
 

 

 
Abstract— The paper introduces an original approach to 

parameter estimation of anisochronic models describing systems, 
which are conventionally described by a serial combination of a 
rational transfer function and a transportation delay. The method of 
moments is used for this purpose. Since the method of moments uses 
step responses, the paper also introduces an original formula for the 
derivation of step responses from relay feedback control. At the end 
of this paper, the anisochronic controller using the anisochronic 
model and the Desired Model Method will be derived. The 
applicability of the suggested methodology is presented examples in 
the Matlab/Simulink environment. 

      
Keywords—Anisochronic model, control, parameter estimation, 

time delay, moments, step response, relay identification.  

I. INTRODUCTION 

IME delay systems constitute an important category 
of dynamical systems in which time delays exist 

between the application of input or control to the system 
and their resulting effect on it. Time delays often occur 
in biological systems, metallurgical systems, chemical 
processes, thermal systems, transportation and 
communication systems, power systems, remote control 
systems, economic systems, etc. (See [11],[16]).  

The time delay systems may contain delays in input-output 
relations, but also in internal feedback loops, i.e. state delays. 
Systems with delays, latencies and after effects can be 
described around operating point by a serial combination of a 
rational transfer function and a transfer function of a transport 
delay [10], [17] or by anisochronic models [4], [25]. These 
anisochronic models (as opposed to isochronic models) 
contain delays in both inputs and states. Transfer functions of 
linear anisochronic models include transcendental exponential 
terms in both the numerator and the denominator. Also, they 
have an infinite number of poles and zeros in general. 
Consequently the transfer functions are not rational. Although 
the systems with state delays are relatively common, practical 
applications of anisochronic models for control are rare. The 
main reasons are: 
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a) Parameter estimate of anisochronic models is more 
difficult than parameter estimate of standard models. 

b) Transfer functions cannot be factored into a product of a 
pure transportation delay and a rational transfer function. 
Neither Smith predictor nor any other control schemes based 
on this factorization are applicable. 

For these reasons several approaches for parameter estimate 
of anisochronic models and for anisochronic control design 
were recently proposed, e.g. [25], [26]. Unfortunately these 
approaches are marked by the enormous complexity, which 
limits their application in common practice. 

 

II. LINEAR ANISOCHRONIC MODEL OF SECOND ORDER 

Transfer function (1) offers a wide variability for description 
of continuous SISO time delay systems around operating 
points, see [24]. 
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This linear anisochronic model is the second order and it 
contains only five parameters, where K is the plant static gain, 
τu is the pure input time delay, τ1 and τ2 are the time constants 
and τy is the feedback time delay (the internal delay in state). 
The variable s represents the complex argument defined by the 
Laplace transform.  

The delay τy appears in the denominator of transfer 
function (1) and consequently characteristic equation (2) 
becomes transcendental in s.  
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The characteristic quasipolynomial has an infinite set of roots. 
It may also lead to an alternative interpretation of model (1) as 
an infinite dimensional model. Therefore it may serve as a 
good approximation for general higher-order delay free 
systems. 

In the time domain, model (1) is described by equation (3). 

 ( ) ( ) ( ) ( ) ( )1 2 2 1 y y uy t y t y t y t Ku t      ¢¢ ¢ ¢+ + - + - = - (3) 

The parameters K, τu, τ1, τ2 and τy are depicted in Fig. 1 on the 
unit step response of model (1), where I represents the position 
of the inflection point, p is the tangent at the inflection point I, 
see [12], [24].  
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Fig. 1 The unit step response h(t) of model (1) 

 
Model (1) is stable if τy/τ2<π/2, overdamped if τy/τ2<1/e, 
critically damped if τy/τ2=1/e and underdamped if τy/τ2>1/e, 
where e is Euler’s number, see [4]. Therefore model (1) may 
be used both for nonoscillatory and oscillatory processes. 

The parametrs K, τu, τ1, τ2 and τy can be estimated from the 
unit step response h(t) by the graphical method [12], see 
Fig. 1. This approach is based on evaluation of the step 
response at single points. Such methods are quite sensitive to 
measurement noise and it may lead to large errors. For 
example, the position of the inflection point I is vague and 
therefore the estimate of the parameter τy may be erroneous. 
To improve the estimates, the method of moments is further 
applied. 

III. METHOD OF MOMENTS 

The method of moments [2] is based on the computation of 
the integrals Mi,i=0,1,2,...., where 

     
0

,i
iM t h h t dt



     (4) 

and h(t) is the unit step response of a stable  process. 
Integrals Mi,i=0,1,2,... can be determined using the 

following relationship between the transfer function G(s) and 
the impulse response function g(t) 
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Taking derivatives with respect to s we get 
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Hence for stable processes with the static gain K 
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where 
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and 
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In a similar way it can be derived 
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For the next calculations of the moments it is advantageous 
to decompose the transfer function G(s) into a product of 
factors G1(s) and G2(s), i.e. 
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Then it holds 
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hence with respect to (16) one can express 
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From it follows 
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Differentiating the fraction G´(s)/G(s) we can obtain 
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From it follows 
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The derived mathematical relations can be used for estimating 
parameters of models describing linear stable systems.  
 

IV. FITTING ANISOCHRONIC MODELS OF SECOND ORDER 

BY MOMENTS 

A. Determination of M0 and M1  
Anisochronic model (1) is very universal mathematical model 
enabling to describe the behavior of many real processes. But 
this model contains both a transport delay and a state delay. 
Therefore parameter fitting for this model is more difficult 
than for conventional linear models. This is main reason why 
that up to now only a few methods for parameter estimation 
have been developed that can be applied in practice, e.g. [5], 
[21]. 

The introduced method shows how to estimate the 
parameters of model (1) from the step responses by means of 
moments.  

The moment M0 can be determined using (13). 

 ( )0 0M G ¢=- . (23) 

With respect to (1), (19) and (18) 
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and so the moment M0 can be expressed using relations (1), 
(7), (18), (19) and (24) 
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where τar is the average residence time. 
The moment M1 can be expressed by relation (14) 
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where G”(0) can be determined using (7), (22) and (26). From 
it follows  
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where according to (26) 
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and 
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The moment M1 can be then expressed 
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B. Calculation of M0 and M1  
Since digital computers are used for data processing, 

continuous measurements are converted into a digital form [6]. 
[The moments M0 and M1 can be obtained from a sampled 
data record h(k·∆t), k=1,2,...,N of the unit step response, where 
∆t represents the sampling period and N relates to the last 
sample, when the unit step response achieved the new steady 
state. The integrals  
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can be computed by a numerical integration, e.g. a trapezoidal 
or rectangular integration algorithm, e.g. [7], [8]. For the 
calculation we can use the normalized step response ℎതk, where 
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The integrals M0 and M1 can be then calculated (by means of 
rectangular approximation) as follows 
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C. Parameter Estimates 
Without the knowledge of the exact position of the inflexion 

point I in the step response (see Fig.1), one can construct the 
tangent p and calculate integrals (32) and (33) by numerical 
integration. Then the parameters of anisochronic model (1) 
can be found in according to the following steps. 

 
1. Determine the static gain K from a graphical construction or 
through static tests. 
2. Determine the time constant τ2 from a graphical 
construction, see Figure 1. 
3. Compute the average residence time τar from (25) 

 0
ar

M

K
 = . (36) 

4. Determine the transient time τp from the graphical 
construction, see Fig. 1, where 

 1 2p u   = + + . (37) 

5. Compute the feedback time delay τy 

 y p ar  = - . (38) 

6. Compute the time constant τ1 from (31) 
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7. Compute the pure input time delay τu  

 1 2u p   = - - . (40) 

One will notice that in this method only the time constants τp 
and τ2 are obtained directly from the graphical construction 
and they are easily determined by the tangent p. The other 
constants τ1, τu and τy are calculated using the values M0 and 
M1. This procedure easily enables the estimation of the delays 
τu and τy without knowledge of the exact position of the 
inflection point I. 

V. DETERMINATION M0 AND M1 FOR UNIVERSAL LINEAR 

ANISOCHRONIC MODEL 

The previous results can be generalized for a stable system 
with transfer function (41) 
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where τj, aτk, yτk, Ti, yTl, τu ∈ℝ+  for ∀i, j, k, l; N1, N2, N3, N4∈ℕ; 
N1+N2 N3+N4; ℝ+  is the set of positive real numbers. 

With respect to (18) 
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After calculation of the derivations we get 

 

( )
( )

1

32

4

1

1 1

1

1

1

.

y j

y j

y l

y l

N
a i

u
a ii

s NN
a j y j k

s
kj ka j

s TN
a l y l

s T
l a l

G s

G s s

e T

T ss e

T T e

T s e








 



=
- ⋅

- ⋅
= =

- ⋅

- ⋅
=

¢
=- -

+

- ⋅
- +

+⋅ +

- ⋅
+

+

å

å å

å

 (43) 

Hence, with respect to (7), (13) and (43) 
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The moment M1 can be determined by (28), (43) and (45), 
where 
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and from it follows 
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Hence with respect to (28), (45) and (7) it holds for the 
moment M1  

 

( )( )

( )( )

1 2

3 4

22 2 2
1

1 1

22 2

1 1
2

N N

ar i y j a j y j
i j

N N

k y l a l y l
k l

M

K
T T T T

    
= =

= =

æçç= + - - -çççè

ö÷÷- + - - ÷÷÷÷ø

å å

å å
 (48) 

VI. DERIVATION OF STEP RESPONSES FROM RELAY 

FEEDBACK CONTROL 

The step response obtained from an open-loop experiment is 
a convenient way to characterize process dynamics. Many 
methods for determining parametric models from the step 
response are based on it, e.g. [2], [17]. The open-loop step test 
is vulnerable to load disturbances especially for systems with 
large time constants. As well there are many identification 
methods based on closed-loop transient response analysis, e.g. 
[15], [19]. The Ziegler-Nichols frequency response method 
[23] is one of the most popular and simple methods for 
characterization of the process dynamics. Probably the more 
successful part of the Ziegler-Nichols method is not the tuning 
rule but a way to find the ultimate gain and the ultimate 
frequency. However, the method is time consuming. The 
information obtained from the Ziegler-Nichols frequency 
response method can be also received from the relay feedback 
test proposed by Åström and Hägglund [1]. However, an 
important difference is that the relay feedback test is 
controlled. From one standard relay test, one point on the 
process frequency response is obtained. This point can be used 
to calculate controller parameters directly or it is possible use 
it for system identification, e.g. [13], [14], [18]. This approach 
was also generalized for a biased relay feedback, e.g. [3], [20]. 

But if a process model has more than two unknown 
parameters, it is necessary for system identification to find 
more points on a frequency response function or to add some 
other information [3], [9]. 

The relay feedback control can be also used for 
determination of the step response. For this purpose a two 
position symmetrical or asymmetrical (biased) relay, with or 
without a hysteresis, can be applied. 

The block diagram of a process under relay feedback control 
is shown in Fig. 2. The time courses of the biased relay output 
u and the process output y are shown in Fig. 3 provided that 
the system was initially in a steady state and a biased 
(asymmetrical) relay with a hysteresis (see Fig. 4) was used 
for control. The variable u changes its values at the time 
moments ti, i∈ ℕ, where  is the set of all natural numbers. 

  
Fig. 2 Block diagram of a plant under relay feedback 

 
The step response function h(t) at the time t can be 

calculated recursively according to derived original formula 
(49). 
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where 

 ( ) ( )1 1, 0,u u t  Î , (50) 
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 c A Bu u u= + . (52) 

Formula (49) can be also used for a two position symmetrical 
relay, with or without a hysteresis. 

 
Fig. 3 The biased relay output u and the process output y for 

a process under relay feedback 

 

Fig. 4 The static characteristic of a biased relay with 
a hysteresis 

It is obvious that this approach to system identification can be 
used even for more complicated dynamical systems, where the 
mentioned recursive calculation is acceptable. Therefore, this 
approach can be applied even for systems with delays, 
latencies and after-effects, which can be described by linear 
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anisochronic models. 

VII. EXAMPLE FOR THE ESTIMATION OF THE FIVE 

PARAMETERS OF THE ANISOCHRONIC MODEL   

A plant with the transfer function  

 ( )
( )

8

6
5 1

s

P
e

G s
s

-
=

+
 (53) 

is connected with the relay controller in the closed-loop. The 
biased relay with hysteresis has following parameters, see 
Fig. 4:  
 2, 1, 0.5, 0.5A B A Bu u  = =- = =- . (54) 

The time courses of the biased relay output u and the plant 
output y are shown in Fig. 5 provided that the system was 
initially in a steady state.  

 

 

Fig. 5 The time courses of the biased relay output u and the 
plant output y 

 
The task is to estimate parameters K, τu, τ1, τ2 and τy only from 
the observation data depicted in Fig. 5 provided that plant 
transfer function (53) is not known and anisochronic model 
(55) is used for plant description. 

 ( )
( )( )1 21

u

y

s

a s

K e
G s

s s e



 

-

-

⋅
=

+ +
 (55) 

Solution:  
The unit step response h(t) can be determined recursively from 
formula (49) and the observation data depicted in Fig. 5. From 
Fig. 5 it follows that uC=3 and the times ti, i=1,2,3,... 
correspond to time moments when the manipulated variable 
changed its value. The obtained unit step response is shown in 
Fig. 6.  

Therefore, the plant steady-state gain 
 1K = . (56) 
Parameter estimate of anisochronic model (55), with respect to 
the unit step response h(t), is done here using the method of 
moments.The method is based on the computation two 
integrals (32) and (33). The values of these integrals are 
computed by a numerical integration and for the given 
example  

 2
0 138 s, 797 sM M= = . (57) 

 

Fig. 6 The unit step response h(t) determined by formula (49) 

 
For anisochronic model (55) holds according to (25) and (31)  

 0
ar

M

K
= , (58) 

 
2 2 2

1 21
22

ar
y

M

K

    + +
= - ⋅ , (59) 

where the average residence time 
 1 2ar y u p y      = + - + = - . (60) 

The time constant τ2 and the transient time τp can be 
determined from a graphical construction, see Fig. 6, where 
 248 s, 24 sp = = . (61) 

Due to (56), (61) and (58) the average residence time 
 38 sar =  (62) 

and therefore with respect to (60) the delay 
 10 sy = . (63) 

The time constant τ1 can be calculated from equation (59) 

 ( )22 21
1 22 7.4 sar y y

M

K
    æ ö÷ç= ⋅ - + - - ÷ç ÷çè ø

  (64) 

and the apparent dead time  τu follows from formula (60) 
 1 2 16.6 su p   = - - = . (65) 

The transfer function of anisochronic model is then 

  ( )
( )( )

16.6

107.4 1 24

s

a s

e
G s

s s e

-

-
=

+ +
. (66) 

The unit step response hP of the plant with transfer function 
(53) and the unit step response ha of model (66) are in Fig. 7.  

 
Fig. 7 The unit step response hP of the plant with transfer 
function (53) and the unit step response ha of model (66) 
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The frequency responses of plant (53) and model (66) are 
depicted in Fig. 8. Fig. 7 and Fig. 8 show very good 
conformity the step and frequency responses of identified 
plant (53) and anisochronic model (66) although the transfer 
functions GP(s) and Ga(s) are different. 

 
 

 

 
Fig. 8 The frequency responses of plant (53) and model (66), 
where AP()=|GP(j)|, P()=GP(j) and Aa()=|Ga()|, 
a()=Ga(j). 

  

VIII.  ANISOCHRONIC CONTROLLER DESIGN 

Anisochronic model (1) is able to describe a broad class of 
time delay systems [24]. In the previous part of this paper it 
was shown how to estimate the model parameters by 
experiments with the relay feedback. The following part is 
devoted to the anisochronic controller design where it is used 
the Desired Model Method (DMM) [19] and anisochronic 
model (1).  

 
 Fig. 9 Closed-loop system 
 

The DMM uses the formula for direct synthesis (see Fig. 9) 

 ( )
( )

( ) ( )( )1

wy
C

a wy

G s
G s

G s G s
=

⋅ -
, (67) 

where GC(s) is the controller transfer function, Ga(s) is 
anisochronic model (1) used for plant description, Gwy(s) is the 
desired control system transfer function and it is selected in 
the form 

 ( ) 0

0

u

u

s
wy s

k
G s e

s k e




-
- ⋅

=
+ ⋅

, (68) 

k0 is the open-loop gain. The open-loop transfer function 

 ( ) ( ) ( ) 0
0

us
C a

k
G s G s G s e

s
-= ⋅ =  (69) 

corresponds to desired control system transfer function (68). 
After substitution of anisochronic model (1) to relationship 

(69) one obtains  

 ( ) ( )
( )( )

0
0

1 21

u
u

y

s
s

C s

kK e
G s G s e

ss s e




 

-
-

-

⋅
= ⋅ =

+ +
 (70) 

hence 

 ( )
( )( )1 2

0
1 ys

C

s s ek
G s

K s

  -
+ +

= ⋅ . (71) 

With respect to (68) the characteristic equation of the closed-
loop system is  

 0 0u ss e k ⋅⋅ + = . (72) 

From it follows (see [4], [24]) that the closed loop system is 
stable for 

 0 2 u

k



< , (73) 

and over-damped if  

 0
1

u

k
e

<
⋅

, (74) 

critically damped if 

 0
1

u

k
e

=
⋅

, (75) 

and under-damped if 

 0
1

u

k
e

>
⋅

 (76) 

where e is Euler’s number. 
The open-loop gain k0 can be easily determined analytically 

[19] assuming that the non-dominant poles and zeros of the 
control system have a negligible influence on its behaviour. 
The value of the open-loop gain k0 can be decided according to 

 0
1

d

k
 

=
⋅

 (77) 

where  is the coefficient depending on the relative 
overshoot , see Table I (copy from [19]). 
 
 Table I Values of coefficients  for given relative overshoot  
 0 0.05 0.1 0.2 0.3 0.4 0.5 
 2.718 1.944 1.720 1.437 1.248 1.104 0.992 
 
Transfer function (71) is completed by a low-pass filter with 

a steady-state gain of one to guarantee the physical realizable 
controller. The transfer function of the controller is then 

 ( )
( )( )

( )
1 2

0
1

1

ys

C r
f

s s ek
G s

K s s

 



-
+ +

= ⋅
+

, (78) 

where τf  is the time constant of the filter and the value of r∈ℕ 
can be chosen so that the order of the denominator is at least 
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the same order as the numerator. The value of the time 
constant τf  also allows restricting actions of the manipulated 
variable u. 

IX. AN EXAMPLE FOR ANISOCHRONIC CONTROLLER DESIGN 

In accordance with Fig. 10 a plant with transfer function (53) 
is described by model (66). In Fig. 10 the disturbance 
variables d and d1 are also marked. Design an anisochronic 
controller according to the DMM 

 
Fig. 10 Block diagram of the control system – Example #2 

 
Solution 
The transfer function GC(s) of the controller can be selected 
using the DMM with respect to (66) and (78) in the form 

 ( )
( ) ( )

( )

10

0

7.4 1 24

0.5 1

s

C

s s e
G s k

s s

-+ ⋅ +
= ⋅

+ ⋅
, (79) 

where 
 1 21, 7.4 s, 24 s, 10 s, 0.5 s, 1y fK r   = = = = = = . (80) 

Therefore with respect to Tab. 1, the value of the open-loop 
gain is 

  0
1 1

0.035
1.720 16.6u

k
 

= = =
⋅ ⋅

 for =0.1 (81) 

 0
1 1 1

0.022
16.6 2.718 16.6u

k
e 

= = = =
⋅ ⋅ ⋅

 for =0. (82) 

 
Fig. 11 Set point response for anisochronic control 

 
Fig. 11 shows the closed loop control for the unit step of the 

desired variable w and the required relative overshoots =0.1 
and =0. The disturbance variables d and d1 have zero value. 

Fig. 12 shows the closed loop control for the unit step of the 
disturbance variable d and the required relative overshoots 
=0.1 and =0. The other variables w and d1 have zero value. 

Fig. 13 shows the closed loop control for the unit step of the 
disturbance variable d1 and the required relative overshoots 
=0.1 and =0. The other variables w and d have zero value. 

 

 
Fig. 12 Response of the control system to unit step change in 

the disturbance variable d  
 

 
Fig. 13 Response of the control system to unit step change in 

the disturbance variable d1  
 

X. CONCLUSION 

This paper presents an original approach to parameter 
estimation of anisochronic model (1) that is suitable for the 
description of most industrial processes. For this purpose 
using the moment method, the simple computational formulas 
were derived for parameter estimation of anisochronic model 
(1) from a step response. The practical applicability of this 
approach is demonstrated by the example. The formulas were 
also derived for determining the integrals M0 and M1 of more 
general anisochronic model (41).  

The presented method for plant step response identification 
has been developed in the context of a relay feedback test. The 
method has several unique features. It can estimate the whole 
step response of a plant with one single relay experiment. For 
this purpose no approximation is made. The involved 
computations are simple so that it can be easily implemented 
on micro-processors. The method allows estimating more 
parameters of mathematical models with various structures. It 
can therefore be used for parameter tuning both isochronic and 
anisochronic models. It was demonstrated on one anisochronic 
model in estimating five parameters. The presented 
identification method requires zero initial conditions and due 
to recursive calculation, it is sensitive to noise which can be 
corrected by filtration.  

0 20 40 60 80 100 120 140 160 180 200200
-0.2

0
0.2

0.4
0.6

0.8

1

1.2

y (for =0) 

y (for =0.1) 

d1

t [s]

0 20 40 60 80 100 120 140 160 180 200
-0.2

0

0.2

0.4

0.6

0.8

1
1.2 d 

y (for =0.1) 

y (for =0) 

t [s]

0 20 40 60 80 100 120 140 160 180 200
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 
w 

y (for =0.1) 

y (for =0) 

t [s]

GP(s) 
w e u y

GC(s) 

Controller Plant 

- 

d d1

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 78



 

 

As the aim of the identification was to design a practicably 
applicable controller, therefore, the anisochronic controller 
was derived to broad class systems describable by 
anisochronic model (1) using the Desired Model Method. 
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