ii? := x4_,[0,1] x [0, 1],

d .
The limit process of the sequencepaflimensional andX‘ is the Lebesgue measure B

set-indexed L.S.R.P.S.P. can be derived under a mil .
assumption by applying the vectorial version of Pro-qb_rOOf' _(1) We_ show_that the seq(lil)ence of the finite
horov’s theorem. Our technique leads to the same limitdimensional distribution o&~'/2V;,”(X,4,,) con-
process as the geometric approach proposed in [6] foV€rges to those oZ,. For this purpose we use the
the spatial regression with single response and in [21]vvell-known multivariate Lindeberg-Feller central limit
for MSR with correlated responses did. The limit pro- theorem (cf. [24], p. 20). LeB;, ..., By, be any Borel
cesses can be represented and calculated in a simpfPsetind anday, ..., an, be any constants. It must
way since it is a projection of the-dimensional set- D€ shown fom — oo, that

indexed Brownian sheet. The simulation study shows ,,
that the K.S. and C.M.-tests provide reasonable statisr-;:

a; 22V (x B)) 25" a,Z,(B;),
tics to check the adequacy of the assumed models if— w (Rntp)(B) ]Z:; iZs(Bj)
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where> " | a;Z,(B;) follows ap-variate normal dis-

tribution having zero mean and the covariance matrix

C’ov(z a; Z,(B ZZala]
j=1

=1 j=1
It suffices to show the covariance of

(B; N B))L,.

m
F, = Z aj2_1/2v7(1d) (Xndxp)(Bj)
j=1
converges to that of" | a;Z,(B;), andF,, satisfies

Lindeberg condition. By the definition dfﬁfl), F, can
be represented as

n—ZaEW > ValX(B;nCi)X,

1<j<nl
1 1/2
- Vnd Z Vi B /X i
n 1<j<nl "
where
m

/\d(Ai N C;)
A(C;)

n

Zaz d)\dA NCj ) Zai

=1 i=1
Hence, by using the i.i.d. property & ;, for 1 <
j < nl,we have !

Cov(F

Z'Yi

1<J<n1
Let ), be a nonnegative function df defined by

2 .

0 ; otherwise

Y (t) :

There exists anV/ := >, |a;| such that|yy,| is
bounded uniformly by\/2. Also we have

/ () NU(db)T, = Cou(Fy)

Then by the higher dimensional Lebesgue density the-

A(AiNC;)

orem (cf. [26], p. 148) applied to the ratmm

Volume 9, 2015

wherel 4 stands for the indicator of a sdt Next we
show Lindeberg condition. Thatig > 0,

>, B

1<j<nl
1
{ll

lim
n—oo

\ﬁv s e %

e, BTVEXlww>ep) =0

By the property of the Euclidean norm

Hﬁ 7,15

Also Hﬁ%%zflﬁxn%uw > ¢ implies

M?
sl < 5 I1572X s Ml

d/2

n e

i

I=72X ;5 [lme >

Therefor we get

0< > E(

1<j<nl

E_I/QXn%H]QRP %

1
\/n”ﬂn%

1{“r7 32712 %||IRP>5})
2 —-1/2
S M E(Hz Xn%H]Rpl{HE 1/2x 1||]Rp>5"d/2 )

}

By the bounded convergence theorem (cf. Corollary
2.3.13in [3]), we see that

0< lm > B ﬁv 12X e
1<j<nl
Y, 22 lw>e))
< M?E(lim || £~ 1/2an||IRP
1{“2 ox, 1H]Rp>€nd/2}) =0.
(2) We show thaf{V,,(X,,4y,,) : n > 1} is tight.

Since for eacln > 1, V,,(X,,4,,,) has the sample path
in CP(A), the suitable definition of the modulus of con-
tinuity of V(X )is

ndxp

w(VTL(Xn’iXp);(S) : T(Av B)7

sup
{A,BEA: d,q(A,B)<6}

and the well-known Lebesgue dominated convergence

theorem, we get

lim Cov(F,,)

n—oo

lim v, (t)A(dt)I,,

Id n—oo

/Zajlg 2\ (at)I,
ZZ“Z%

1=1j5=1

(B; N B))IL,,

ISSN: 1998-0140 712

whereY : A x A — R>, defined by

T(A, B) i= |[Va(Xpip)(4) = Vi (X (B))
for any A, B € A. Thei-th component of they-

dimensional proces¥,,(X,,a,,) is given by

IRP

v (x@ y.— 1

ndxp/ *
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that satisfies

w

=1

X,(f;)xp); 5).

Hence, in order to establish the tightness of the

set-indexed procesgV,,(X,,ay,)(B)
suffices to show thavﬁf)(XT(f)

7 =

: B e A} it
pr) is tight, for each

1,...,p. We finish the proof by referring to the

uniform central limit theorem for the one dimensional
set-indexed process investigated in [1] and [17].
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