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Abstract– In this paper, we analyze a technology
diffusion model with distributed time delays. In the
process of adoption a technology, a firm takes into
account the advertising effectiveness, government policy
and production costs. The average time for making the
final decision is introduced. The mathematical model is
described by a system with three nonlinear differential
equations with distributed time delays. Two types of
kernels are taken into account: Dirac and weak. When
the distributions are Dirac, the cases, with one delay
and two different delays, are considered. The conditions
for the existence of a Hopf bifurcation are given. The
stochastic and fractional technology diffusion models are
introduced and their orbits are displayed. The last part of
the paper includes numerical simulations and conclusions.
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I. I NTRODUCTION

The time delay has a high impact on the dynamics of
a system, which can not only cause the loss of stability,
but also induce various oscillations and periodic solutions
[25], [10]. Many models from economics contain time
delay, because often there is delay between an economic
action and a consequence.

Recently, the diffusion of innovations has been inten-
sively studied. Many models explaining the spread of a
new product among a population of potential customers
have been provided. Bass (1969) proposed a model which
explains the sales of a new durable product which each
household purchase only once [22]. Simon and Sebas-
tian (1987) suggested several alternative ways integrating
advertising in the basic Bass model [22]. Feichtinger et
al. (1995) proved that if a firm has a poor advertising
effectiveness, their new product is doomed to failure.
Lately, Wang et al. (2006) extended the Bass model by
introducing stage structures: the awareness and decision
making stages, which leads to the introduction of time
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delay [24]. In 2010, Dhar et al. a time delay three compart-
ment model consisting of adopter class, thinker class and
non-adopter class has been formulated and analyzed [5].
A similar model has been detailed analyzed in [19], [20].
In 2012, Fanelli and Maddalena provided a mathematical
model with time delay to describe the process of diffusion
of a new technology, that requires great initial investments
and public subsidies [7]. A continuation of the study is
given in [2].

Following the above studies, in [17] we consider a
technology diffusion model, where word of mouth, ad-
vertising effectiveness, government policy and production
costs are taken into consideration. In the present paper we
develop our past study and furthermore, the stochastic and
fractional aspects are considered.

When a new technology is introduced into a market,
it has to be advertised in order to persuade firms to adopt
it. Also, the government policy is important. The adop-
tion process is delayed, because there are some previous
steps to follow: knowledge (the individual is exposed to
innovation), persuasion (the individual forms an attitude
toward the innovation), decision, implementation and con-
firmation or adoption [7]. Therefore, to take into account
the time delay is imperative [17].

We consider the average time for a firm to evaluate
whether to adopt a technology or not, thus the distributed
time delay is introduced. The mathematical model is
described by a system with three nonlinear differential
equations with distributed delay.

Regarding the practical situations, for to capture the
uncertainty about the environment in which the system is
operating, we use the stochastic perturbation framed by a
stochastic differential delay system.

When past economic behaviors affect present and
futures ones, the fractional calculus should be considered
[26]. In this sense, we present the fractional technology
diffusion model.

The paper is organized as follows. In Section 2 the
deterministic model with distributed time delay is de-
scribed. The stability analysis for different types of kernels
is analyzed in Section 3. In section 4, the stochastic
technology diffusion model is introduced. The fractional
technology diffusion model is presented in Section 5. Nu-
merical simulations are carried out in Section 6. Finally,
concluding remarks are given in Section 7.
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II. T HE MATHEMATICAL MODEL

Let x1(t) be the number of non adopters (the number
of firms that do not adopt the technology),x2(t) be the
number of thinkers (potential adopters) andx3(t) be the
number of adopters at momentt ∈ IR.

Contacts between non adopters and adopters are
random and through word of mouth. Then the rate of
generations of adopters isαx1(t)x3(t), whereα is the
word of mouth effectiveness. In [22] it is assumed that
α = a2x3(t), wherea2 reflects the advertising effective-
ness.

If a1 represents the number of newly non-adopters
who enter the market, then the dynamics ofx1(t) is given
by:

ẋ1(t) = a1 − a2x1(t)x3(t)
2 + a3x3(t),

wherea3x3(t) is the rate of adopters who become non-
adopters.

In the present paper we consider distributed time
delay in the thinker class, because a firm needs time for
adoption the technology or not.

The number of firms that know about the technology
and decide to adopt it after a period of time, is given by:

(

eb1(b2−b3) + a4
∫ t

−∞
h3(t− s)x3(s)ds

)

·

·
(

∫ t

−∞
h2(t− s)x2(s)ds

)

,
(1)

whereeb1(b2−b3) is an external factor of influence, where
b1 is a positive constant;b2 is a government incentive
and b3 represents the production costs;a4 is a positive
constant.

Contacts between adopters at timet and past adopters
can lead to the migration from the adopter class to the
thinker class. Thus, the dynamics ofx2(t) is described
by:

ẋ2(t) = a2x1(t)x3(t)
2−

−
(

eb1(b2−b3) + a4
∫ t

−∞
h3(t− s)x3(s)ds

)

·

·
(

∫ t

−∞
h2(t− s)x2(s)ds

)

+

+a5x3(t)
∫ t

−∞
h3(t− s)x3(s)ds.

(2)

If a6x3(t) is the rate of the adopters that are lost
forever and taking into account the above considerations,
then we have:

ẋ3(t) =
(

eb1(b2−b3) + a4
∫ t

−∞
h3(t− s)x3(s)ds

)

·

·
(

∫ t

−∞
h2(t− s)x2(s)ds

)

−

−a5x3(t)
∫ t

−∞
h3(t− s)x3(s)ds− (a3 + a6)x3(t).

(3)
Thus, the deterministic model is given by the follow-

ing non-linear differential system with distributed delay:

ẋ1(t) = a1 − a2x1(t)x3(t)
2 + a3x3(t),

ẋ2(t) = a2x1(t)x3(t)
2−

−
(

eb1(b2−b3) + a4
∫ t

−∞
h3(t− s)x3(s)ds

)

·

·
(

∫ t

−∞
h2(t− s)x2(s)ds

)

+

+a5x3(t)
∫ t

−∞
h3(t− s)x3(s)ds,

ẋ3(t) =
(

eb1(b2−b3) + a4
∫ t

−∞
h3(t− s)x3(s)ds

)

·

·
(

∫ t

−∞
h2(t− s)x2(s)ds

)

−

−a5x3(t)
∫ t

−∞
h3(t− s)x3(s)ds− (a3 + a6)x3(t),

(4)
whereai > 0, i = 1, 2, 3, 4, 6 are positive real numbers.

The functionshi : [0,∞) → [0,∞), i = 2, 3, are
piecewise continuous and

∫

∞

0

hi(s)ds = 1,

∫

∞

0

shi(s)ds < ∞, i = 2, 3.

The functionshi, i = 2, 3 are called kernels. In this
paper we consider two types of kernels:

weak kernel (exponential distribution):

hi(s) = die
−dis, di > 0, i = 2, 3

Dirac kernel (Dirac distribution):

hi(s) = δ(s− τi), τi ≥ 0, i = 2, 3

whereδ is the Dirac function.

III. STABILITY ANALYSIS

System (4) has only one non trivial positive equili-
brium pointE(x10, x20, x30) obtained as:

x10 =
(a3 + a6)a6

a1a2
, x20 =

(a2x10 + a5)x
2
30

eb1(b2−b3) + a4x30
, x30 =

a1

a6
.

(5)
By carrying out the translationu1(t) = x1(t) − x10,

u2(t) = x2(t) − x20, u3(t) = x3(t)− x30, we obtain the
linearized system of (4) at the equilibrium point:

u̇1(t) = a11u1(t) + a13u3(t),
u̇2(t) = a21u1(t) + a23u3(t)+

+b22
∫ 0

−∞
h2(t− s)u2(s)ds+

+b23
∫ 0

−∞
h3(t− s)u3(s)ds,

u̇3(t) = a33u3(t) + b32
∫ 0

−∞
h2(t− s)u2(s)ds+

+b33
∫ 0

−∞
h3(t− s)u3(s)ds,

(6)

where

a11 = −a2x
2
30, a13 = a3 − 2a2x10x30, a21 = −a11,

a23 = 2a2x10x30 + a5x30, a33 = −a5x30 − a3 − a6,

b22 = eb1(b2−b3) − a4x30, b23 = −a4x20 + a5x30,

b32 = −b22, b33 = −b23.
(7)

Using the identities [13]:
∫ t

−∞

hi(t−s)ui(s)ds =

∫ 0

−∞

hi(−s)ui(t+s)ds, i = 2, 3
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and
∫ 0

−∞

hi(−s)eλ(t+s)ds = eλt
∫ 0

−∞

hi(s)e
λsds, i = 2, 3

the characteristic equation of (6) is:

λ3+m2λ
2+m1λ+

+(n2λ
2+n1λ+n0)

∫ 0

−∞
eλsh2(−s)ds+

+(p2λ
2+p1λ)

∫ 0

−∞
eλsh3(−s)ds = 0,

(8)

where

m2 = a2x
2
30 + a5x30 + a3 + a6,

m1 = a2x
2
30(a5x30 + a3 + a6),

n2 = eb1(b2−b3)−a4x30, n1 = b22(a11+a23),
n0 = a11b22(a13−b23), p2 =−a4x20+a5x30,

p1 = a2x
2
30(−a4x20 + a5x30).

(9)

For the analysis of system (4), there we consider four
cases:

Case 1. hi(s) = δ(s− τi), i = 2, 3;
Case 2. h2(s) = d2e

−d2s, h3(s) = δ(s− τ3);
Case 3. h2(s) = δ(s− τ2), h3(s) = d3e

−d3s;
Case 4. h2(s) = d2e

−d2s, h3(s) = d3e
−d3s.

A. Case 1.hi(s) = δ(s− τi), i = 2, 3
Case 1.1. τ2 = τ3 = 0.
The characteristic equation (8) becomes:

λ3+α2λ
2+ α1λ+ α0 = 0, (10)

where

α2 = m2 + n2 + p2, α1 = m1 + n1 + p1, α0 = n0. (11)

Applying Routh-Hurwitz criterion, we have:
Proposition 1:([19], [20]) If τ2 = τ3 = 0 and

α2 > 0, α1 > 0, α0 > 0, α1α2 − α0 > 0 (12)

then eq. (10) has the roots with negative real part. The
equilibrium point E is locally asymptotically stable.

Case 1.2. τ2 6= 0, τ3 = 0.
The characteristic equation (8) becomes:

λ3+β2λ
2+ β1λ+(n2λ

2+n1λ+n0)e
−λτ2 = 0, (13)

with
β2 = m2 + p2, β1 = m1 + p1.

For the occurrence of the Hopf bifurcation, a critical
time delayτ20 must exist such thatλ1,2(τ20) = ±iω20,
ω20 > 0 and all other eigenvalues have negative real part
at τ2 = τ20 and

Re

(

dλ(τ2)

dτ2

)

|τ2=τ20 6= 0. (14)

Assume that a pair of imaginary roots exists for (13)
andλ = iω, ω > 0 is one of its roots.

Substituting in (13) and separating the real and imag-
inary parts, we obtain:

(n0 − n2ω
2) cos(ωτ2) + ωn1 sin(ωτ2) = β2ω

2

(n0 − n2ω
2) sin(ωτ2)− ωn1 cos(ωτ2) = β1ω − ω3.

(15)
Eliminating sin(ωτ2) and cos(ωτ2) from (15), the

following polynomial equation inω can be obtained

ω6 + q4ω
4 + q2ω

2 + q0 = 0 (16)

where q4 = β2
2 − 2β1 − n2

2, q2 = β2
1 − n2

1 + 2n0n2,
q0 = −n2

0.
If ω2 = z, then (16) becomes:

f1(z) := z3 + q4z
2 + q2z + q0 = 0. (17)

Becauseq0 < 0, eq. (17) has at least one positive root
and the characteristic equation (13) has at least a pair of
purely imaginary roots.

Now, we establish condition (14).
Let λ(τ2) = α(τ2)+iω(τ2) be a root of (8) satisfying

α(τ20) = 0, ω(τ20) = ω20.

Lemma 1. ([9]) If f ′

1(ω
2
20) 6= 0 then

d

dτ2
Re(λ(τ2))|τ2=τ20 > 0.

Theorem 1. ([17]) Suppose thatα2 > 0, α1 > 0,
α0 > 0, α1α2−α0 > 0. The equilibrium point E of (4) is
locally asymptotically stable whenτ2 < τ20 and unstable
whenτ2 > τ20, whereτ20 is defined by:

τ20 =

=
1

ω20
(arccos(

β2ω
2
20(n0−n2ω

2
20)+

(n0−n2ω
2
20)

2+ω2
20n

2
1

)+

+
ω20n1(ω

3
20− β1ω20)

(n0−n2ω
2
20)

2+ω2
20n

2
1

) + 2mπ),m = 0, 1, 2, .....

(18)
In addition, if f ′

1(ω
2
20) 6= 0 then a Hopf bifurcation

occurs whenτ2 = τ20.

Case 1.3. τ2 = τ3 = τ

We analyze system (4) in the caseτ2 = τ3 = τ .
System (4) becomes:

ẋ1(t) = a1 − a2x1(t)x3(t)
2 + a3x3(t),

ẋ2(t) = a2x1(t)x3(t)
2−

−
(

eb1(b2−b3) + a4x3(t− τ)
)

x2(t− τ)+
+a5x3(t)x3(t− τ),
ẋ3(t) =

(

eb1(b2−b3) + a4x3(t− τ1)
)

x2(t− τ)−
−a5x3(t− τ)x3(t)− (a3 + a6)x3(t),

(19)

whereai > 0, i = 1, 2, 3, 4, 6 are positive real numbers.
System (19) has a unique positive equilibrium point

E(x10, x20, x30), wherex10, x20, x30 are given by (5).
By carrying out the translationui(t) = xi(t) − xi0,

i = 1, 2, 3, we obtain the linear system of (19):

u̇1(t) = a11u1(t) + a13u3(t),
u̇2(t) = a21u1(t) + a23u3(t) + b22u2(t− τ)+
+b23u3(t− τ),
u̇3(t) = a33u3(t)+b32u2(t−τ)+b33u3(t−τ),

(20)
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wherea11,a13, a21, a23, a33, b22, b23, b32, b33 are given
by (7).

The characteristic equation of (20) is:

λ3+m2λ
2+m1λ+((n2+p2)λ

2+
+(n1 + p1)λ+ n0)e

−λτ = 0,
(21)

wherem2, m1, n2, n1, n0, p1, p2 are given by (9).
Using Proposition 1, we have:
Proposition 2: If τ = 0 and (12) holds, then the

equilibrium point E is locally asymptotically stable.
Let τ > 0. For the occurrence of the Hopf bifurcation,

a critical time delayτ0 must exist such thatλ12(τ0) =
±iω0, ω0 > 0 and for all other eigenvalues have negative
real part for eq. (21) and

Re

(

dλ(τ)

dτ

)

|τ=τ0 6= 0. (22)

Assume that a pair of imaginary roots exists for (21)
andλ = iω, ω > 0 is one of its roots.

Substituting in (21) and separating the real and imag-
inary parts we obtain:

(n0 − (n2 + p2)ω
2) cos(ωτ) + (n1 + p1)ω sin(ωτ) =

= m2ω
2,

(n0 − (n2 + p2)ω
2) sin(ωτ)− (n1 + p1)ω cos(ωτ) =

= m1ω − ω3.
(23)

Eliminatingsin(ωτ) andcos(ωτ), the following poly-
nomial equation inω can be obtained:

ω6 + r4ω
4 + r2ω

2 + r0 = 0, (24)

where

r4 = m2
2 − 2m1 − (n2 + p2)

2, r0 = −n2
0,

r2 = m2
1 + 2n0(n2 + p2)− (n1 + p1)

2.
(25)

If ω2 = z. then (24) becomes:

f2(z) := z3 + r4z
2 + r2z + r0 = 0. (26)

Becauser0 < 0, (26) has at least one positive root
and the characteristic equation (21) has at least one pair
of purely imaginary roots.

Let λ(τ) = α(τ)+iω(τ) be a root of (21) andτ0 > 0
so thatα(τ0) = 0 andω(τ0) = ω0 > 0.

Lemma 2. If f ′

2(ω
2
0) 6= 0, then Re

(

dλ(τ)

dτ

)

|τ=τ0 >

0.
By Lemma 2, we have the following theorem:
Theorem 2. Suppose that

m1+n1+p1>0,m2+n2+p2>0, n0>0,
(m1 + n1 + p1)(m2 + n2 + p2)− n0 > 0.

(27)

The equilibrium point E of system (19) is locally asymp-
totically stable, whenτ < τ0 and unstable whenτ > τ0,
whereτ0 is defined by:

τ0 =
1

ω0

(

arccos

(

H0

L0

))

+ 2nπ, n = 0, 1, 2, ...

whereH0 = m2ω
2
0(n0−(n2+p2))ω

2
0+(n1+p1)ω0(ω

3−
m1ω0), L0 = (n0 − (n2 + p2)ω

2
0)

2 + (n1 + p1)
2ω2

0 .
In addition, if f ′

2(ω
2
0) 6= 0, then a Hopf bifurcation

occurs whenτ = τ0.

Case 1.4 τ2 ≥ 0, τ3 ≥ 0.
The characteristic equation (8) becomes:

λ3+m2λ
2+m1λ+ (p2λ

2+ p1λ)e
−λτ3+

+(n2λ
2+ n1λ+ n0)e

−λτ2 = 0.
(28)

We considerτ2 in its stable interval[0, τ20] and regard
τ3 as a parameter. Without loss of generality, we assume
that the conditions from Proposition 1 hold. Letλ = iω

(ω(τ2) > 0) be a root of (28). Then, we can obtain:

ω6 + ε5ω
5 + ε4ω

4 + ε3ω
3+

+ε2ω
2 + ε1ω + ε0 = 0,

(29)

where

ε5(ω) = −2n2sin(ωτ2),
ε4(ω) = −p22 + n2

2 +m2
2 − 2m1+

+(2m2n2 − 2n1) cos(ωτ2),
ε3(ω) = 2(n2m1 + n0 − n1m2) sin(ωτ2),
ε2(ω) = −p21 − 2n0n2 + n2

1 +m2
1+

+(−2m2n0 + 2m1n1) cos(ωτ2),
ε1(ω) = −2m1n0 sin(ωτ2),
ε0(ω) = n2

0.

Denote

K(ω) = ω6 + ε5ω
5 + ε4ω

4+
+ε3ω

3 + ε2ω
2 + ε1ω + ε0.

(30)

We assume that there existsω31 > 0 so thatK(ω31) = 0.
For ω31, there exists a sequence{τ3j , j = 1, 2...} such
that (29) holds.

Let τ31 = max{τ3i, i = 1, ...n}. When τ3 = τ31,
(28) has a pair of purely imaginary roots±iω31, for τ2 ∈
[0, τ20).

In the following we assume that

(

dRe(λ(τ3))
dτ3

)

−1

λ=iω31

6= 0.

Thus, by the general Hopf bifurcation theorem ([10]), we
have the following result on stability and Hopf bifurcation
for system (4):

Theorem 3:([17]) Assume that the above condition is
satisfied and thatτ2 ∈ [0, τ20). Then, the equilibrium point
E is locally asymptotically stable whenτ3 ∈ [0, τ31).
Moreover, whenτ3 = τ31 the system (4) undergoes a
Hopf bifurcation atE.

If ω31 is a positive root of (29), thenτ3j is given by

τ3j =
1

ω31

[

arccos

(

H31

L31

)

+ 2jπ

]

, j = 0, 1, 2...,

(31)
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where

H31 = (−m2ω
2
31 + n1ω31 sin(ω31τ2)+

+(n0 − n2ω
2
31) cos(ω31τ2))p2ω

2
31+

+(ω3
31 −m1ω31 + (n0 − n2ω

2
31) sin(ω31τ2)−

−n1ω31 cos(ω31τ2))p1ω31,

L31 = (p2ω
2
31)

2 + (p1ω31)
2.

B. Case 2.h2(s) = d2e
−d2s, h3(s) = δ(s− τ3) d2 > 0,

τ3 ≥ 0

System (4) becomes:

ẋ1(t) = a1 − a2x1(t)x3(t)
2 + a3x3(t)

ẋ2(t) = a2x1(t)x3(t)
2 − (eb1(b2−b3)+

+a4x3(t− τ3))y4(t)+
+a5x3(t)x3(t− τ3),

ẋ3(t) =
(

eb1(b2−b3) + a4x3(t− τ3)
)

y4(t)−
−a5x3(t)x3(t− τ3)− (a3 + a6)x3(t),
ẏ4(t) = d2(x2(t)− y4(t)).

(32)

The analysis of the equilibrium pointE for (32) can
be done studying the roots of the equation:

λ4 + (m2 + d2)λ
3 + (m1 +m2d2 + d2n2)λ

2+
+(m1 + n1)d2λ+
+d2n0 + e−λτ3(p2λ

3 + (p1 + d2p2)λ
2 + d2p1λ) = 0.

(33)

The analysis of (33) can be done in a similar way as
in Case 1.

C. Case 3.h3(s) = d3e
−d3s, h2(s) = δ(s− τ2), d3 > 0,

τ2 ≥ 0

System (4) becomes:

ẋ1(t) = a1 − a2x1(t)x3(t)
2 + a3x3(t)

ẋ2(t) = a2x1(t)x3(t)
2 − (eb1(b2−b3)+

+a4y4(t))x2(t− τ2) + a5x3(t)y4(t),

ẋ3(t) =
(

eb1(b2−b3) + a4y4(t)
)

x2(t− τ2)−
−a5x3(t)y4(t)− (a3 + a6)x3(t),
ẏ4(t) = d3(x3(t)− y4(t)).

(34)

The analysis of the equilibrium pointE for (34) can
be done studying the roots of the equation:

λ4 + (m2 + d3)λ
3 + (m1 +m2d3 + d3p2)λ

2+
+(m1 + p1)d2λ+ e−λτ2(n2λ

3+
+(n1 + d3n2)λ

2 + (n0 + d3n1)λ+ d3n0) = 0.
(35)

The analysis of (37) can be done in a similar way as
in Case 1.

D. Case 4.h2(s) = d2e
−d2s, h3(s) = d3e

−d3s, d2 > 0,
d3 > 0

System (4) becomes:

ẋ1(t) = a1 − a2x1(t)x3(t)
2 + a3x3(t)

ẋ2(t) = a2x1(t)x3(t)
2 − (eb1(b2−b3)+

+a4y5(t))y4(t) + a5x3(t)y5(t),
ẋ3(t) =

(

eb1(b2−b3) + a4y5(t)
)

y4(t)−
−a5x3(t)y5(t)− (a3 + a6)x3(t),
ẏ4(t) = d2(x2(t)− y4(t)),
ẏ5(t) = d3(x3(t)− y5(t))

(36)

The analysis of the equilibrium pointE for (36) can
be done studying the roots of the equation:

λ5 + (m2 + d2 + d3)λ
4 + (m1 +m2(d2 + d3)+

+d2d3)λ
3 + (m1(d2 + d3) + d2d3m2 + d2n2+

+d3p2)λ
2 + (d2d3m1 + d2n1 + d3p1)λ+ d2n0 = 0.

(37)

The analysis of (37) can be done in a similar way as
in Case 1.

IV. T ECHNOLOGY DIFFUSION STOCHASTIC MODEL

Let the probability space(Ω,F , P ) be given, and
w(t) ∈ R be a scalar Wiener process defined onΩ having
independent stationary Gaussian increments withw(0) =
0, E(w(t) − w(s)) = 0 andE(w(t)w(s)) = min(t, s).
The symbol E denotes the mathematical expectation.
The sample trajectories ofw(t) are continuous, nowhere
differentiable and have infinite variation on any finite time
interval [11].

We are interested in knowing the effect of the noise
perturbation on the equilibriumE(x10, x20, x30). The
stochastic differential system with delay is:

dx1(t) = (a1 − a2x1(t)x3(t)
2 + a3x3(t))dt+

+σ1(x1(t)− x10)dw(t),
dx2(t) = (a2x1(t)x3(t)

2−
−
(

eb1(b2−b3) + a4x3(t)
)

x2(t)+
+a5x3(t)x3(t))dt + σ2(x2(t)− x20)dw(t),
dx3(t) = ((eb1(b2−b3) + a4x3(t))x2(t)−
−a5x3(t)x3(t)− (a3 + a6)x3(t))dt+
+σ3(x3(t)− x30)dw(t),

(38)

whereσ1, σ2, σ3 > 0 are scalars and we denote byxi(t) =
xi(t, ω), i = 1, 2, 3, ω ∈ Ω the components of a stochastic
process on the probability space [11], [16].

In the numerical simulation section we can visualize
the orbits of (38).

V. TECHNOLOGY DIFFUSION FRACTIONAL MODEL

The fractional-order system associated to (19), the
technology diffusion model withτ2 = τ3 = τ can be
described by:
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Dq1x1(t) = a1 − a2x1(t)x3(t)
2 + a3x3(t),

Dq2x2(t) = a2x1(t)x3(t)
2 − (eb1(b2−b3)+

+a4x3(t− τ))x2(t− τ) + a5x3(t)x3(t− τ),

Dq3x3(t) = (eb1(b2−b3) + a4x3(t− τ))x2(t− τ)−
−a5x3(t− τ)x3(t)− (a3 + a6)x3(t),

(39)
whereDq

t is defined by ([14], [16]):

D
q
t =











dq

dtq
, Re(q) > 0

1 Re(q) = 0
∫ t

0 (ds)
−q Re(q) < 0

and q is the derivative order, that can be a complex number
with Re(q) the real part of q. There are many definitions
for general fractional derivative. The most frequently used
ones are: the Grunwald-Letnikov definition, the Riemann-
Liouville and the Caputo definitions [18].

We considerq1 = q2 = q3 = q ∈ (0, 1). In this case,
the fractional order system is commesurate-order ([23]).

As in [14], in this paper we use the Caputo definition
for the fractional derivative.

Using the fractional order Routh-Hurwitz condition
for (21) with τ = 0, we obtain that the equilibrium point
E(x10, x20, x30) is local asymptotically stable for allq ∈
(0, 1).

VI. N UMERICAL SIMULATIONS
We use Maple and Matlab for the numerical sim-

ulations. For the parametersa1 = 0.5, a2 = 0.15,
a3 = 0.12, a4 = 0.13, a5 = 0.1089, a6 = 0.2, b1 = 0.6,
b2 = 0.8, b3 = 0.2 all the conditions from Proposition 1
are satisfied.

When both kernels of system (4) are Dirac,hi(s) =
δ(s − τi), i = 2, 3 and τ2 ≥ 0, τ3 ≥ 0, the time delay
τ2 is considered in its stable interval[0, τ20]. By (18)
we find τ20 = 1.68. The equilibrium point E is locally
asymptotically stable ifτ3 ∈ [0, τ31) and unstable for
τ3 > τ31. For τ3 = τ31, system (4) exhibits a Hopf
bifurcation and the solution is periodically. By (31) we
obtain τ31 = 0.16. In Fig. 1, Fig. 2, Fig. 3, the orbits
corresponding to the number of non-adopters (x1(t)), the
number of thinkers (x2(t)) and the number of adopters
(x3(t)) are periodically.

Fig. 1 For system (4),(t, x1(t)) is periodically
whenτ2 = 1.68, τ31 = 0.16
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Fig. 2 For system (4),(t, x2(t)) is periodically

whenτ2 = 1.68, τ31 = 0.16

0 50 100 150 200 250 300 350
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

x2
(t

)

Fig. 3 For system (4),(t, x3(t)) is periodically
whenτ2 = 1.68, τ31 = 0.16
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For system (4), when both kernels are weak,h2(s) =
d2e

−d2s, h3(s) = d3e
−d3s with d2 = 0.3 andd3 = 0.6,

we obtain the orbits given in Fig. 4, Fig. 5 and Fig.6.

Fig. 4 The orbit(t, x1(t)) of (4)
whend2 = 0.3 andd3 = 0.6
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Fig. 5 The orbit(t, x2(t)) of (4)
whend2 = 0.3 andd3 = 0.6
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Fig. 6 The orbit(t, x3(t)) of (4)
whend2 = 0.3 andd3 = 0.6
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The numerical simulation of the stochastic model (38)
is done using Milstein algorithm in Matlab forτ = 0. The
orbits are given in Fig. 7, Fig. 8 and Fig. 9.

Fig. 7 The orbit(j, x1(j, ω)) of (38)
whenσi = 1.2, i = 1, 2, 3
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Fig. 8 The orbit(j, x2(j, ω)) of (38)

whenσi = 1.2, i = 1, 2, 3
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Fig. 9 The orbit(j, x3(j, ω)) of (38)
whenσi = 1.2, i = 1, 2, 3
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Using the numerical method from [18], forτ = 0 and
q1 = q2 = q3 = 0.98, we obtain the following orbits:

Fig. 10 The orbit(j, x1(j)) of (39)
whenτ = 0 andq1 = q2 = q3 = 0.98
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Fig. 11 The orbit(j, x2(j)) of (39)
whenτ = 0 andq1 = q2 = q3 = 0.98
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Fig. 12 The orbit(j, x3(j)) of (39)
whenτ = 0 andq1 = q2 = q3 = 0.98
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Using the numerical method from [15], forτ = 0.4
andq1 = q2 = q3 = 0.98, we obtain the following orbits:

Fig. 13 The orbit(j, x1(j)) of (39)
whenτ = 0.4 andq1 = q2 = q3 = 0.98
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Fig. 14 The orbit(j, x2(j)) of (39)

whenτ = 0.4 andq1 = q2 = q3 = 0.98
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Fig. 15 The orbit(j, x3(j)) of (39)
whenτ = 0.4 andq1 = q2 = q3 = 0.98
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The numerical simulations verify the theoretical re-
sults.

VII. C ONCLUSION

In the present paper a mathematical model that des-
cribes the process of diffusion of a technology has been
considered, in the deterministic, stochastic and fractional
cases.

There are three variables corresponding to the adopter
class, the thinker class and the non-adopter class. It is
assumed that there is an average time for a firm to decide
whether to adopt the technology or not. The mathematical
model is described by a non-linear differential system
with distributed time delay. The stability analysis has been
carried out about the unique positive equilibrium point.

If there is no delay, the system is locally asymptoti-
cally stable under some conditions involving parameters
of system (4). Introducing the distributed delay we have
considered two types of kernels: weak and Dirac.

When there is distributed time delay, we have
prezented the cases: both kernels are Dirac, one kernel
is weak and the other is Dirac and both kernels are weak.
When both kernels are Dirac, we have investigated the
existence of the Hopf-bifurcation for one time delay and
for two different time delays, as well. For one time delay,
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in some conditions of the parameters, we have proved
that a family of periodic solutions bifurcates from the
equilibrium point when the bifurcation parameter passes
through a critical value. For two different time delays, we
fix the first one in its stable interval, and with respect
to the second one, we find sufficient conditions for the
existence of a change in local stability of the stationary
state, from stable to unstable.

A similar analysis can be done for other types of
kernel: strong, uniform or Gauss.

We have also considered the stochastic and the frac-
tional approaches of the deterministic model, where the
corresponding orbits have been displayed.
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