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Abstract—The tomato model-space has been developed
and it is called a big leaf-big fruit model, this model is
formed by the mass balances: the non-structural biomass
(nutrients) and the structural biomass of fruits and
leaves. Also, a model that describes the behaviour on
carbon dioxide concentration inside greenhouse is ob-
tained. From the two models we get a new complete crop-
greenhouse model. This model allows to get an optimal
control for the carbon dioxide enrichment in a tomato
greenhouse which gives benefits, because it is possible
to achieve a saving for energy consumption and more
tomato production. The optimal control theory is applied
to the crop-greenhouse integrated system, which is based
on four state variables: the consumption of nutrients,
the fruits and leafs growth and the carbon dioxide
concentration. This work contributes with the optimal
control law that gives the desired CO2 concentration
behaviour during the growth time for the crop. This
behaviour will be a reference signal for the controller
implementation in the electronic device that will be made
in a future work. The simulations for the crop-greenhouse
system are presented for a two weeks period.
This paper also contributes at optimal-tuning PI control
as Linear Quadratic Regulator of the electronic device.
The simulation of the optimal control PI are showed here.

Index Terms—Optimal control, Optimal-tuning, Linear
Quadratic Regulator, Carbon dioxide, structural biomass
of leaves, structural biomass of fruit, state space.

I. INTRODUCTION

In past years, researches have proposed different
optimal climate control methods for greenhouse
systems. These efforts have not been applied in
practice because it is difficult for real application
[1,2,3,9,12]. The difficulty lies in that the crop
growth is based in many different variables and
the mathematical analysis with all variables is
complicated. In this work, the variable that has our
interest is the carbon dioxide.

The carbon dioxide enrichment is practised in the
greenhouse crops in order to increase the yield and
the benefit. There are studies that demonstrate the
CO2 enrichment improves the net photosynthesis
in the plants achieving the increase of the total
weight, height, and the number of leaves and branches
[9]. Other research has demonstrated that the CO2

enrichment makes physic-chemical changes in the
crop, like color and firmness [8].

Optimization problems with two or more objectives
are very common in engineering and many other
disciplines. The process of optimizing a collection of
objective function is called multi-objective optimiza-
tion and it is difficult because of the large number
of conditions and variables involved in the system
[4]. In this work the optimization problem has two
objectives, first, decrease the energy consumption for
carbon dioxide enrichment and second, increase the
tomato production. The search process can be ac-
complished in two ways: deterministic and stochastic
search algorithms [6].
Optimal strategies for CO2 enrichment can be deduced
experimentally or analytically. Experimentation is not
able to produce a valid result for all condition set.
The mathematical analysis gives us a better option
to obtain an optimal strategy because it considers all
the variables involved in the system. This method is
based on ventilation, photosynthesis, dry matter and
production rate models.

One of the main objectives is to contribute with
the optimal control problem and its implementation in
real time. The tomato crop has been chosen because it
is one of the most important crop in our country and
is the second farm product consumed in the world.
To achieve the objective, we start from the tomato
and greenhouse mathematical set model considering
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the following variable: plant and fruit dry weight, the
nutrients amount and the CO2 concentration.

In this paper, we obtained the behaviour of CO2

concentration inside the greenhouse that is necessary
for growth during two weeks. We start from the fact
that this behaviour is a reference signal that a classic
controller will have to follow for each time instant. In
future work, all results in this paper help us to design
an electronic device that could be used in real tomato
greenhouses.

With the approach of optimal PI tuning for first order
processes, also the provision of simultaneously and
optimally finding the two parameters of a PI controller
(i.e.Ki,Kp), development has been addressed in this
paper.

II. GENERAL FORMULATION OF THE OPTIMAL
CONTROL PROBLEM

Optimal control problems appeared as essential tools
in modern control theory. Several authors have pro-
posed different basic mathematical formulations of
fixed time problems [5].
The optimal control of any system has to be based
on three concepts: the dynamic model of the system,
a functional and the system restrictions. In matrix
notation the state equation is represented as follows:

ẋ = f (x(t), u(t), t) . (1)

Where x(t) is the state vector, u(t) is the control
vector and t is the time. A criterion is required to
evaluate the performance of the system, normally, the
functional is defined by:

J = φ (x(tf ), tf ) +

tf∫
t0

L (x(t), u(t), t) dt, (2)

Where t0 and tf are the initial and final time, φ and
L are scalar functions, tf can be fixed or free. Starting
at the initial state x(t0) = x0 and applying the control
signal u(t) for t ∈ [t0, tf ], it makes that system follows
some trajectory of states, then the functional assigns a
unique real number for each trajectory of the system.

The fundamental problem of optimal control is to
determine an admissible control u∗ which makes that
equation (1) follows one admissible trajectory x∗ that
minimize the value of the functional in equation (2).
Then, u∗ is named optimal control and x∗ is an optimal
trajectory.

Necessary conditions for a solution

Restrictions (1) are added to the functional (2) with a
Lagrange multipliers vector time variantΨ(t) and the
functional is rewritten as follows:

J = φ(x(tf )) +
tf∫
t0

[L(x(t), u(t), t)

−ΨT f(x(t), u(t), t)− ẋ]dt,

(3)

Then, the Hamiltonian scalar function is defined,
which depends on the variable state vector, the control
signal and the new vector Ψ(t)

H(x(t), u(t),Ψ(t), t) =

= L(x(t), u(t), t) + Ψ(t)f(x(t), u(t), t) (4)

Then, it is possible to write an auxiliary system start-
ing from a new auxiliary vector that depends on time
Ψ(t). The new system is formed from Hamiltonian
function, as follows:

Ψ̇T = −∂H
∂x

= −∂L
∂x
−ΨT ∂f

∂x
(5)

The auxiliary system allows to know the final con-
ditions of the general system, which can be written as
follows:

ΨT (tf ) =
∂φ

∂x
(tf ) (6)

An infinitesimal variation in u(t) denominated δu(t)
produces a variation in the functional J like δJ . For a
stationary solution it is required that arbitrary variation
is equal to zero, δJ = 0. This is true when

∂H

∂u
=
∂L

∂u
+ ΨT ∂f

∂u
= 0 (7)

Note that from the Hamiltonian function (4) it is
possible to get the control form. Then, to find the vec-
tor function of control u(t) that produces a stationary
value of the functional we must solve the following
differential equation system:{

ẋ(t) = f (x(t), u(t), t) ,

Ψ̇(t) = − ∂H
T

∂x
,

(8)

The boundary conditions for this differential equa-
tions are separated, it means that some of them are
defined in t = t0 and the others in t = tf . This is
a problem with boundary values of two points. Note
the equations that describe the states x(t) and the
auxiliary states Ψ(t) in the equation (8) are coupled,
for this reason u(t) depends on Ψ(t) through the
stationary condition and the auxiliary states depend on
x(t) and u(t). And the first system in (8) has the initial
conditions of he system while the last system in (8) has
the final condition of the system.
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III. DYNAMIC MODELS OF THE CROP AND OF THE
GREENHOUSE

A. Dynamic model of the Crop

The model in space states of the tomato crop has
three principles states (Van Straten et al., 2011)[13]:
• Non-structural Biomass (Nutrients).
• Leaves Structural Biomass.
• Fruits Structural Biomass.
1) Biomass balance of nutrients: Nutrients are be-

ing produced by photosynthesis. The gross canopy
photosynthesis rate in dry matter per unit area is P.
Nutrients are converted to leaf and fruits, this is known
as growth. Leaf and fruits have a demand for nutrients,
which will be honored if there are sufficient nutrients
available. We denote WB as the total nutrients in
the plant and it is expressed as dry weight per area
unit. The biomass balance equation of nutrients is the
following [13]:

dWB
dt

= P − h{·}
(

(1+θV )
z

GdemL + (1 + θF )GdemF

)
−

−h{·}
(
RL
z

+RF
)
.

(9)

The biomass balance equation of nutrients (9) can
take two values depending on the nutrients abundance
h{·}, where the first expression is taken when h{·} = 1
(abundance of nutrients) and the second one is taken
when h{·} = 0 (lack of nutrients).

dWB

dt
=


P − (1+θV )

z
GdemL − (1 + θF )GdemF −

−RL
z
−RF ,

P,

(10)

RF .- Respiration needs of fruits
θV .- Additional amount of nutrients needs for one unit
of structural vegetative parts.
Gdem

L .- Unit area growth demand of leaves.
θF .- Additional amount of nutrients needs for one unit
of structural fruit parts.
Gdem

F .- Unit area growth demand of fruit.
z.- Total vegetative parts.
h{·}.- Nutrients abundance.

2) Biomass balance of leaves: The leaf growth is
equal to the amount of nutrients converted to structural
leaf biomass in the plant and it is given by h{·}Gdem

L .
The model does not incorporate an extra state for
stem and roots, but the factor z assumes that each
increment in leaf will be accompanied by an increment
in stem and roots. If there are no sufficient assimilates
(nutrients), growth stops, normally the assimilates are
used for the maintenance, but in lack of nutrients,
maintenance in the model goes at the expense of
structural parts (leaves and fruit). The biomass balance
of leaves is expressed in the form [13]:

dWL

dt
= h{·}GdemL − (1− h{·})RL −HL, (11)

Depending on the abundance of nutrients h{·}, the
biomass leaf balance equation (11) can take two val-
ues:

dWL

dt
=

{
GdemL −HL, if h{·} = 1,

−RL −HL, if h{·} = 0.
(12)

where
HL is the leaf picking rate.
3) Biomass balance of fruit: Similarly to the

biomass of leaf case, the growth of fruits in the plant
from the nutrients is given by h{·}Gdem

F . The term
Gdem

F depends principally on the pivotal temperature,
cultivation temperature level and the reference temper-
ature [13].

dWF

dt
= h{·}GdemF − (1− h{·})RF −HF , (13)

Finally, the equation (13) of biomass balance of
fruits can take two different values depending on
nutrient abundance h{·}, where HF is the fruit harvest
rate:

dWF

dt
=

{
GdemF −HF , if h{·} = 1,

−RF −HF , if h{·} = 0.
(14)

B. Dynamic Model of the Greenhouse

1) Balance of CO2 energy in the greenhouse: The
balance of carbon dioxide energy within greenhouse is
given by the equation [13]:

Vg

Ag

dCCO2
dt

= −ηCO2/dwP + ηCO2/dwR−
−ϕventCO2,g o + uCO2 ,

(15)

Then each term is described.
∗ Carbon dioxide taken from the greenhouse air for

plant photosynthesis:
ηCO2/dwP,

∗ Carbon dioxide returned to the greenhouse air for
plant respiration:

ηCO2/dwR,

The term Vg

Ag
is the reason of the volume of greenhouse

per unit of area.
R is the total respiration plant per unit of time.
∗ Lost of carbon dioxide mass by ventilation:

ϕventCO2,g o = uV (CCO2 − CCO2 o),

where: uV is the ventilation flow rate per unit of area.
CCO2

(kgm−3) is the carbon dioxide concentration
within greenhouse.
CCO2,o (kgm−3) is the carbon dioxide concentration
on the outside greenhouse.
∗ Carbon dioxide supply:

uCO2
= uV p

CO2
ϕmax
CO2,in g,

where uV p
CO2

is the opening supply valve.
ϕmax
CO2,in g

(
kg[CO2]m−2[gh]s−1

)
is the maximum
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flow rate of carbon dioxide.

In this greenhouse model, the position of the carbon
dioxide supply valve is the control input. For this
reason, the valve relates directly to the actuator that
is present on a physical way in the greenhouse.

C. Integrated Model Crop-Greenhouse

From previous description of greenhouse and crop
models is possible to get a complete system formed
by three crop equations and greenhouse equation. This
new equation system describes the complete system
behaviour and it is important to note that all of the
equations are related principally by the P element and
the state variables of the crop. It is important to say
that the three equations related to the crop are taken
with the assumption that there is an abundance of
nutrients (h{·} = 1). Therefore, general system is as
follows:



ẆL(t) = GdemL −HL,
ẆF (t) = GdemF −HF ,
ẆB(t) = P − 1+θv

z
GdemL + (1 + θF )GdemF − RL

z
+RF ,

˙3CCO2(t) = −ηCO2/dwP + +ηCO2/dwR− ϕventCOg−0

+uCO2,
(16)

IV. SYNTHESIS OF OPTIMAL CONTROL

We consider the system (16). The terms for the equa-
tion system are substituted using the equation table of
the mathematical model (table 1) and the values are
substituted using the table of physical parameters (table
2). The resulting model is:


ẆL(t) = 2.2996× 10−6 WL(t),

ẆF (t) = 4.3925× 10−6 WF (t),

ẆB(t) = P (t)− 5.39× 10−6WL(t)− 5.92× 10−6WF (t),
˙3CCO2(t) = 1.0266(R(t)− P (t)) + 0.155× 10−10u

vp
CO2

,
(17)

P and R are the following:

P (t) =
3.7192×10−11 W2.511

L (t)

1.6353×10−9+4.0439×10−5 W2.511
L

(t)
,

R(t) = 1.5942× 10−6WF (t) + 0.4856× 10−6WL(t)
+1.668× 10−7.

It is important to note that the terms P(t) and
R(t) have involved two of the three state variables of
the crop and they are time dependent functions, so
the entire system is connected and it can be solved
simultaneously.

We consider the following functional, which has the
same form shown in (3):

J = 1
2
[W 2

L(tf) +W 2
F (tf) +W 2

B(tf) + C2
CO2

(tf)+

+
tf∫
t0

[W 2
L(t) +W 2

F (t)+

+W 2
B(t) + C2

CO2
(t) + (u

vp
CO2

)2(t)]dt]
(18)

The first term involves the three first variables at the
end time, they are related to the final production and
the nutrients, and the integral contains the control input
in order to avoid the risk for big control inputs. The
idea is to minimize the functional (18), related with
the equations system (17).

A. Solution Method Description

The Hamiltonian scalar function is obtained consid-
ering the relation (4) with the Lagrange multipliers and
the functional (17):

H(x,u,Ψ, t)) =

=
1

2
[W 2

L(t) +W 2
F (t) +W 2

B(t) + C2
CO2

(t) + (u
vp
CO2

)2(t)]+

+ 2.2996× 10−6WL(t)Ψ1(t) + 4.3925× 10−6WF (t)Ψ2(t)+

+
[
P − 5.39× 10−6WL(t)− 5.92× 10−6WF (t)

]
Ψ3(t)+

+
1

3

[
1.0266(R− P ) + 0.1554× 10−10u

vp
CO2

]
Ψ4(t).

(19)

The system of auxiliary variables is formed using
the expression (5) and has the following form:

Ψ̇1 = WL + 2.2996× 10−6 Ψ1 + ∂P
∂WL

Ψ3−
−5.39× 10−6Ψ3 + 1

3
∂(R−P )
∂WL

Ψ4(1.0266)

Ψ̇2 = WF + 4.3925× 10−6 Ψ2−
−5.92× 10−6 Ψ3 + 1

3
∂R
∂WF

Ψ4(1.0266),

Ψ̇3 = WB ,

Ψ̇4 = CCO2 ,

(20)

The stationary condition give us the following con-
trol form, which was obtained from equation (7) and
depends on fourth appended state:

u
vp

CO2
= −1

3
0.1554× 10−10Ψ4(t). (21)

It is necessary to solve the equation systems (17) and
(20), in this way we can know the Ψ4 value and finally
we will get the control form. The system (17) has initial
condition and the system (20) has final conditions. The
systems are coupled because the control form (21) has
been substituted. To solve the complete system like a
system with initial conditions, the auxiliary equations
are considered in reverse time, then the behaviour
of the auxiliary variables is returned to the direct
time. When we solve the appended equation system in
reverse time the system becomes a system with initial
conditions. It is important to note that the equation (21)
depends on the fourth state but this state depends on
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TABLE I
GREENHOUSE AND CROP MATHEMATICAL MODEL EQUATIONS

Term Description
P = Pmax

(
IPAR

IPAR+KI

)(
CCO2

CCO2
+KC

)
fm{·} Production of assimilates by photosynthesis.

R = h{·}
(
θV
z
GdemL + θFG

dem
F

)
+ RL

z
+RF Total amount breathed plant per unit of time.

IPAR = fPAR/IτrIo The PAR light intensity at the crop level.

fm{·} = (WL/pm)m

1+(WL/pm)m
Maturity factor.

GdemL = fL/F (T )k
ref
GF fTG(T )fD{·}WL Growth leaves demand.

GdemF = krefGF fTG(T )fD{·}WF Growth fruits demand.

fL/F (T ) = fref
L/F

e
v2(T−Tref

L/F
)

Temperature-dependent ratio.

fTG(T ) = Q
T−Tref

G
/10

10R Temperature dependent with a Q10G relation.

fTR(T ) = Q
T−Tref

R
10R Function of temperature with a Q10G relation.

fD{·} =
cf1−cf2D

cf1−cf2
Correction factor for the fruit growth rate.

RL = krefRL fTR(T )WL Respiration demand of the leaves.

RF = krefRF fTR(T )WF Respiration demand of the fruits.

HL = kHLWL Leaf picking rate.

HF = kHFWF Harvest rate.

KHL = CyLKH Coefficient of harvest.

KHF = CyFKH Coefficient of harvest.

KH = Cd1 + Cd2ln(T/Cd3)− Cd3− Cd4eD Harvest rate.

uV =

(
pV 1u

Aplsd
V

1+pV 2u
Aplsd
V

+ pV 3 + pV 4u
Apwsd

V

)
v + pV 5 Ventilation flow rate.

the other three states. Using MatLab tools we solve the
equation systems (17) and (20).

V. SIMULATION OF CONTROL LAW

The MatLab tools were used to elaborate the
program that solve the differential equations system
formed by equations (17) and (20). The simulation
period is for two weeks. The results obtained are
described below. It is important to know that in the
following results, the temperature and solar radiation
are time varying, in order to make the simulation more
real. Figures 1 and 2 show the temperature and solar
radiation varying in a time of two weeks.

A. Analysis with a Step Input.

In a first simulation we use a step function as control
input (uvp

CO2
= 1). We solved the equation system and

later we got the graphics that represent the behaviour of

Fig. 1. Time varying temperature for two weeks.

most important variables of the system. Figure 3 shows
the behaviour of three crop state variables. The red line
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TABLE II
PHYSIC PARAMETERS.

Variable Value Description
z 0.6081 Fraction leaf of total vegetative mass
θv 0.23 Surplus assimilate requirement factor per unit fruit increment.
θF 0.2 Surplus assimilate requirement factor per unit vegetative increment.
ph 2.7× 10−3 Parameter of switching function, [m2 kg−1]
pm 1.8× 10−2 Parameter in maturity factor, [kg m−2]
m 2.511 Parameter in maturity factor
pmax 2.2× 10−6 Maximum gross canopy photosynthesis rate, [kg m−2 s−1]
K1 577 Monod constant for PAR, [W m−2]
Kc 0.211 Monod constant for CO2, [kg m−3]
fPAR/I 0.475 PAR fraction of global radiation
τr 0.7 Transmittance of the roof
krefGF 3.8× 10−6 Reference fruit growth rate coefficient, [s−1]

T refGF 20 Reference temperature, [0C]
Q10G 1.6 Temperature function parameter growth
fref
L/F

1.38 Reference leaf-fruit partitioning factor
v2 -0.168 Parámetro de partición de fruta-hoja, [K−1]

T ref
L/F

19 Fruit-leaf partitioning reference temperature, [0C]

krefRL 2.9× 10−7 Maintenance respiration coefficient leaf, [s−1]
Q10R 2 Temperature function parameter respiration
T refR 25 Reference temperature for respiration, [0C]

krefRF 1.2× 10−7 Maintenance respiration coefficient leaf, [s−1]
η 0.7 Absorbed in relation to the total energy of the net radiation heat received.
Cd1 2.13x10−7 Parameter in development rate function, s−1

Cd2 2.47x10−7 Parameter in development rate function, s−1

Cd4 7.50x10−11 Parameter in development rate function, s−1

CyL 1.636 Parameter in harvest function (fruit)
CyF 0.4805 Parameter in harvest function (leaf)
CCO2,0

1.6637

CCO2/dw
1.4667 Ratio CO2 per unit dry weight, Kg[CO2]Kg−1[dw]

CCO2,ing
2.10x−6 Ratio CO2 per unit dry weight, Kg[CO2]m−2[gh]s−1

Vg

Ag
3 Volume per unit greenhouse area

pv1 7.17x10−5 Parameter.
pv2 0.0156 Parameter.
pv3 2.71x10−5 Parameter.
pv4 6.32x10−5 Parameter.
pv5 7.40x10−5 Parameter.

Fig. 2. Time varying solar radiation for two weeks.

shows the fruit behaviour which has acceptable growth
just like the leafs (green color line). The black line
represents the nutrients behaviour which is acceptable
because it is observed that the crop is consuming the

available nutrients during the growth time. Figure 4

Fig. 3. Behaviour of fruits, leaves and nutrients dry matter with an
input step.

shows the carbon dioxide behaviour. Note the CO2

concentration increases up to 9000 ppm. This is very
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high and it means so much energy consumption.

Fig. 4. Behaviour of CO2 concentration a step as input control.

B. Analysis with the Synthesized Control

For the next simulation, we got results using the vari-
able parameters, but now we simulated the control law
(21) deduced in this paper. Figure 5 shows the results.
Note thet the behaviour of the three crop state variables
are similar to the previous cases, but in this case
the carbon dioxide behaviour is different. In Figure
6 we can note that CO2 concentration decreases and it
reaches 450 ppm, which is very acceptable because
it means low energy consuption and an acceptable
quantity of carbon dioxide for clean air.

Fig. 5. Behaviour of fruits, leaves and nutrients dry matter with the
control deduced.

Fig. 6. Behaviour of CO2 concentration the control input deduced.

VI. AUTOMATIC CONTROL SYSTEM FOR THE
CONCENTRATION OF CARBON DIOXIDE INSIDE THE

GREENHOUSE

Figure 7 shows the complete automatic system
which will control the carbon dioxide concentration.
The valve and supply tank are the pneumatic system.
And the CO2 sensor will make the reading of current
carbon dioxide inside de greenhouse.

Fig. 7. Automatic control system for concentration of carbon dioxide
inside the greenhouse.

A. Mathematical Model of Pneumatic Pressure System

The pressure system that will do the carbon dioxide
enrichment is formed by a valve and a storage tank,
Figure 8. In it, the flux through the restriction is a
function of the difference of pressure. This kind of
system is characterized in terms of a resistance and a
capacitance. The resistance is defined like the change
in the differential pressure to make a change in the
mass flux [15]:.

R =
d(∆P )

dq
(22)

where ∆P is a small change in the pressure of the gas
and dq is a small change in the flux of the gas.

By the other hand, the capacitance is defined like:

C =
dm

dp
= V

dρ

dp
(23)
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Fig. 8. Pressure system with tank and restriction.

where
C = Capacitance, lbfth2/lb
m = Gas mass in the tank, lb
p = Pressure of gas, lb/fth2

V = Volume of tank, fth3

ρ = Density, lb/fth3

From the general law of gases, the capacitance is
expressed as [15]:

p(
V

m
)m =

p

ρ− n
= constant (24)

where n is the politropic exponent. The expression for
ideal gases is:

pv =
p

ρ
=

R

M
T = RgasT (25)

where:
p = Absolute pressure, lb/fth2

v = Volume occupied by one mole of gas, fth3/lbmol
R = Universal constant gas, fthlb/lbmolR
v = Specific volume of the gas, fth3/lb
M = Molecular weight of the gas, lb/lbmol
Rgas = Constant of the gas.

Therefore, the capacitance is obtained as:

C =
V

nRgasT
(26)

For the system in this paper, the capacitance was got
from the formula (26) using the parameters in Table
VI-A. The calculated value was 1.3447e−3Kgm2/N

Description Value Units
V- Tank volume 0.17657 pie3

n- Politropic exponent 1
Rgas- Gas constant 0.243844 pielb/lbR

R- Universal constant of gases 10.73158 pielb/lbmolR
M- Molecular weight CO2 44.01 g/mol
T- Absolut temperature 538.47 R

TABLE III
VALUES TO CALCULATE THE CAPACITANCE OF THE SYSTEM.

The formula to calculate the resistance is

R =
8ηL

πr4
(27)

where:
∆P is the pressure difference.
η is the viscosity of the gas, N/m2.
r inner radius of the pipe in meters.
L length of the pipe expressed in meters.

For our particular system we use the values in table
VI-A and the result is 13402.7370 pneumatic ohmnios.

Description Value Units
Viscosity of CO2 1.3711e−5 N/m2

Inner of pipe 0.0127 m
Lenght of pipe 1 m

TABLE IV
VALUES TO CALCULATE THE RESISTANCE FOR THE SYSTEM

To obtain the mathematical model of the system
small variations are considered and the system is
considered linear. The following terms are defined:

P = Pressure of the gas in stable state, lb/pie2

pi = small change in the gas that enter ld/pie2

po = small change in the pressure gas in the thank
lb/pie2

V = volume of the thank pie3

m = mass of the gas in the thank, lb
q = flux gas, ld/seg
ρ = density gas, lb/pie3

The resistance is R = (pi − po)/q and the capaci-
tance is obtained from (24), in this way:

Cdpo = qdt or
Cdpo = pi−po

R dt

which is written like RC dpo

dt + po = pi

If pi and po are the input and output, respectively,
the transfer function is:

Po(s)

Pi(s)
=

1

RCs+ 1
(28)

And, with the values of resistance and capacitance
calculated previously, the transfer function can be
written as follows:

Po(s)

Pi(s)
=

1

18.022s+ 1
(29)

From, now we will working with the transfer func-
tion to get a PI controller which will have an action
over the actuator.

VII. OPTIMAL-TUNING PI CONTROL AS LINEAR
QUADRATIC REGULATOR

From analysis controllability we know the system
is completely controllable, it means every control will
achieve stabilize the system. But the question is what
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control is the best to stabilize the system in less time.
In this section a comparison between classical tuning
for PI controller and optimal control theory for PI
controller is made.
PID controllers are most common in process industries
due its simplicity. In this research we will work with
a PI controller because of the characteristics of the
pneumatic system.

Using the Lyapunov method, the optimal control
problem is reduced to the Algebraic Riccati Equation
(CARE), which is solved to calculate the feedback
gains for a set of matrices. These matrices regulate
the penalties on the deviation in the trajectories of the
state variables and the control signal. Combining the
tuning philosophy of PID controllers with the concept
of Linerar Quadratic Regulators (LQR) allows to get
an optimal control for the actuator in our automatic
system [16].

Fig. 9. Block diagram of PI controller.

In figure 9 a PI controller in parallel form has
been considered to control the system represented in
(28). From the general equation for PI controller and
supposing the feedback control system is exited with
an external input r(t) to get a control signal u(t) and
output y(t), we define the state variables as:

x1 =

∫
e(t)dt, x2 = e(t) (30)

From the block diagram presented in figure 9 and
the transfer function (28), it is clear that

Y (s)

U(s)
=

k

RCs+ 1
=
−E(s)

U(s)
(31)

And then:

(RCs+ 1)E(s) = −kU(s) (32)

Then, we can transform the equation (32) changing
it to time domain:

RCė(t) + e(t) = −ku(t) (33)

And finally, we can re-written the equation (33)
using the selection of state variables in (30).

RCẋ2 + x2 = −ku(t) (34)

State space representation for (34) is:{
ẋ1 = x2

ẋ2 = − x2

RC −
k

RCu(t)
(35)

Using (35), the state space formulation becomes to:

ẋ(t) =

(
0 1
0 −1/RC

)
x(t) +

(
0

−k/RC

)
u(t) (36)

From the development of the transfer function which
describes the behaviour of the pneumatic system we
know the R and C values. And, with the representation
in (36) we can analyse the controllability of the system
using the controllability matrix. The determinant of
matrix controllability is different to zero, the system
is completely controllable.

|B AB| =
∣∣∣∣ 0 −1/18.022
−1/18.022 1/(18.022)2

∣∣∣∣ =

Now, in order to have an optimal formulation with
the system (36), the following quadratic function (J)
is selected [16],

J =

∫ ∞
0

(xT (t)Qx(t) + uT (t)Ru(t))dt (37)

Minimization of cost function gives the state feed-
back control law as:

u(t) = −R−1BTPx(t) = −Fx(t) (38)

Where P is the solution of the Algebraic Riccati
Equation given by:

ATP + PA− PBR−1BTP +Q = 0 (39)

We know the matrix A and B, Q is a symmetric pos-
itive semi-definite matrix and R is a positive number.
Both Q and R are selected by the designer. The matrix
Q is chosen to be as positive semi-definite diagonal
matrix. Matrix P and matrix Q have the following form:

P =

(
P11 P12

P12 P22

)
Q =

(
Q1 0
0 Q2

)
(40)

The solution for Riccati equation (39) was obtained
from care function in MatLab, this function returns
the unique solution P of the algebraic Riccati equation,
also it returns the gain matrix.

The solution P using the arbitrary values for matrix
Q and parameter R is:

P =

(
6.2485 18.022
18.022 94.588

)
(41)

Finally, we can substitute all known parameters in
control law equation (38).
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Solving the substitution, we got a new matrix which
has the proportional and integrate gain for the PI
controller.

u(t) = (ki kp)

(
x1(t)
x2(t)

)
(42)

Control form can be written in this way:

u(t) = ki

∫
e(t)dt+ kpe(t) (43)

As we know, this form is the representation of
general PI controller.

A. PI controller simulation

A program was made using MatLab to solve the
Ricatti equation and to make variations in matrix Q.
The Figure 10 represents the results for different vari-
ations of Q with a step input. From graphic we can
chose de best behaviour for the system response.

Fig. 10. Step responses with variations of matrix Q.

With the variation in elements of matrix Q, the
overshoot slight increases with gradual fall in rise time.
In Figure 10 it is possible to see the fifth variation of
Q is the best response because it has an overshot less
than two percent and the system stabilized about five
seconds.

From the program in MatLab we can know the gains
for PI controller that corresponds to the values of Q.

B. Method of Ziegler-Nichols for tuning a PI controller

It is important to make a comparison with other
method tuning for PI controller, to make sure the
optimal control tuning is the best way to have a control
over the actuator. The proportional component of con-
troller PI will make the system reaches the reference
signal in less time and the integral component will
minimize the stable state error. The Ziegler-Nichols

method is based in the analysis response of the system
with a step input in open-loop, The response is a
reaction curve, called ’S’ curve.

From the analysis we get the parameters of the
model with the equations:

k0 = y∞−y0

u∞−u0
, τ0 = t1 − t0, γ0 = t2 − t1

Using MatLab a program was made to know the
parameters and finally we got the gains for the PI
controller using the value table which Ziegler and
Nichlos proposed.

Kp Tr Td

P γ0
K0τ0

PI 0.9γ0
K0τ0

3τ0

PID 1.2γ0
K0τ0

2τ0 0.5τ0

In figure 11 we use the classical control tuning using
the Ziegler-Nichols method. The result is the system
is stabilized in about 10 seconds, which means the PI
controller is working because it reduces the stabilizing
time, But studying the results before where the optimal
theory was applied for getting the PI controller we
can note the best response was when the system is
stabilized in five seconds.

Fig. 11. Response of the system, with a classical PI control tuning.

From all results presented before, we can conclude
that classical way for PI tuning is working very well
but the best result is getting when we applied the
optimal tuning to the system to get a good control over
the valve in the pneumatic system because the system
is stabilized in less time.

VIII. CONCLUSION

From the integrated tomato-greenhouse model it is
possible to do the optimization of all variables. In this
case, the most important variable is the carbon dioxide
concentration. In a first step, the optimal control theory
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was used to determine the desired behaviour of the
variables over a prescribed time period. In a second
step, a PI control was designed form optimal control
theory to make change in the behaviour of the actuator.
All the results obtained in this paper are the base to
create an electronic device able to make the automatic
control of carbon dioxide concentration inside a real
tomato greenhouse.
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