
  
Abstract—Model predictive control (MPC) designates a control 

method based on the model. This method is suitable for controlling 
of various kinds of systems. The basic principle is to calculate the 
future behaviour of a system and to use this prediction for the 
optimization of a control process. The optimization problem must be 
then solved in each sampling period. One of the advantages of MPC 
is its ability to do online constraints handling systematically. These 
constraints may, however, cause that the optimization problem is 
more complex. In this case, some iterative algorithms must be applied 
in order to solve this problem effectively. This paper is focus on the 
combination of the optimization techniques. The basic idea is to 
combine the advantages of gradient and evolutionary algorithms. 
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I. INTRODUCTION 
ODEL predictive control (MPC) [1], [2] [3] is one of 

the control method which have been developed over the 
past few years. The predictive control [4], [5], [6] is a 
technique based on a discrete model which was mostly applied 
in a process industry. The crucial issue in MPC is the 
computational complexity due to the computational demands. 
With developing computational power and appropriate 
algorithms, it is possible to apply this approach to systems 
with faster dynamics such as electrical systems.  

The basic idea of MPC is to use the model of a system to 
predict the future behaviour over the specific horizon. Based 
on this prediction, the optimization problem represented by a 
cost function must be solved. This optimization problem may 
be computationally complex due to the constraints and it must 
be solved in each sampling period. Although a control 
sequence is calculated over a control horizon, only the first 
element is applied and the whole procedure is then repeated in 
the following sampling period. This is known as a receding 
horizon strategy [7], [8].  

The computational problem may be solved by several types 
of algorithms. One of the common methods is quadratic 
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programming [9] enabling the inclusion of constraints [10] in a 
controller synthesis. Besides this algorithm, many other 
methods may be applied which may have comparable 
performance and they may fulfil the specific requirements.  

This contribution deals with an alternative method which is 
based on the combination of gradient and evolutionary 
methods [11]. The motivation for this concept is the effort to 
reduce a computational expense.  
The rest of this paper is organized as follows. Section II is 
devoted to the basic idea and mathematical background of 
MPC. Hill climbing algorithm and proposed evolutionary-
gradient algorithm are described in section III and section IV 
respectively. Some results and discussion are presented in 
section V and the paper is concluded in section VI. 

II. MODEL PREDICTIVE CONTROL 
The model represents a controlled system and it describes 

the relation between input and output. There are various 
models which may be used such as transfer function, linear 
models [12], state-space models [13], neural networks [14], 
[15], [16] and others. A widely used model is the CARIMA 
model which directly contains a control increment. The model 
can be written in the following form 
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where polynomials A and B represent a transfer function of 

the system, integrator Δ = 1 – z-1, C is a colouring polynomial 
and y, u and n are output, input and a nonmeasurable noise 
respectively.  

Based on this model, the predictor describing the relation 
between past and future values can be calculated 
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where y , u , y  and u  are future output, future input, past 

output and past input respectively. Matrices G and X contains 
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coefficients which can be derived from the system of the 
model equations. The dimension of these matrices depends on 
horizons (explained later). The term consists of two parts: a 
forced response and a free response y0. The forced respond is 
determined by the future control increments while the free 
response depends on the past values and it is the response of 
the system to the constant control action.  

Another part of MPC is the cost function which represents 
the quality of the control process for specific control action. 
This is usually defined as the sum of squared control errors 
and the sum of squared control increments. 
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Parameter λ is a weighting factor which may be used for 

adjusting the behaviour of the control process. After some 
calculation, the cost function may be expressed in the 
following form 

 
uHuugJ TT ~~~20 ++= c  (4) 

 
where g is the gradient of the cost function and H is the 

Hessian matrix [17] which are calculated by 
 

( )wyGg 0
TT −=  

IGGH T λ+=  
(5) 

 
The aim of the optimization process is to find the optimal 

control action. The cost function is defined such that the best 
solution is located in the minimum of this function. The term 
of the cost function involves the setpoint, the output of the 
process and the control increments. Hence, the shape of this 
function depends on the model. Fig. 1 shows the shape of this 
function for the CARIMA model and the control horizon equal 
to 2. 

 

 
Fig. 1. Cost function 

 
It is clear that the cost function is unimodal with one local 

minimum. This minimum can be obtained by derivative of this 

function and setting to zero. The analytical solution may be 
then expressed by the following equation. 
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where ( ) TT GλIGGK
1−

+= . 
In MPC, there are two horizons which define the size of the 

predicted behaviour. The first horizon is denoted as prediction 
horizon (or output horizon) which is specified by a minimum 
horizon N1 and a maximum horizon Nu. This horizon 
determines the length of the predicted output and of the 
setpoint which means the number of the future control errors. 
The dimensionality of the optimization problem and the size of 
the control vector are given by the control horizon Nu. The 
following values of the control increments are assumed to be 
equal to zero. Although the control horizon is usually higher 
than 1, only the first element of the control vector is applied 
and the whole procedure is then repeated in the following 
sampling period. This technique is called the receding horizon 
concept. 

In practice, the variables are usually constrained which may 
cause the optimization problem more complex. There are 
usually three types of constraints: the constraints of the control 
increments, of the manipulated variable and of the output 
variable. In the case of state-space models, there are the 
constraints of the states as well. However, we consider only 
input-output model; therefore, the constraints of the states are 
not included in this paper. 
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The constraints are then represented as the system of 

inequalities 
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and they can be expressed by the condensed matrix form as 

it is shown in eq. 9. 
 

buA ≥Δ  (9) 
 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 35



Fig. 2 shows the feasible area within the cost function 
created due to the constraints. This area is given by the 
combination of the constraints. 

 

 
Fig. 2. Feasible area 

 
The dimensionality of the feasible area is determined by the 

control horizon. In general, the feasible area is a subspace 
(Fig. 3) which is one dimensional lower than the cost function. 
The result shape is in the form of polytope and the 
optimization problem is to find the best solution within this 
area. 

 

 
Fig. 3. Feasible area (3D case) 

 
As can be seen, the constraints may cause that the analytical 

solution is located outside of the feasible area, thus the proper 
algorithm should be applied to solve this problem. 

 

III. HILLCLIMBING ALGORITHM 
Hill climbing algorithm (HC) is a type of evolutionary 

algorithms which are characterized by their deterministic 
approach with a certain rate of probability. For the sake of 
convenience, table 1 shows the list of terms used for the 
explanation of the basic principle of HC. 

 
Table 1 List of terms of hill climbing algorithm 

Term Meaning 

individual specific values of the control vector Δu 
(one point within the feasible area) 

population a group of individuals 
Leader the best solution within a population 

 
The basic idea of hill climbing algorithm is simple and it 

can be described by the following steps. 
1) determine the initial individual (first leader) 
2) generate the population around the previous leader 
3) the best solution within the population becomes new 

leader 
4) go back to step 2 and repeat the procedure until the stop 

conditions are not fulfilled 
 
In the original algorithm, the initial individual must be 

chosen manually or it must be generated randomly. In the 
constrained case, the feasible area is created within the cost 
function; therefore, the initial individual should be chosen such 
that this point is located within the feasible area. There are 
several ways of obtaining this point such as testing the key 
points, solving the system of inequalities, the random walk 
method or other techniques. The last one is not suitable for 
high dimensional cases due to the fact that the ratio between 
the space occupied by the feasible area and the total space 
given by the range of finding rapidly decrease in higher 
dimensions. Because of this fact and factors some key points 
were tested first.  

The first key point is the analytical solution. If this point is 
located within the feasible area, it can be directly applied in 
the control process. The second point is the zero point which is 
the equivalent of a constant control action. Therefore, there is 
a high probability that this point is located within the feasible 
area. The next possibility is to use the previous solution. If the 
key points are located outside of the feasible area, their 
neighbourhoods can also be tested.  

In step 2, the generation around the previous leader is 
generated. These points are usually generated with the normal 
distribution. Due to the constraints, some points may appear 
outside of the feasible area; hence, a test function or a 
corrective function should be defined. This function is given 
by the system of inequalities of the constraints which means 
that every generated solution is tested whether it fulfils the 
inequalities. If the generated individual is located outside of 
the feasible area, it can be dropped, moved to the boundary (if 
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possible) or regenerated. The first option is the least time-
consuming; however in this case, the size of the population 
should be such that at least one of the generated points lies 
within the feasible area. In contrast, higher size of population 
implies higher computational demands. The computational 
expense is also affected by the variance of the normal 
distribution.  

In the third step, all of the individuals are evaluated and the 
best solution is selected. If the previous leader is involved in 
the evaluation, the algorithm exhibits local search behaviour. 
This approach is appropriate for the solving of unimodal 
functions due to the gradient characteristics. On the other 
hand, if the previous leader is not included to the evaluated 
population, it may accept worse solutions; therefore, it may 
skip local minima and it is possible to solve multimodal 
functions. However, it may exhibit a cycling behaviour and as 
a result of this, some advanced techniques have been 
developed such as tabu search, simulated annealing and other 
algorithms.  

In the last step, the stop conditions must be defined in order 
to finish the optimization process within the finite period. The 
stop conditions in the original algorithms are defined as the 
maximum number of iterations and the minimum difference 
between the cost functions of the previous and of the actual 
leader. In our case, the last condition was replaced by the 
minimum distance between these points. This can cover the 
requirement of the accuracy of the control increment Δu. The 
algorithm may also stop if there is no new best solution or the 
population is empty.  

Fig. 4 depicts the application of the hill climbing algorithm 
in the model predictive control. 

 

 
Fig. 4. Hill climbing algorithm 

 
As you can see, some individuals of the final population are 

located outside of the feasible area; consequently, they are not 
considered during the evaluation process. 

 

IV. EVOLUTIONARY-GRADIENT ALGORITHM 
The basic idea of the evolutionary-gradient algorithm (EG) 

is to combine the advantages of gradient algorithms and of 
evolutionary algorithms. The proposed algorithm is based on 
the principle of the hill climbing algorithm explained above. 
However, as you can see in Fig. 4, some of the individuals are 
located in the opposite direction than the searched minimum. 
Therefore, the objective of the EG algorithm is to generate the 
population in the way of the negative gradient which may lead 
to the faster convergence in high dimensional case. 

The gradient of an actual position can be derived from 
equations (4) and (6) and the result term is presented in eq. 
(10). 
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(10) 

 
Although the absolute value of the gradient can be 

calculated, only the direction of the negative gradient is 
important. 

 
TguH=ngrad −∆−  (11) 

 
In order to generate the population with the determined 

variation of the normal distribution, the magnitude of the 
negative gradient is adjusted so that the maximum value of this 
vector is equal to 1. 

 

( )ngrad
ngrad=dir

max
 (12) 

 
The population is then generated in the way of the obtained 

direction. The specific individual is then generated by the 
following term. 

 

( ) leaderdir=ind +⋅ gN σ,0  (13) 
 
The basic principle of the proposed algorithm is depicted in 

figure 5. 
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Fig. 5. Evolutionary-gradient algorithm 

 
As can be seen, the evolutionary-gradient algorithm is 

applied until the boundary of the feasible area is not reached. 
Then, the algorithm is switched to the hill climbing mode as it 
is described in the previous section. This is due to the 
possibility of finding a misleading solution on the boundary of 
the feasible area. 

V. RESULTS AND DISCUSSIONHELPFUL HINTS 

A. Simulation 
For the purpose of the simulation, the second order system 

was chosen and identified. 
 

( ) ( )( )11 21 ++
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The continuous system was then discretized in order to 

respect the discrete character of the control process. The 
polynomials of the CARIMA model (eq. 1) are then in the 
following form 
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and polynomial C was chosen to be equal to 1. After the 

multiplication of polynomial A by Δ, the following equation is 
obtained 
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and the differential equation of the controlled system can be 

expressed by the following form. 
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The future outputs can be defined as the system of equations 

(predictor) and by the substitutions and splitting of the terms, 
the coefficients of matrices G and X (eq. 2) can be derived. 
Matrix G is then in the form 
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where 
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Matrix X is expressed by the following form 
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These shapes of the matrices depend on the model and the 

size of horizons. In the case of higher horizons, the 
coefficients can be calculated by a recurrent procedure. 

The horizons were set such that the graphs are possible to be 
depicted. All of the parameters are shown in table 2. 
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Table 2 Parameters of simulation 

System parameters 

gain k 35.88 
time constant 1 T1 519.29 
time constant 2 T2 40.80 

MPC parameters 

weighting factor λ 1 
minimum horizon N1 1 
maximum horizon N2 3 
control horizon Nu 2 

Constraints 

range of control increment 
maxmin , uu ∆∆  5.3,5−  

range of manipulated 
value maxmin ,uu  12,0  

range of output 
maxmin , yy  310,0  

 
There are also some parameters of the HC and the EG 

algorithms. The basic idea of both is to generate the population 
with the normal distribution. Since the constraints determine 
the range of the finding, the variance of this distribution is 
related to the range of the control increments it is then 
calculated by this equation. 

 
( )

600
minmax uucov

=
∆−∆

σ  (14) 

 
The parameters of the algorithms are presented in table 3. 
 

Table 3 Parameters of algorithms 

Hill climbing 

distance of leaders ε 0.01 
rate of coverage covHC 40 
size of population popSizeHC 8 
max. number of iterations NI 100 

Evolutionary-gradient 

rate of coverage covEG 60 
size of population popSizeEG 8 

 
The time response of control process is presented in 

figure 6. 
 

 
Fig. 6 Output and setpoint 

 
As can be seen, the output tracks the setpoint. The highest 

control error is located in the vicinity of substantial changes of 
the setpoint. 

Figure7 shows the time distribution of the computational 
expense measured by the computational time. As you can see, 
the highest computational times are located at the same time 
points as in the previous case. It is due to the constraints and 
the saturation of the signals. 
a) 

 
b) 

 
Fig. 7. Computational time of a) EG algorithm; b) QP algorithm. 

 
In this particular case, the EG algorithm exhibits better 

performance than the quadratic programing (QP) algorithm. 
However, the results are strongly dependent on the setting of 
the algorithm parameters. Moreover, the computation time is 
only one of the parameters which should be examined. For this 
reason, other characteristics such as the performance stability 
and the control accuracy have been tested. During the testing 
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process, the maximum effort of keeping comparable conditions 
has been made such as adding the preparing cycles, calculating 
during the same time period or increasing the priority of the 
calculating process. The results are presented in table 4 (lower 
value means better result). 

 
Table 4 Performance results 

 
comp. time perfor. stability accuracy 

EG 2.10 0.39 234.67 
HC 2.28 0.29 238.29 
QP 2.01 0.15 232.00 

 
As can be seen from the table, all of the numbers are 

similar. However, quadratic programming seems to be better in 
all examined characteristics. Despite this fact, the proposed 
algorithm is at least comparable and, as you see in Fig. 7, it 
may be sometimes better. There is also a little improvement 
compared to the HC algorithm. Besides, the results of 
algorithms are strongly dependent on setting which may be 
another optimization problem.  

The evolutionary-gradient and quadratic programming 
algorithm were also compared by computational time in 
different dimensions. Both horizons were increased and the 
results are presented in figure 8. 

 

 
Fig. 8 Computational expense in different dimensions 

 
As can be seen, the evolutionary-gradient algorithms 

exhibits a little improvement compared to QP algorithm. 
Moreover, the setting of algorithm may be adjusted in order to 
fulfil the specific requirements of the control process.  

The proposed algorithm has fulfilled the requirements; 
however, the dimensionality of the problem was relatively low. 
It is assumed that in high dimensional case, the improvement 
may be much higher. This is due to the fact that the size of the 
population of the HC depends on the dimensionality. On the 
other hand, the EG generates the population within 1-
dimensional line regardless of the dimensionality of the 
optimization; therefore, the EG algorithm is the promising 
method of the solving of high dimensional problems. This will 
be the objective of future research.  

It should be also noted that the shape of the cost function is 
relatively simple due to the linearity of the model. It means 
that evolutionary techniques may be the proper method of the 
solving of strongly nonlinear even time-variant systems. This 
is the secondary aim of future research. 

VI. CONCLUSION 
The aim of this paper was to introduce the basic aspects of 

the evolutionary-gradient method and to develop the 
algorithm. The basic idea of this concept is to combine the 
advantages of evolutionary and gradient techniques in order to 
achieve better computational performance. First, the principle 
of the hill climbing algorithm has been described. Then, the 
ideas of evolutionary-gradient algorithm, which is based on the 
previous method, have been presented. Finally, some 
simulations were executed in order to validate the proposed 
technique and it has been also compared with other methods 
by means of the investigation of the performance 
characteristics.  

It has been revealed, that the results depends on the setting 
of the parameters. However, there is a little improvement 
compared to the HC algorithm. Due to the basic principle of 
the proposed algorithm, it is assumed that there may be 
significant improvement in higher dimensional problem which 
will be the aim of future research. Moreover, the evolutionary 
techniques may be the promising methods in case of nonlinear 
and time-variant systems. This is the secondary aim of future 
research. 
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