
 

 

  

Abstract— The present paper is devoted to the research of new 

controlled queuing model at control of Controlled Batch Semi-

Markov Arrival Process (CBSMAP). Note that it is very reasonable 

to change the characteristics of arrival flows in various queuing 

models for optimization of its functioning. The control is based on 

the theory of controlled semi-markov processes for system 

optimization. The control is carried out using a type of the next 

batch, the moments of batch arrivals and the quantity of queries in 

the batch. CBSMAP-flow (new type flow) is constructed and 

research queuing model using the controlled flow is investigated. 

Several control measures for the model are used. Two theorems about 

the income functional for the model are formulated. 

 

Keywords— System control, queueing models, optimization, 

semi-markov process, queueing theory.  

I. INTRODUCTION 

HE  functioning of different systems can be described 

using queuing models, for example [2], [4], [14]. 

Application of control is used to increase the efficiency of the 

system functioning. In the present paper the process of system 

functioning is investigated using control by the arrival flow. 

The Controlled Batch Semi-Markov Arrival Process is a 

generalization of the BMAP-flow [2]. BMAP-flow is good for 

modeling of data-flows in telecommunication networks. 

Define CBSMAP-flow [5]. After holding in the state comes to 

an end, the Controlled Semi-Markov process jumps to the 

other state and the batch of queries of CBSMAP-flow will be 

generated. Note that, CBSMAP-flow is also good for modeling 

of data-flows. 

In the previous papers control for models was carried out using 

two types of control: choice of a batch type, and choice of a 

batch type and the moments of batch arrival [11], [12]. 

In the present paper control of the model is complicated. We 

define semi-markov kernel, construct control measure set and 

income functional on the trajectories of controlled semi-

markov process. Use the control of three parameters at the 

same time in arrival flow: type of the next batch, the moments 

of batch arrivals and the number of queries in the batch. The 

control is carried out using theory of semi-markov processes 

that is used for different types of problems [1], [7], [9]. 
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II. DESCRIPTION OF THE MODEL. ALGORITHM 

As in the paper the theory of controlled semi-markov 

processes is used, see Appendix for the main points of the 

theory used for the Model. 

Consider, that at the moment of CSMP (Controlled Semi-

Markov Process) transition in state k in queuing model the 

final batch of customers (queries) of k-th type arrives, a 

number of queries in group 
kν  is defined by a generating 

function. 
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where 
( )

( )
k

p m  - is a probability that the number of k-th 

type queries in a batch is m, Mk – a maximal number of queries 

in a batch of k-th type. 

Formulate the important assumptions at which the further 

researches will be carried out. 

1.   Queries (customers) of the same type arrives in the 

system (subsystem), each of which functions irrespective of 

other subsystems. The subsystem which is carrying out service 

of queries of k-th type we designate as System(k). 

Notice, that the process of service in each system is realized 

irrespective of other systems states, however functioning of the 

systems is coordinated with the general arrival flow. 

2.   Between the next moments of the change of the CSMP 

states, queries do not arrive in system, only the process of 

service in subsystems is carried out. The process of service in 

k-th subsystem is characterized by number 
( )

( )
k

ν t  of the 

customers which are being in the subsystem during the 

moment t. 

The probability 
( )

( )
k

msp t  is defined as follows 
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probability of that in k-th subsystem during time t (between 

the markov moments) (m-s) queries are operated, provided that 

during the initial moment in System there were m queries. 

If System (k) is a system without queue, Nk =0, then 

( ) ( )
( ) ( ) , ,

µ t sµ tk m ss k kp t C 1 e e n m s 0ms m k

− −−
= − ≥ ≥ ≥

    (3) 

where nk - a number of channels (service buffers), 
kµ  - a 

parameter of exponential distribution of the service duration. 

For other combinations of parameters , ,
k

n m s  the 

probabilities are equal to zero. 

If System (k) is a single-channel system with queue, nk=1, 

Nk>0, then 
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For other combinations of parameters required probabilities 

are equal to zero. 

In general case, if System (k) is a multichannel system with 

the queue ,n 1 N 0k k≥ ≥  , then 
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For other combinations of parameters , , ,n N m sk k
 

required probabilities are equal to zero. 

Note, that there are several types of admission discipline. 

Three admission disciplines are known: 

- partial admission, when only a part of the batch 

corresponding to the number of free places in the buffer is 

allowed to join the system; 

- complete admission, when the whole batch is allowed to 

enter the system, if there is at least one free place in the buffer; 

- complete rejection, when the whole batch is rejected. 

Probabilities 
( )

( )
k

p smɶ  - probability to accept m queries 

from batch of k-th type at presence of s empty seats (for 

Subsystem (k)) depending on the admission discipline. 

In case of partial admission 
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In case of complete admission 

 

( )
( ), , ;( )

( )

, .

k
p s s 0 m 0k

p sm
1 s m 0

> >
=

= =





ɶ              (7) 

 

In case of complete rejection 
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Further calculate 
( )

( )
k

q smn  conditional distribution for the 

number of the accepted queries (probability to accept queries) 

provided that n  queries arrived and there was m  empty seats. 

- If queries are accepted only for empty seats,   
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- If all batch of queries in the presence of at least one empty 

seat is accepted, then 
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- If there is no at least one empty place for all queries in 

batch, the batch is lost. In this case 
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Describe the model. The given system consists of N 

subsystems. 

The subsystem of k-th type 1,k N= , in designations of 

Kendall’s notation can be described as follows: 

CBSMAP/Mk/nk/Nk, where 

- СBSMAP means, that the arrival flow is controlled flow, 

described earlier; 

- Symbol Мk means, that service duration of customer in a 

subsystem is exponentionally distributed with parameter µk; 

-Symbols nk and Nk define the quantity of the service buffers 

and the number of places in the queue nk and Nk accordingly. 

In classification of queuing systems, the system can be 

considered as controlled semi-markov system as its evolution 

is defined with controlled semi-markov process. 

For construction of CSMP, describing the evolution of the 

system, it is necessary to realize the following algorithm: 

•  Define Markov moments,  

•  Define the states of semi-markov process; 

•  Define control set and control strategy; 

•  Define semi-markov kernel and a matrix of transition 

probabilities for embedded Markov chain; 

•  Construct income functional on the trajectories of CSMP; 

•  Define optimum strategy of control.  

In the given model the Markov moments are the moments of 

arrivals of any type queries in system. In case of k-th type 

customers arrival, the given queries are taken on service to a 

subsystem of k-th type, and in other subsystems the batch of 

zero quantity "arrives". 

The system states are defined using a vector 

1 2( , , , ..., )Ni l l l , where i - a state of an arrival flow (at Markov 

moment the batch of i-th type customers arrives), kl  - a 

quantity of queries in a subsystem of k-th type, 

0, , 0,
k k k k i i i i

M N n l k i M N n l+ + > ≥ ≠ + + > >  

kn  and kN - accordingly the quantity of service channels and 

the quantity of places in the queue in the System (k), 

{ , , ..., }.i E 1 2 N∈ =  The quantity of customers in a 

subsystem is final and depends on the admission discipline and 

the structure of a queuing model. Therefore  

{ , , ..., }k k k k kl E 1 2 M N n 1∈ = + + −   

and ( , , , ..., ) ...
1 2 N 1 N

i l l l E E E∈ × × ×   . 

Enter the following designations: 

 

( , , ..., )l l l lN1 2 =
�

;  ...E E E EN1× × × = ɶ   . 

 

The transition from state ( , , , ..., )
1 2 N

i l l l  to state 

' ' '( , , ' , ..., , ..., )1 2 j Nj l l l l  with positive probability occurs if 

' ,k kl l k j≤ ≠ . So in all subsystems, except for a subsystem 

of j-th type, there is only a service customers which can be 

presented as process of death process, accordingly the quantity 

of customers in these subsystems is not more than the quantity 

of customers in subsystems at previous Markov moment of 

batch arrivals. 

Note, that the system control is carried out using a control of 

arrival-flow at the moments of SMP (semi-Markov process) 

states change, at the Markov moments. 

Remind, that control Markov strategy 

( , )
( ( ), ( , ) )

i l
G G u i l E= ∈�

��
ɶ , depending only on a current 

state of controlled process, is a set of the probability measures, 

given for each state ( , )i l E∈
�
ɶ  on  σ -algebra of subsets of 

decisions’ set 
( , )i l

U � . 

 

III. CONTROL MEASURES FOR THE MODEL 

Remind, that control Markov strategy 

( , )
( ( ), ( , ) )

i l
G G u i l E= ∈�

��
ɶ  , depending only on a current 

state of controlled process, is a set of the probability measures, 

given for each state ( , )i l E∈
�
ɶ  on σ -algebra of subsets of 

decisions’ set 
( , )i l

U � .  

As it was noted above, the problem of controlled arrival 

flow is investigated. The flow is set as semi-Markov process. 

The arrival flow is defined by three factors: the type of the 

next batch, the arrival time of the next batch and the number of 

queries in the batch. 

Therefore, the following options for construction of control 

measures set are possible: 

-control of the next batch type, 

-control of the next batch type and the moment of the batch 

arrival, 

-control of the next batch type, the moment of the batch 

arrival and the number of queries in the batch. 
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1. If depending on the state of semi-markov process 

( , )i l E∈
�
ɶ  the next batch type is chosen. Then the equation is 

fair 
( , )

{1,2,..., }
i l

U E N= =� for control measures, and 

probability measure for discrete set E = {1,2 …, N} is define in 

the following way 
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where u(t) – is a decision made in markov moment t; 

2. If depending on the state of semi-markov process 

( , )i l E∈
�
ɶ  the next batch type, the moment of the batch arrival. 

Т Then the equation is fair  

 

( , )
[0, ) {( , ),

{1,2,..., }, [0, )}

i l
U E j u

j E N u R
+

= × ∞ =

∈ = ∈ = ∞

�

 

 

i.e. the set of controls consists of final number of half-lines. 

The probability measure on the set can be given a set of 

probabilities (12) and conditional distributions continuous 

components. If to designate a casual interval of time through 

which the following group of queries comes to queuing system 

θ, it is possible to determine conditional distribution of 

continuous component by equality 
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and strategy is defined by equalities 
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3. If depending on the state of semi-markov process 

( , )i l E∈
�
ɶ  the next batch type, the moment of the batch arrival 

and the number of queries in the batch are chosen, then the 

equations are fair for control measures 
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And for conditional distributions 
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Designate θ   - an interval of time through which in system 

the following batch arrives, it is possible to define conditional 

distribution in the following way 
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And strategy is defined 
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The semi-markov kernel is a probability of that the semi-

markov process will pass in the state ( , )j l
�

  (at the Markov 

moment the batch of j-th type arrives and in subsystems will be 

l
�

 queries) and the time of the transition will not surpass t, 

provided that the process stays in state ( , )i m
�

 and in the state 

the decision ( , )i mu U∈ �  from the control set is accepted. 

Designate the probability as 
( )

( , )
( , ),( , )

k
Q t u

i m j l
�� . 

If ( , ) { , , ..., }i mU E 1 2 N= =� , then we choose the type of the 

queries, which will arrive to the queuing model. Then we have 
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In equality (16) designations are used:  

• the probabilities 
( )

, ( )
j

m sj
p x  are defined by 

equalities (3)-(5) depending on structure of subsystems of the 

investigated queuing model, 

• the probabilities 
( )

( )
j

l
m

pɶ  are defined by 

equalities (6)-(8) – probability to admit m queries from j-th 

batch in the presence of empty seats depending on a admission 

discipline,  

• , ( )i jF x  - the probability of that the 

following batch of queries will come to system till the moment 

x provided that it is batch of j-th type, the previous batch was a 

batch of i-th type (the set characteristic of an arrival flow). 

Integration of function (16) on a discrete measure (12) we 

receive a semi-Markov kernel 
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Passing to a limit at t → ∞ , we receive a matrix of 

transitional probabilities of the embedded Markov's chain 
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If 
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that is we choose type of queries which will arrive to 

queuing model and the moment of their arrival. Then we have  
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( )

( , ),( , )
( , ) ,

k

i m j l
Q t u 0=��  in other cases. 

(19) functions entering equality all are defined above. 

Integration of function (19) in process of (13) we receive a 

semi-Markov kernel 
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Passing to a limit at t → ∞ , we receive a matrix of 

transitional probabilities of the embedded Markov's chain 
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At control 
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U E 0 M= × ∞ ×� ɶ , and at strategy 
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Then the semi-markov kernel is defined in the following 

way 
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At t → ∞ , there is a matrix of transition probabilities of 

embedded Markov chain 

( )

( , ),( , )

( )
( , ) ( )

( , )( , ),( , )
( , )

( ) ( )
( ) ( )

, ,

.
( , ), ( ) ( )

( ) ( ) ( )
( ), ( , ),( , )

k
p

i m j l

k
Q u G du

i mi m j l
U

i m

j v
p x p x

l m l s m l
j j j v vv j

p
i m j j js 00 q l s p n dF x

N n l s n j i m j n
j j jn 1

=

= ∞ =∫

×∏−∞ ≠
= ∑∫ ∞

= × −∑ + − +
=

��

� ��

�

�

�

                                                                     (24) 

 

The equations for matrixes of transitional probabilities (24) 

allow to make two conclusions: 

• Elements of these matrixes don't depend on subsystem 

number; 

• Elements of a line of these matrixes corresponding to a 

state ( , )i m
�

 are linear functionalities  only rather probability 

measure ( , )
( ).

i m
G u�   

So stationary probabilities 
( )

( , ) ( , ) , ( , )
k

i m i mπ π i m E= ∈� �
�

ɶ  of 

the embedded Markov chain don’t depend on the subsystem 

number k  and are presented in the following way 

 

( , )

( , )

∆
, ( , ) ,

∆

i m

i mπ i m E= ∈
�

�
�

ɶ                                      (25) 

 

Where determinator ∆  is a linear functional concerning all 

measures 
( , )

( ), ( , )
j l

G u i l E∈�
�

ɶ , and determinator ( , )∆ i m
�  is 

a linear functional concerning all measures 

( , )
( ), ( , ) \ {( , )},

j l
G u i l E i m∈�

� �
ɶ  except measure ( , )

( ).
j m

G u�   

 

IV. CONSTRUCTION OF THE INCOME FUNCTIONAL 

The point is devoted to the construction of the income 

functional on the trajectories of the controlled semi-markov 

process. Further it is necessary to define functions 

( )

( , )( , )
( , )

k

i m j l
R x u��  - a conditional mathematical expectation of 

the saved up income in System (k) provided that process is 

staying in state ( , )i m
�

, through time t, it will pass in state 

( , )j l
�

 and the decision u  is made. 

The conditional mathematical expectation of the saved up 

income 
( )

( , )( , )
( , )

k

i m j l
R x u��   depends on incomes and charges 

received at a system work. Enter the constants describing the 

incomes and charges: 

( )

1

k
c  - an income received for the service of one query 

(customer); 

( )

2

k
c  - a payment for a time unit during the working of one 

channel during the service; 

( )

3

k
c  - a payment for a time unit of idle time of one 

channel; 

( )

4

k
c   - a payment for a time unit for staying in the queue 

for one query; 

( )

5

k
c  - a payment for one lost query of k-th type. 

Then 

 

 

( ) ( )

1 1( , )( , )

4 ( )

5 5
2

( , ) ( , , , )

( , , , , ) ( , , , ),

k k

k ki m j l

k

s k k k k k
s

R x u c C x m l u

C x n m l u c C x m l u
=

= +

∑+ +

��

        (26) 

 

where 

 

1

( ) ( )

( , , , )

( / (0) , ( ) , (0) )

k k

k k

k k k

C x m l u

M m x l u uζ ν ξ

=

= = = =  - 

provided that at the Markov moment there were m queries in 

queuing model, and at the next x Markov moment there is lk  

queries in the model and the decision u is made, 

( ) ( ) ( )
(0) (0) , ( ) , (0)

k k k

k km x l u uξ ν ξ= = = = ; 

similar to previous formula 
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( )

( )

( ) ( )

( , , , , )

min( , ( )) /
[ ,

/ ( ) , ( ) , ( ) ]

2 k k k

k
x kk

2 k k0
k k

C x n m l u

n ν t dt
c M

ν 0 m ξ x l u 0 u

=

= ∫
= = =

 

( ) ( )

( )

( )

( , , , , )

( min( , ( )) / ( )
[

, ( ) , ( ) ]

,

3 k k k

k k
x

k k k

3 k
0

k k

C x n m l u

n n ν t dt ν 0
c M

m ξ x l u 0 u

=

− =
= ∫

= = =

 

( )

( )

( ) ( )

( , , , , )

max( , ( ) ) /
[

/ ( ) , ( ) , ( ) ]

,

k

4 k k k 4

k
x k

k k0
k k

C x n m l u c

0 ν t n dt
M

ν 0 m ξ x l u 0 u

= ⋅

−
⋅ ∫

= = =

5

( ) ( ) ( )

( , , , )

( / (0) (0) , ( ) , (0) ).

k k

k k k

k k

C x m l u

M m x l u uη ξ ν ξ

=

= = = = =
 

 

Notice, that 
( )

( )
k

ξ x  - the number of customers at the 

Markov moment x , 
( )

( )
k

ν t  - a Markov process of 

destruction on the period ( , )t 0 x∈ . 

Designate 
( )

( , )
( )

k

j l
S t�  - the mathematical expectation of the 

saved up income in the subsystem k during time t 0> , 

provided that the process starts from the state ( , )j l
�

. 

For the functional 
( )

( , )
( )

k

j l
S t�  the following equality is fair 

 

( ) ( )

( , )( , )
( , )( )

( ) ( )

( , )( , )
( , )

,

k k

i li l
i l Ek

k k

i li l
i l E

s

S
m

π

π

∈

∈

∑

=
∑

�

ɶ

�

ɶ

                                             (28) 

 

Where 

 

( ) ( )

( , ) ( , )( , )
( , )0

[1 ( )]
k k

i m i m j l
j l E

m Q t dt
∞

∈
∑= −∫ �� ��
ɶ

                           (29) 

 

mathematical expectation for the time of continuous staying 

of the process ( )tξ  in state ( , )i m
�

; 

 

( )
( , )

( ) ( )
[ ( , ) ( , )] ( )( , )( , )( , ) ( , )( , )( , )( , )

k
s i m

k k
R x u dQ x u G dui mi m j l i m j lu U oj li m

=

∞
∑= ∫ ∫

∈

�

� � �� ��
�

 (30) 

 

mathematical expectation of the saved up income during the 

system (k) working during continuous staying of the process 

( )tξ  in the state ( , )i m
�

 . 

For the model income functional the following theorems are 

proved. 

Theorem 1. The income functional 
( )k

S  for the System (k) 

is a fractional-linear functional concerning the distributions  

( , ){ ( ), ( , ) }i mG G u i m E= ∈�

� �
ɶ  defining the Markov 

homogeneous strategy. 

Theorem 2. The income functional 
( )

1

N k

k
S S

=
∑=  for the 

System (all system) is a fractional-linear functional concerning 

the distributions ( , ){ ( ), ( , ) }i mG G u i m E= ∈�

� �
ɶ  defining the 

Markov homogeneous strategy. 

The final stage of the research is a construction of the 

optimum control strategy. For solving of the problem we use 

the known fact [6]: if a fractional-linear functional has an 

extremum (a maximum or a minimum), the extremum is 

reached in a class of the determined strategy, where fixed 

determined probability measure: 

0, ,
( )

1, .

x c
P x

x c
ζ

≤
< =

>





. 

Describe the set of the determined strategies.  

1.  Control of batch type. Strategy is defined by equality 

(12). The fixed degenerate measure in state ( , )i l
�

 is defined 

by equality 

 

( , ) ( , ),

( , ) ( , ),

( ) { ( ) / ( ) ( , )} ,

( ) { ( ) / ( ) ( , )} .

i l i l j

i l i l n

G j P u t j ξ t i l p 1

G n P u t n ξ t i l p 0

= = = = =

= = = = =

� �

� �

�

�   (31) 

 

Therefore, the number of degenerate measures in state 

( , )i l
�

 is equal N . If the quantity of states ( , )i l E∈
�
ɶ  is equal 

to ( ) ( )
N N

s s s l l l
s 1 l 1

l s

K M N n M N n 1
= =

≠

∑ ∏= + + + + + , that 

number of degenerate strategy is 
K

L N= . 

Thus we receive the algorithm for searching of the optimum 

strategy: 

•   For the fixed strategy the matrix of transition 

probabilities is calculated; 

•   For the matrix the system of the algebraic equations is 

solved and the stationary distribution of the embedded Markov 

chain at the chosen fixed strategy is determined; 

•   At the chosen fixed strategy the characteristics (29) and 

(30) are calculated; 

•   The income functional (28) for the chosen strategy is 

calculated; 

•   Using all fixed strategies and the values of the income 

functional for the strategies, we define the maximal income 

and optimum strategy. 
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2. Control of a type of the next batch and the moments 

of arrivals. Strategy is defined by equality (12). The fixed 

degenerate measure in state ( , )i l
�

 is defined by equality for 

discrete component and by equality 

 

( , )

( , ),

( , )

1, ,
( )

0, .

i m

i m j

i m

x
F x

x

τ

τ

<
=

>





�

�

�

                                         (32) 

 

Thus we receive the algorithm for searching of the optimum 

strategy: 

•   For the fixed strategy the matrix of transition 

probabilities is calculated; 

•   For the matrix the system of the algebraic equations is 

solved and the stationary distribution of the embedded Markov 

chain at the chosen fixed strategy is determined; 

•   At the chosen fixed strategy the characteristics (29) and 

(30) are calculated; 

• The income functional (28) 

corresponding to the chosen degenerate strategy of discrete 

components is calculated; 

• The maximum of the specific income 

(2.29) is determined by variables ( , ) 0, ( , )i m i m Eτ ≥ ∈�
�

ɶ ; 

• Touching all degenerate strategy and the 

income sizes corresponding to them, we define the maximum 

income and optimum strategy 

3. Control of a type of the next batch, the moments of 

batch arrivals and the quantity of queries in the batch. The 

strategy is defined by the equality (15). The fixed degenerate 

measure in state ( , )i l
�

 is defined by equality for discrete 

component  

 

( , )

( )

( , ),

( , )

( , ),

( , ) { ( ) ( , ) / ( ) ( , )}

( ) ,

( , ) { ( ) ( , ) / ( ) ( , )}

, ( , ) ( , ).

i l

j

i l j

i l

i l s

G j n P u t j n ξ t i l

p p n 1

G s m P u t s m ξ t i l

p 0 s m j n

= = = =

= =

= = = =

= = ≠

�

�

�

�

�

�           (33) 

 

and by equality  

 

( , )( , )

( , )

( , )( , )

1, ,
( , , )

0, .

i m j n

i m

i m j n

x
F j x n

x

τ

τ

<
=

>





�

�

�

                             (34) 

 

In essence, for this case the previous algorithm remains, the 

number of options for search discrete components only 

increases. 

Thus, the algorithms formulated above allow to construct 

compliance: 

( ) ( ) ( )

( , ) ( , ) ( , )

( ) ( ) ( )

( , ) ( , ) ( , )

( , ) , ( , ) ( , ),

( , ) ( , , )

0 0 0

i m i m i m

0 0 0

i m i m i m

i m j i m j τ

i m j τ n

→ →

→

� � �

� � �

� �

�
,                  (35) 

and every time being ( , )i m
�

 in a state to make the relevant 

decision with probability 1. 

Remark. The main difficulty when obtaining dependences is 

large dimension of set of states and set of controls. 

 

V. CONCLUSION 

In the present paper control of the model is complicated. 

We use the control of three parameters at the same time in 

arrival flow: type of the next batch, the moments of batch 

arrivals and the number of queries in the batch. 

Earlier in several papers [7], [8], [10] it was already shown 

that in various queuing systems (single-channel/multichannel, 

with exponential/randomly distributed duration of service, with 

queue/without queue) it is possible to control, changing at the 

same time some characteristics of system for maximizing the 

income. Algorithmization of work is constructed on 

application of the theory of controlled semi-Markov processes 

and maximizing of income functional. 

Respectively, with control of arrival flow it is possible to 

operate in addition the service duration, number of serving 

channels, the quantity of places in the queue. It is possible in 

further researches, that is confirmed with the previous works. 

. 

VI. APPENDIX 

Controlled Semi-Markov process ( ) { ( ), ( )}X t ξ t u t=  is 

defined using homogeneous three-dimensional Markov chain  

( , , ), , , [ , ), ,
n n n n n n

ξ θ u n 0 ξ E θ R 0 u U
+

≥ ∈ ∈ = ∞ ∈
 

which is defined by transition probabilities of a special type. 

 

{ , , / , , }

{ , , / },

, , , , ,

n 1 n 1 n 1 n n n

n 1 n 1 n 1 n

P ξ j θ t u B ξ i θ τ u u

P ξ j θ t u B ξ i

i j E t τ R u U B A

+ + +

+ + +

+

= < ∈ = = = =

= = < ∈ =

∈ ∈ ∈ ∈
      (1A) 

 

{ , , } .
i 0 0 0

p P ξ i θ u U= = < ∞ ∈
 

In the further we shall use the following designations: 

 

{ , , / }

( , ).

n 1 n 1 n 1 n

ij

P ξ j θ t u B ξ i

Q t B

+ + +
= < ∈ = =

= ɶ
          (2A) 

 

For each state i the set of controls Ui and σ-algebra Ai of 

subsets of this set Ui is given. 

At t→∞ and B=Ui we obtain the transition probability 
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( , ) { / }
ij ij i n 1 n

p Q U P ξ j ξ i+= ∞ = = =ɶ

                  (3A) 

 

for embedded Markov chain. 

Use definition ( , )
ij

Q t Bɶ  

 

( , ) ( , )

{ , / }.

ij t ij

n 1 n 1 n

Q B lim Q t B

P ξ j u B ξ i

→∞

+ +

∞ = =

= = ∈ =

ɶ ɶ

                               (4A) 

 

then 

 

( ) ( , ) { / }
i ij n 1 n

j E

G B Q B P u B ξ i+
∈
∑= ∞ = ∈ =ɶ                   (5A) 

 

and 

 

( , ) ( , ) ( ),
ij ij i

B

Q t B Q t u G du= ∫ɶ                                          (6A) 

 

where 

 

( , ) { , / , }.
ij n 1 n 1 n n 1

Q t u P ξ j θ t ξ i u u+ + += = < = =         (7A) 

 

Thus, homogeneous Controlled Semi-Markov process can 

be set by family of matrixes, set of probability measures   and 

initial distribution of probabilities pi, i,jϵE, tϵR+, uϵUi, BϵAi. 

Family of matrixes { ( , )}
ij

Q t u  is a Semi-Markov kernel of 

controlled Semi-Markov process, and family of probability 

measures { ( ), ( ), ..., ( )}1 2 NG G B G B G B=
�

 is family of 

controlling measures. 

The counting process ( )ν t  is defined in following way 

( ) sup{ : }, .
k 0

k n

ν t n θ t θ 0
≤
∑= ≤ =  

The Controlled Semi-Markov process is defined as 

( ) { ( ), ( )},X t ξ t u t=
 

where ( ) , ( ) .( ) ( )ξ t ξ u t uν t ν t 1= = +   

Process ( )ξ t  coincides with a standard Semi-Markov 

process. The second component of controlled Semi-Markov 

process ( )u t  defines a trajectory of accepted decisions. 

It is possible to define one more way to give controlled 

Semi-Markov process. It is necessary to set: 

•   Markov homogeneous control strategy 

{ ( ), ( ), ..., ( )}
1 2 N

G G B G B G B=
�

, 

•  characteristics of controlled Markov chain - initial 

distribution 

{ } , ,
i 0 i

i E

p P ξ i 0 i E p 1
∈
∑= = ≥ ∈ =  and a matrix of 

transition probabilities ( ) { / , }
ij n 1 n n 1

p u P ξ j ξ i u u+ += = = = ; 

•  conditional distributions of intervals 

( , ) { / , , }
ij n 1 n 1 n n 1

F t u P θ t ξ j ξ i u u+ + += < = = =
. 
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