
  
Abstract—This investigation reports on a stability analysis of 

Rayleigh-Benard convection in a horizontal of micropolar fluid layer 
heated from below. The effect of a feedback control strategy on the 
onset of steady convection in the presence of internal heat source is 
investigated theoretically using Galerkin technique. The eigenvalues 
are obtained for free-free, rigid-rigid, free-rigid boundary 
combination with isothermal temperature boundary condition. The 
influence of various micropolar parameters on the onset of 
convection has also been analyzed. The onset of motion is found to 
depend on the feedback control parameter, K and internal heat 
source, Q and the micropolar parameter Ni. 
 

Keywords—Convection, feedback control, internal heat source, 
micropolar fluid model.  

I. INTRODUCTION 
ESEARCH in heating of fluids that consist of dumbbell 
molecules or short rigid cylindrical elements like 

polymeric fluids, colloidal fluids and liquid crystal is vital for 
the processing industries where the flow behavior in shear 
cannot be characterized by Newton relationship. These fluids 
can be theoretically characterized as micropolar fluid and the 
thermal conductivity of some of these fluids plays an important 
role in the development of energy coefficient heat transfer 
equipment. Eringen [1-3] was first developed the theory of 
micropolar fluids and extended the theory to the 
thermomicropolar fluids. The theory is analytical tractability 
and thus it has been the subject of numerous investigations. 
Hudimoto and Tokuoka [4], Ariman [5] and Datta [6] had 
proved that micropolar fluid can successfully described the 
non-Newtonian behavior of certain real fluids.  

Thermal instability of a micropolar fluid between two 
horizontal planes heated from below (or above)  with various 
effects have been studied by Datta and Sastry [7], Ahmadi [8], 
Investigation on the onset of instability in a heat conducting 
micropolar fluid layer between rigid boundaries has been done 
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by Rama Rao [9], Lebon and Parez-Garcia [10] and by Payne 
and Straughan [11]. Depending on the energy equation, 
differences in the results were obtained. The 
magnetoconvection in micropolar fluid has been investigated 
by Siddheswar and Pranesh [12]. The micropolar fluid layer 
was found to be more stable than the classical pure fluid layer. 
The effects of through flow and magnetic field on the onset of 
benard convection in micropolar fluid have been studied by 
Narasimha Murty [13]. Using the Keller-box method, Roslinda 
et al.  [14] solved the problem of unsteady boundary layer flow 
of a micropolar fluid over a stretching sheet. Dufour and Soret 
effects on heat and mass transfer in a micropolar fluid in a 
horizontal channel is investigated by Awad and Sibanda [15]. 
The study uses the homotopy analysis method to find 
approximate analytical series solutions for the governing 
system of nonlinear differential equations.  

    The internal heat source and heat controller play a critical 
role in the materials and chemical processing industries. 
Chemical, petrochemical and refining engineers as well as 
equipment designers recognize that they need to understand 
and manage source of heat to maximize the performance of 
their processes. The onset of thermal instability in a horizontal 
fluid layer, subject to an internal heat generation has been 
analysed by Sparrow et al. [16] and Roberts [17]. The effect of 
quadratic basic state temperature gradient caused by uniform 
internal heat generation was studied by Char and Chiang [18] 
for Benard-Marangoni convection. Wilson [19] used analytical 
and numerical techniques to analyse the effect of internal heat 
source. Gasser and Kazimi [20], Kaviany [21] and Mokhtar et 
al. [22] studied the effect of internal heat generation on the 
onset of convection in a porous medium. Latest, Khalid et al. 
[23] reported that the effect of magnetic field has a stability 
effect on the convection in micropolar fluid system in the 
presence of internal heating. The effects of linear and 
nonlinear feedback control strategies on the steady and 
oscillatory stability thresholds have been studied both 
experimentally and theoretically [24-26]. Bau [27] applied a 
linear control feedback on Marangoni-Benard convection and 
found that the critical Marangoni number can be increased 
using the feedback control strategy. The uniform solution on 
feedback control with variety of effects in horizontal fluid 
layer has been reported to stabilize the system [28,29]. 
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In this work we investigated the stabilization of Rayleigh-
Benard convection in micropolar fluid by feedback control 
strategy subjected to internal heat generation. We employed 
the stability analysis based on the linear stability theory and 
the resulting eigenvalue problem is solved using the Galerkin 
method. 

II. MATHEMATICAL FORMULATION 
We select a coordinate frame in which the z-axis is aligned 

vertically upwards. We consider a horizontal layer of fluid 
confined between the planes z = 0 and z = 1. The temperatures 
at the lower and upper boundary are taken to be T0 + ∆T and 
T0 respectively. The Oberbeck-Boussinesq approximation is 
employed and following Siddheshwar and Pranesh [12] after 
neglecting the magnetic effect and consider the internal heat 
source, the conservation equations take the form  
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where v = (u, v, w), ρ0 is the density, t is time, p is the 
pressure, g is the acceleration due to the gravity, k is the unit 
vector in the z-direction, ζ is the coupling viscosity coefficient 
for vortex viscosity, λ and η are the bulk and shear spin 
viscosity coefficients respectively, ω is the micro rotation, I is 
the moment of inertia, T is the temperature, β is the micropolar 
heat conduction coefficient, Cv is the specific heat, κ is the 
thermal conductivity and hg is the overall uniformly distributed 
volumetric internal heat source within the micropolar fluid 
layer. The basic state of the fluid is quiescent and is described 
by 

( )0 ,0 ,0=bq , ( )0 ,0 ,0=bω , p = pb(z), ρ = ρb(z), T = Tb(z)  
                   (5) 

where the subscript b denotes the basic state. Substituting Eq. 
(5) into Eqs. (2) and (4), we get the basic state governing 
equations as 
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with ( )[ ]00 1 TTbtb −−= αρρ .                                             
 
Subject to the boundary conditions Tb = T0 at z = 0 and Tb = T0 
- ∆T at z = d, Eq. (7) is solved and we obtained  
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Take note that Eq. (8) is a parabolic distribution with the 
liquid layer height due to the existence of the internal heat 
generation. Without the internal heat generation; Q = 0, the 
basic state temperature distribution in the fluid layer is linear. 
Let the basic state be disturbed by an infinitesimal thermal 
perturbation and we now have 

qqq b ′+= , 'ωωω += b , ppp b ′+= , ρρρ ′+= b ,      

TTT b ′+= ,                                                                   (9) 
where the primes indicate that the quantities are infinitesimal 
perturbations. Substituting Eq. (9) into Eqs. (1) – (4) and 
linearized in the usual manner, we obtained the linearised 
equations in the form 
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In the present problem, we assume the principle of exchange 

of stability is valid and deal only with stationary convection. 
Hence the time derivatives have been dropped in Eqs. (10) – 
(13). The perturbation equations are non-dimensionalized 
using the following definitions 
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Substituting Eq. (14) into Eqs. (11) - (13), eliminating the 
pressure term by operating curl twice on the resulting equation 
of (11), operating curl once on Eq. (13) and non-
dimensionalising we get 
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where the asterisks have been dropped for simplicity. Here,  

ζη

ζ
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The perturbation quantities in a normal mode form are 
( ) [ ] [ ])(exp)(  ),(  ),(  ,  , yaxaizGzzWTW yx +Θ=Ω         (18)                

where W(z), Θ(z), G(z) are amplitudes of the perturbations of 

vertical velocity, temperature and spin, and 22
yx aaa +=  is 

the wavenumber of the disturbances at the liquid layer. 
Substituting Eq. (18) into Eqs. (15) – (17) we get  
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where D = d/dz.  
We assume that the temperature is constant on the 

boundaries. We set the boundary condition for the uniform 
temperature at the bottom boundary to include the controller 
rule and following Bau [27], we use thermal feedback control 
mechanism to modify the heated surface temperature in 
proportion to the deviation of the fluid’s temperature from its 
conductive value. The determination of a control; q(t) can be 
accomplished using the proportional integral differential (PID) 
controller of the form  
                     q(t) = r + K [e(t)], e(t) = ĥ(t) + h(t)                 (22) 
where r is the calibration of the control, e(t) an error or 
deviation from the measurement, ĥ from some desired or 
reference value; h(t), K = Kp + Kd d/dt + Ki ∫ dt with Kp is the 
proportional gain, Kd is the differential gain and Ki is the 
integral gain. Based on equation (22), for one sensor plane and 
proportional feedback control, the actuator modifies the heated 
surface temperature using a proportional relationship between 
the upper, z = 1 and the lower, z = 0 thermal boundaries for 
perturbation field 

                     T’(x, y, 0, t) = -KT’ (x, y,1, t),                     (23) 
where T’ denotes the deviation of the fluid’s temperature from 
its conductive state and K is the scalar controller gain in which 
it will be used to control our system.  

Equations (20) – (22) are solved subject to appropriate 
boundary conditions that are  
W(0) = DW(0) = G(0) = Θ(0) + KΘ(1) = 0,                         (24) 
W(1) = D2W(1) = G(1) = DΘ(1) = 0,                                   (25) 
where K is the controller parameter. Equation (24) indicates 
the use of rigid and isothermal for lower boundary, and for 
equation (25) the indicates stress free and insulating. The 

condition on G is the no-spin boundary condition for both 
boundaries. 

III. METHOD OF SOLUTION 
Equations (19) – (21) together with the boundary conditions 

(24) and (25) constitute a Sturm-Liouville problem with the 
Rayleigh number Ra as an eigenvalue while keeping other 
physical parameters fixed. The Galerkin method is used to 
solve the resulting eigenvalue problem. Accordingly, the 
variables are written in a series of basis function as 
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where the trial functions Wi(z), )(ziΘ and )(ziΓ  will be 
chosen in such a way that they satisfy the respective boundary 
conditions and Ai, Ci and Di are constants. Substituting Eq. 
(26) into Eqs. (19) – (21), multiplying the resulting Eq. (19) by 
Wj(z), Eq. (20) by )(zjΘ  and Eq. (21) by )(zjΓ ; performing 

the integration by parts with respect to z between z = 0 and 1 
and using the boundary conditions (24) and (25), we obtain the 
following system of linear homogeneous algebraic equations 

0=++ ijiijiiji DECDAC ,                                           (27) 

0=++ ijiijiiji DHCGAF ,                                           (28) 

0=+ ijiiji DJAI .                                                        (29) 

The coefficients Cji – Jji are given by 
Cji = -(1+N1)[< (D2W)2 > + 2a2< DW2 > + a4< W2 >], 
Dji = -a2Ra < WΘ >, 
Eji = N1[< DG DW > + a2 < WG >], 
Fji = < [1 – Q(1 – 2z) ]WΘ >, 
Gji = < (DΘ)2 > + a2 < Θ2 >, 
Hji = -N5 < ΘG >, 
Iji = -N1 [ < DW DG > + a2 < WG >], 
Jji = N3 < DG2 > + (2N1 + a2 N3) < G2 >, 

where the angle bracket  denotes the integration with 
respect to z from 0 to 1. The above set of homogeneous 
algebraic equations can have a non-trivial solution if and only 
if 
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The eigenvalue has to be extracted from the characteristic 
Eq. (30). Now, we choose the trial functions as 
   ( ) *

1
22 1 −−= ii TzzW , ( ) *

11 −−= ii TzzG , ( ) *
12 −−=Θ ii Tzz  

where *
iT are the Chebyshev polynomials of the second kind, 

such that Wi, iΘ  and Gi satisfy the corresponding boundary 
conditions. 
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IV. RESULTS AND DISCUSSION 
The onset of Rayleigh-Benard convection in   micropolar 

fluid in the presence of feedback control and internal heat 
generation is investigated theoretically using Galerkin method. 
The sensitiveness of critical Rayleigh number; Rac to the 
changes in the micropolar fluid parameters; N1, N3 and N5 are 
also studied. Three lower-upper cases are considered in this 
investigation which are rigid-free, rigid-rigid and free-free 
surfaces. 

To verify our results, we compare our eigenvalue solution 
with Siddheswar and Pranesh [12] as can be seen in Table 1, 
by considering the upper surface to be free and lower 
boundary to be rigid. The results are in a good agreement and 
thus validate our solution.  From this table we found that the 
critical Rayleigh number; Rac decreases as the value of internal 
heating; Q increase. This shows that the effect of internal heat 
source in the micropolar fluid system trigger the onset of 
convection rapidly for all coupling stress parameter; N1 
considered. As the effect of N1, increasing the N1 values help 
to slow down the destabilizing process. 

TABLE  I. COMPARISON OF CRITICAL RAYLEIGH NUMBER FOR DIFFERENT 
VALUES OF Q. 

N1 
Rac 

[12] Present study 

Q = 0 Q = 0 Q = 1 Q = 3 Q = 5 

 
0.5 2700.1 2700.1 1483.1 1022.3 780 

 
1 4743.5 4743.5 2276.7 1497.7 1115.9 
 

1.5 8466.9 8466.9 3319.6 2064.2 1497.7 
 

2 16976 16976 4727.7 2743.2 1932 
 
Figure 1 indicates the variation values of Rayleigh number; 

Ra for K= 0, 2, 4 for three different cases. The parameters 
chosen are N1 = 0.5, N3 = 2, N5 = 1 and Q = 0. It is found that 
as Ra is increases, the value of gain controller;   also increases 
and thus stabilize the system for all different surfaces 
considered. This revealed that the use of controller stabilize 
the system. If we compare the three different surface curves, 
we can clearly see that the rigid-rigid curve has the highest 
plotted Ra values in the graph. It is interesting to take note 
here that the use of the rigid-rigid surface, is the most stable 
compare with the other surfaces considered in this 
investigation. 

The variation values of Rayleigh number with wave number; 
a when Q = 0, 2 and 4 can be seen in Figure 2. The parameters 
chosen are N1 = 0.5, N3 = 2 and N5 = 1. It is found that the 
internal heat generation has a rapid impact on the stability of 
the system where increasing Q, decrease the Ra values for all 
cases considered. It is proven that the internal heat generation 
is a destabilizing factor. 

 

 

 
    Fig. 1. Variation of Ra and a with different values of K 
 

 
Fig. 2. Variation of Ra and a with different values of Q 
 
Figure 3 show the plot of the critical Rayleigh number; Rac 

versus the coupling parameter; N1 for various values of 
controller; K when Q = 2, N3 = 2 and N5 = 1. In each of these 
plots, the critical number increases with increasing of N1 for all 
values of K. N1 indicates the concentration of microelements, 
and increasing of N1 is to elevate the concentration of 
microelements number. When this happened, a greater part of 
the energy of the system is consumed by these elements in 
developing gyrational velocities of the fluid and thus delayed 
the onset of convection. Increasing of controller; K increase 
the critical Rayleigh number and thus making the system 
stable. 

 The graph of the critical Rayleigh number; Rac versus the 
coupling parameter; N1 for various values of internal heat 
generation; Q when K = 1, N3 = 2 and N5 = 1 is shows in figure 
4. In each of these plots, the critical number decreases with 
increasing of Q and this physically describes that the 
micropolar system become more prone to instability. However, 
it is found that by elevating the values of N1 parameter can 
help to slow down the process of convection. 
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Fig. 3. Variation of Rac and N1 with different values of K 
 
The illustration of the couple stress parameter; N3 can be 

seen in figure 5 by substituting N1 = 0.1, N5 = 10 and Q = 2. 
From the graph, it can be clearly seen that in the presence of 
controller, an increase of N3 decrease the values of Rac for all 
K in the three cases considered. This situation revealed that the 
system become more unstable much faster when the couple 
stress parameter is increasing. The inspection on the boundary 
surfaces disclosed that the use of rigid-rigid surface can 
promote stability in the micropolar fluid system whereas the 
lowest values of the critical Rayleigh number can be found in 
the free-free surface. 

 

 
Fig. 4. Variation of Rac and N1 with different values of Q 
  
Figure 6 illustrates the curve of couple stress parameter; N3 

and Rac when K = 1, N1 = 0.1 and N5 = 10 for various values 
of internal heat generation Q. This observation shows that for 
the micropolar fluid system that holds internal heat source, the 
micropolar fluid system become more unstable when increase 
the value of internal heat generation. Align with the effect of 
Q, elevating the couple stress parameter values decrease the 
critical Rayleigh number.     

 
Fig. 5. Variation of Rac and N3 with different values of K 
 

 
Fig. 6. Variation of Rac and N3 with different values of Q. 
 
Figure 7 and Figure 8 show the plot of Rac versus 

micropolar heat conduction parameter; N5 when N1 = 0.1 and 
N3 = 2 with different values of K and Q respectively. 
Scrutinizing on the values of N5 disclosed that the Rac 
increases when increasing the values of N5 in both graphs for 
all cases considered. The reason behind this is, when N5 

increases, the heat induced into the fluid due to the 
microelements is also increased an thus reducing the heat 
transfer from the bottom to the top of the system. When this 
happened, the micropolar fluid system sustain its stability and 
delay the onset of convection. As the effects of K and Q, it is 
still identical with the previous results that increasing the K, 
elevate the Rac and increasing the Q makes the system become 
more unstable.    
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Fig. 7. Variation of Rac and N5 with different values of K. 

 
 

 
Fig. 8. Variation of Rac and N5 with different values of Q 
 

V. CONCLUSION 
This investigation is particularly notable for scientists and 

engineers who are dealing with the heat and stability 
industries. Three types of boundary surfaces are considered in 
this investigations that are rigid-rigid, rigid-free and free-free. 
It is found that the effect of controller; K in the micropolar 
fluid is clearly has a stabilizing effect while the effect of 
internal heat generation; Q in the micropolar fluid system has a 
significant influence on the Rayleigh-Benard convection and is 
clearly a destabilizing factor to make the system more 
unstable. These both inspection results reported in this study 
are indistinguishable with the previous investigation reported 
in the literature. For the three types of surface cases considered 
that are rigid-free, rigid-rigid and free-free surfaces, it is found 
that the critical values of the Rayleigh number in rigid-rigid 
surfaces are the highest followed by rigid-free and free-free. 
This shows that the use of rigid-rigid surface can delay the 

onset of convection. As the effect of micropolar parameter; the 
increase of the coupling parameter; N1 and heat conduction; N5 
helps to slow down the process of destabilizing. Contrast with 
the effects of N1 and N5, increasing the values of couple stress 
parameter; N3 promotes instability in the micropolar fluid 
system.  
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