
 

 

  
Abstract— This paper presents an approach which enables to 

check the quality of the control law for a process whose evolution is 

described in the state space and the control is made from accessible 

information about the process and its desired evolution. For that it 

deals with the definition of the attractors characterizing the precision 

of control laws for a nonlinear process in presence of uncertainties 

and/or bounded perturbations This approach is based on aggregation 

techniques for stability study and on the choice of the state 

representations of the process. 

 

Keywords— Attractor, aggregation techniques, comparison 

systems, nonlinear systems. 

 

I. INTRODUCTION 

 

his study deals the determination of attractors and 

attraction domains of nonlinear continuous systems, using 

the aggregation techniques for stability study, and by the 

choice of adequate representations of the studied systems. . 

The aggregation techniques by the use of vector norms are 

applied to the definition of comparison systems of a complex 

non-linear and / or non-stationary model for a given process 

with possible uncertainties. 

The study of the stability of this comparison system makes it 

easy to study the stability of the initial process and to define 

an attractor, when the system is locally unstable. The use of 

comparison system enables to determine an attractor of the 

studied system with an estimation of the attraction domain. 

A classical way to control nonlinear systems is to compute a 

linear controller using the first-order approximation of the 

system dynamics for example around the origin x = 0, which  

gives a local linear approximation of the system. A non-

approximating method consists to define a nonlinear feedback  

control law which realizes an input-output decoupling by 

linearization [1]-[5]. For an ill-defined model or a perturbed  
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process the determination of a suitable control appears more 

difficult and is usually achieved by a precise and non-

perturbed model. In such a case it appears very important to 

estimate by overvaluation the error induced by this 

simplification.  

 

For high order systems, generally described in the state space, 

the stability conditions are obtained for the complete system or 

sub-systems with their interactions [6-9]. 

The influence of the choice of the state space description and 

of the characteristic matrix, on the determination of the 

stability domain, appears in the implementation of the stability 

criteria based on the work of Borne and Gentina  [6,7], [10- 

12] with the use of vector norms and defining comparison 

systems for complex process [10-14] 

 

In this paper, we study the stability of controlled system by 

determination of the attractor, which localizes the induced 

error, and is achieved by using aggregation techniques and 

stability criteria, with the use of vector norms and of 

comparison systems [6]-[11]. In section 2, we propose a 

method for studying the stability of nonlinear continuous 

systems by determination of a comparison system and of local 

attractors. The determination of the attractors using the 

method of diagonalization of the locally linearized system is 

studied in section 3. The stability study of a third order 

nonlinear complex system is proposed to illustrate the 

efficiency of this approach. In section 4, we propose athe 

stability study of a nonlinear process controlled by a 

decoupling linearization method.  

II. DETERMINATION OF COMPARISON SYSTEMS AND 

ATTRACTORS 

 

For stability study, several criteria based on different 

Lyapunov’s theorems are developed. If applied to the 

comparison system, they enable to determine the 

attractor of the process and its field of attraction [12], 

[16-20]. 

Let us consider the following system (S) described by 

0 0( ) : ( ) ( , ), ,
dx

S A x x B x t t t
dt

τ= + ∀ ∈ = +∞  
               

(1) 
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where  A is an n×n matrix and B an n vector. 

We can now study the stability of the controlled system by 

determination of the attractor, possibly reduced to the origin 

x= 0, by using aggregation techniques and definition of a 

comparison system such that the instantaneous matrix of the 

non-perturbed system be the opposite of an M-matrix. 

For the vector norm 1 2( ) , ,
T

np x x x x =  … , we obtain by 

overvaluation the linear comparison system: 

 

/ ( ) ( )
n

z z t Mz t N∈ = +ɺℝ
                          

(2) 

Notation { },(.) (.)i jM m= such that:  

 

,

,

,

,

(.) (.) 1, 2,

(.) (.)

i i

i j

i i

i j

m a i n

m a i j

= ∀ =



= ∀ ≠

…

                  (3) 

 

and the vector (.)N defined by 

(.)= (.)N B                                    (4) 

we can define the constant matrices M and N  by 

 

{ } { }
{ } { }

, , ,; max (.)

; max (.)

i j i j i j

i i i

M m m m

N n n n

= =

= =
                

(5) 

 

If M is the opposite of an M-matrix, it exists an attractor D
asymptotically stable such that  

 

{ }1
; ( )

n
D x R p x M N

−= ∈ ≤ −                       (6)
 

with 

( ) ( ( ))z t p x t≥                                   (7) 

 

∀t∈τ0 0 ;t= +∞    ; we have: 

 
1 1lim ( ) ( )  then lim ( )

t t
z t z M N p x M N− −

→∞ →+∞
= +∞ = − ≤ −

        
(8)

 
 

III. DETERMINATION OF ATTRACTORS USING  THE 

METHOD OF DIAGONALIZATION 

This section presents the determination of an attractor by 

diagonalization of the characteristic matrix around an 

operating point, for this step we must firstly determine the 

linearized model of the initial system defined around the 

operating point, secondly the change of basis for which the 

linearized model is diagonal at the operating point and is 

diagonal dominant in its neighborhood. 

For this study, we must first find the linearized system (2) of 

(1) defined around the operating point 0x .
  

 

0 0( , ) ( , )x A x t x B x t= +ɺ
                          

(9) 

If,  matrix 0( , )A x t , is  constant and diagonalizable  it exists 

an invertible matrix P such that 

Px y=
                                      

(10) 

which diagonalize the matrix  
1

0 0 0( , ), D( , ) ( , )A x t x t P A x t P
−=  

then have 
 

1
D( , )=P ( , )Px t A x t

−
                        

(11) 

where 0D( , )x t is a diagonal matrix. We obtain the new 

description of the system: 

 
1 1P ( , )P ( ) P ( , )y A x t y t B x t− −= +ɺ

              
(12) 

and we can apply  the previous attractor determination 

approach. 

 

 

A. Illustration of the method on a third order nonlinear 

complex system 

 

To illustrate the proposed approach for attractors 

determination, let us consider the system (S) defined by (2), 

with 

11 12 13

21 22 23

31 32 33

( ( ), )

a a a

A x t t a a a

a a a

 
 =  
                             

(13) 

2 2
1 2

11 1 2

12 1 3 1

13 1 3 1

1 2
21 3 12 2

1 2

22 3 1

3

4sat cos 2cos 8.5

0.08cos 0.16sin 0.04sat cos 0.08

0.08cos 0.16sin 0.24sat cos 0.08

0.1cos 0.15 sin 0.1

0.2 0.18 1.2sin 0.8sin cos

1.2cos

x x

a x t x

a x x x t

a x x x t

x x
a x x

x x

a e e x x t

x e

− −

−

= − −

= − + −

= − + −

= − −

= − + −

+
2
2

2 2
1 2

2
2

2 2
1 2

2
2

2 2
1 2

23 3 1

3

1 2
31 3 12 2

1 2

32 3 1

3

33

4.62

1.2 1.08 1.2sin 4.8sin cos

1.2cos 2.28

0.1cos 0.025 sin 0.1

0.2 0.03 0.2sin 0.8sin cos

0.2cos 0.23

1.2 0.18 0.2

x

x x

x

x x

x

x x

a e e x x t

x e

x x
a x x

x x

a e e x x t

x e

a e e

− −

−

− −

−

− −

−

= − + −

+ +

= − − +

= − + − +

− −

= − + −
2
2

3 1

3

sin 4.8sin cos

0.2cos 6.38x

x x t

x e−

+

− −  

and 

1

0.5sin

( ( )) 0.4cos

1
(3sat 1.8)

6

t

B x t t

x

 
 
 

=  
 
 +
                         

(14) 

with sat , if 1, and else sat signi i i i ix x x x x= < =
 

 

Let us consider the operating point 0 0x = , so the matrix A(0) 

of (13) defined  by 
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10.5 0 0

(0) 3.4 ;

0 0

0.5sin

0 3.6 (0) 0.4c

.6 7.6

os

0.3

t

B tA

− 
 =



− 
 


 = 

− −  



       

(15) 

 

can be diagonalized with the matrix of change of base P. 

 

2 0 0

0 3 1

0 0.

P

5 1

 

 
 − − 
  

=                                     (16) 

 

So it comes the matrix D(x(t)) defined in (11) 

( )( )

2 2
2 2

2
1

2
3

1 1
1

1 2
1 32 2

1 2
3

1

3

D

2cos
0.2sin

sat cos 0.1sat cos
0.1(cos 1)

8.5

5

0.1 sin cos 0.3( 1)

sin

6 sat cos
0.2(1 co )

t

s

4

4
0

x x

x

x
x

x t x t
x

x x
x e x e

x x
x

x t
x

x

e

− −

−

 
 

− − −

− 
 

+ − 
 + 
 

− + 
−  

 

=

 − 
  +  
    

 
 









−













 

(17) 

and 

1
1

1

1
sin

4

1 4 3
P cos

5 25 25

3 2 9
cos

2 25

( ( )) sat

s t
25

a

t

x t

x t

B x t
−

 
 
 
 = − − − 
 
 + +
                  

(18) 

 

and we have the description    

1 1P ( ( ))P ( ) P ( ( ))y A x t y t B x t− −= +ɺ
                   

(19) 

The use of the vector norm p(y) defined by

1 2 3( ) , ,
T

p y y y y =    enables by overvaluation, to define 

the comparison system defined on (2) 

( )( )
11 12 13

21 22 23

31 32 33

(D t )d

d d d

x d d d

d d

M M

d

 
 

= 

 

= 



                

(20) 

and 

1
1

1

1
sin

4

1 4 3
P cos

5 25 2
( ( ( ))) sat

sa

5

3 2 9
cos

5 2
t

5 25

dN N B x

t

x tt

x t

−

 
 
 
 

− − − 
 
 
 + +
 

= =


           

(21) 

In this case, the comparison system from (2) is 

described by 

2.5 0.4 0.1 0.25

0.05 3 0.3

0.

0.48

1.4 0 042

z z

   
   = +

−

−

−
  

     

ɺ

                    

(22) 

The following conditions: 

3

( 2.5) 0

2.5 3 0.05 0.4 0

( 1) det 0dM

− −


× − ×


−

≻

≻

≻

 

imply that dM  is the opposite of a M-matrix 

 

It comes from (7) and (8)  

 

1

2

3

0.1569

0.2178

0.5514

x

xz

x

∞

  
  = ≥   
                                      

(23) 

as 

1

1
2

3

0.5 0 0

P ( ) 0 0.4 0.4

0 0.2 1.2

x

y x t x

x

−

  
  = = − −   
     

                           (26) 

 

 

1

2 3

2 3

0.5

lim ( ) lim ( 0.4 0.4 )

0.2 1

0.1569

0.2178

0.5514.2
t t

x

p y p x x

x x
→+∞ →+∞

 
 = − − ≤ 
 

 
 

 + 




        

(27) 

1

2 3

2 3

0.3124

0.5445

6 2.7570

x

x x

x x

− −

+


⇔ 



≺

≺

≺
           

 

1

1 2 3

2 3

0.3124 ,

 0.5445

6 2.757

,

,D x x

x x

x x

 
  

=  
 
 

− −

+

≺

≺

≺
                       

(28) 

In this domain 1D , we repeat the overvaluation approach to 

determine a new attractor taking into account the condition (28) 

The domain 1D is defined such that 

0.3124

0.5445

2.757

y

 
 ≤  
    

and 1 1sat 0.3124x x= ≤  

then in D1 we can write 
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( )( )

2
2 2

2

'

2
3

1 2
12 2

1 2 3

3

3

D t

2cos
0.2sin

1.2496cos 0.0312cos
0.0048

8.5

0.1 sin
5 cos

0.3( 1)
0.3124 sin

5

0.2(1 cos )
6.907

03
1.2496cos

5

x
x

x

x
x

t t

x x
x

x x e x
e

x

x

t

−
−

=

 − 
  

+    −   − 
 
   − +    −

   + − 
 

− 
  
   ++   

 








 
 
 
 
 
 
 
 
 



(29) 

and 

( )1 '

1
sin

4

4 3
( ) cos

25 25

2 9
cos

25 25

t

P B x t t

t

−

 
 
 
 = − − 
 
 +
                                

(30) 

 

In this case, the comparison system from (2) is 

described by 

5.2504 0.2048 0.0312 0.25

0.1125 3 0.3 0.28

1 0 5.6574 0.44

z z

−   
   = − +   
   −   

ɺ

         

(31) 

Md is the opposite of an M-matrix, then 

1
0 0( ) ( ) ; then lim ( ) d d

t
z t p x p z z M N−

∞
→+∞

≥ ≤ = −  

1

2

3

0.0523

0.1064

0.0870

x

xz

x

∞

  
  = ≥   
                                  

(32) 

or 

1

1

1
2

3

lim ( ) lim ( ( ))

0.5 0 0

lim ( 0 0.4 0.4 )

0 0.2 1.2

t t

d d
t

p y P x t

x

p x M N

x

−

→+∞ →+∞

−

→+∞

=

  
  = − − ≤ −  
       

1

2 3

2 3

0.5

lim ( ) lim ( 0.4 0.4 )

0.2 1

0.0523

0.1064

0.0870.2
t t

x

p y p x x

x x
→+∞ →+∞

 
 = − − ≤ 
 

 
 

 + 




    

(33) 

22

1

3

2 3

0.1046

0.2: 66

6 0.435

x

x x

x x

D

≤

− −




≤

+



≤




                         

(34) 

2D is the attractor, with 

1 2 3

2

2 3

 0.1046 , 0.266
 

6 0.435

, ,x x
D

x x

x x ≤ 
=  

 

− −

+ ≤ 

≤

          
(36) 

Attractors and state space variables evolutions of the system in 

the domain 2D is given in Fig. 1.  

 
 

Fig. 1.  Attraction zones and state space variables evolutions of the 

systems in the domain 1 2andD D   

 

IV. DECOUPLING LINEARIZATION-BASIC IDEA 

 

This section deals with an approach to the study of the error 

estimation in the decoupling of ill-defined and/or perturbed 

nonlinear processes.
 

 

Let us consider a smooth nonlinear control affine system 

whose evolution is described by the equations: 

 

( ) ( )

( )

x f x G x u

y h x

= +

=

ɺ
                             (37) 

where nx ∈ℝ  is the state vector, my ∈ℝ the output vector and 

mu ∈ℝ the control vector. 

The method consists of deriving each component iy of the 

output vector to display the control vector. 

With the notation 
( 1)* 1,  2, , ,id

i iy y i m
+= ∀ = ⋯ it comes [21]:  

 
* * *( ) ( )y f x G x u= +                            (38) 

If *
G is invertible in the domain of evolution of the state 

vector we can define the control law: 

 
1* *( )( ( ))u G x v f x

−

= −                       (39) 

which leads to the relations: 

 
( 1)

, 1,  2, , id
i iy v i m

+ = ∀ = ⋯                 (40) 

 

This representation is valid only if the instable variables of the 

initial system are observable. 

−0.4
−0.2

0
0.2

0.4
0.6

0.8
1

−1.5
−1

−0.5
0

0.5
1

1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x1
x2

x
3

D2

D1
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Fig. 2 Representation of the decoupled system 

 

 

A. Attractor determination to a Third order Nonlinear 

System in presence of disturbances and/or uncertainties 

 

Let us consider the system (1) submitted to the bounded errors 

fδ and Gδ such that G Gδ ≤ ∆ and .f fδ ≤ ∆
 

it comes 

( ) ( ( ) )

( ) ( )

x f x f G x G u

f x G x u f Gu

δ δ
δ δ

= + + +

= + + +

ɺ
                   (41)

 

 

Let us consider the nonlinear system 

 

           

2
1

1 1 2 3 1 2

2 2 3 1

2
3 1 2 3 3 3

2 cos (1 )

( ) : 3 sin 3

0.4 0.1sat

x
x x x x e u u

S x x x u

x x x x x x

− = − + + + +


= − + +


= − − −

ɺ

ɺ

ɺ
  

(42) 

 

sat v v if v 1, sat v sign v if v 1= ≤ = ≻
           

(43) 

 
with the outputs  

1 1

2 2

y x

y x

=


=
                                       (44) 

 

It comes the following notations: 
2
1

1 2 3

2 3

2
1 2 3 3 3

2 cos 1 1

( ) 3 sin ; ( ) 3 0

0 00.4 0.1sat

xx x x e

f x x x G x

x x x x x

−  − + +
  

= − + =   
  

− − −     

(45) 

and 

1

2

( )
x

h x
x

 
=  

 
                                (46) 

To verify if the system admits an input-output linearization, 

we must determine the relative degree. We obtain by 

derivation of the outputs: 
2
1

1 1 1 2 3 1 2

2 2 2 3 1

2 cos (1 )

3 sin 3

x
y x x x x e u u

y x x x u

− = = − + + + +


= = − + +

ɺ ɺ

ɺ ɺ
    

(47) 

 

as 0
x

T
ih G ≠ , we have 

2
11 2 3* *

2 3

2 cos 1 1
( ) ( ) ,

3 sin 3 0

xx x x e
h x f x G

x x

− − +  += = =   − +        

(48) 

*G  being invertible, we can impose the input u defined by 

(39) 

 

2
1

2 3 2

1

2
1 2 3 1 2 3 2

3 sin

3

1
2 cos (1 )(3 sin )

3

x

x x v

u

u
x x x v e x x v−

− + 
  
 = 
   − + − + − +  

  (49)

 
2
1

2
1

2 3 2
1 1 1 2 3

1 2 3 1 2 3 2

2 3 2
2 2 2 3

3 sin
2 cos (1 )( )

3

1
(2 cos (1 )(3 sin ))

3

3 sin
3 sin 3( )

3

x

x

x x v
y x x x x e

x x x v e x x v

x x v
y x x x

−

−

− +
= = − + + +




+ − + − + − +


− +
= = − + +



ɺ ɺ

ɺ ɺ

(50) 

it comes

 1 1

2 2

y v

y v

=


=

ɺ

ɺ
                                     

(51)

 
Let us choose 

1 1 1
1

2 2 2

2

1
( )

1
( )

c

c

v y y

v y y

τ

τ

= −

= −
                      

(52) 

For constant inputs 1,2
c
jy j∀ =

 
it comes: 

1 1
1 1

1 1 1

2 2
2 2

2 2 2

1

1

y x
v v

y x
v v

τ τ τ

τ τ τ

= − = − = −

= − = − = −

ɺ ɺ
ɺ

ɺ ɺ
ɺ

                       

(53) 

 

If we now take into account, the presence of uncertainties on  f  

and G, it comes  

 

1 1 1 11 1 12 2

2 2 2 21 2 22 2

2
3 3 1 2 3 3 30.4 0.1sat

x v f G u G u

x v f G u G u

x f x x x x x

δ δ

δ δ

δ

= + + +

= + + +

= + − − −

ɺ

ɺ

ɺ
         

(54) 

 

with:

0.01 0.01 0.01

0.03 0.01  and 0.02

0 0 0.02

G fδ δ
   
   ≤ ≤   
                           

(55) 

 

1
1 1 11 1 12 2

1

2
2 2 21 1 22 2

2

2
3 3 1 2 3 3 30.4 0.1sat

x
x f G u G u

x
x f G u G u

x f x x x x x

δ δ δ
τ

δ δ δ
τ

δ


= − + + +




= − + + +

 = + − − −


ɺ

ɺ

ɺ

      

(56) 

( )u x  ( )h x( ) ( )x f x G x u= +ɺ  
v u x y 
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for the vector norm 1 2 3( ) , ,
T

p x x x x =   , it comes the 

overvaluation: 

 

1 1
1 11 1 12 2

1

2 2
2 21 2 22 2

2

3 2
3 1 2 3 3 30.4 0.1 sat

d x x
Max f Max G u Max G u

dt

d x x
Max f Max G u Max G u

dt

d x
Max f x x x x x

dt

δ δ δ
τ

δ δ δ
τ

δ

≤ − + + +

≤ − + + +

≤ + − − −

(60) 

 

 

2
1

1 1 2 3 2
1

1

1 2 3 1 2 3 2

3 sin
0.01

3

1
0.01 2 cos (1 )(3 sin )

3

x

d x x x x v
Max f Max

dt

Max x x x v e x x v−

− + 
≤ − + +  

 

 
+ − + − + − + 

 

δ
τ

 

2
1

2 2 2 3 2
2

2

1 2 3 1 2 3 2

3 sin
0.03

3

1
0.01 2 cos (1 )(3 sin )

3

x

d x x x x v
Max f Max

dt

Max x x x v e x x v−

− + 
≤ − + +  

 

 
+ − + − + − + 

 

δ
τ

 

 

3 2
3 1 2 3 3 30.4 0.1 sat

d x
Max f x x x x x

dt
≤ + − − −δ

      
(61)

 
 

For 

1 21, 0.5τ τ= =
                            

(62) 

it comes 

 

( )

( )

( )

( )

2
1

2
1

1 2 3
1 1

1 2 3

2 3

2 2 3
2 2

1 2 3

2 3

3 2
3 1 2 3

sin
0.01

3

0.01 (2cos 1)

0.01
(1 )( sin )

3

sin
2 0.03

3

0.01 (2cos 1)

0.01
(1 )( sin )

3

0.4

x

x

d x x x
x Max f Max

dt

x x x

Max
e x x

d x x x
x Max f Max

dt

x x x

Max
e x x

d x
Max f x x x

dt

−

−

− 
≤ − + +  

 

− −
+

− + −

− 
≤ − + +  

 

− −
+

− + −

≤ + − −

δ

δ

δ 3
3 3

3

sat
0.1

x
x x

x
−

(63) 

 
Taking into account inequalities (55) we obtain: 

 

( )
2
1

2
1

1
1 2

3
2

3 3

1 0.01 2cos 1

0.01sin0.01 1
( (1 )) 0.01

3 3 3

0.01
0.01 (1 )(sin ) 0.01

3

x

x

d x
x x

dt

x
x e

x e x

−

−

≤ − + −

−
+ + + + +

− + + +

 

2
1

2
1

2
2

3
3 3

1 2

0.01
( 2 0.01 (1 )) 0.02

3

0.03sin 0.01
0.01 (1 )(sin )

3 3

(0.02cos 0.01) 0.02

x

x

d x
x e

dt

x
x e x

x x

−

−

≤ − + + + +

+ + + +

+ − +

                (64) 

 

3 2 3
1 2 3 3 3

3

sat
0.02 0.4 0.1

d x x
x x x x x

dt x
≤ + − − −  

 

it comes 

 

( )
( ) ( ) ( )

dp x
M x p x N x

dt
≤ +

                          
(65) 

with 

11 12 13

21 22 23

31 32 33

( )

m m m

M x m m m

m m m

 
 =  
  

 

 

2
1

2
1

11 2

12

13

21 2

22

23

31

32

2 3
33 2

3

1 0.01(2cos 1)

0.01 1
(1 )

3 3

0.01

0.02cos 0.01

0.01
2 0.01 (1 )

3

0.01

1

0

sat
0.4 0.1

x

x

m x

m e

m

m x

m e

m

m

m

x
m x

x

−

−

= − + −

= + +

= −

= −

= − + − +

= −

=

=

= − − −

            

(66) 

for the linear comparison system it comes 

 

0.99 0.67 0.01

0.03 1.993 0.01

1 0 0.4

M

− 
 = − 
 −                  

(67) 

 

The conditions for M to be the opposite of an M-matrix are: 
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( ) ( )

( ) ( ) ( )3 3

0.99 0

0.99 1.993 0.03 0.67 0

1 det( ) 0 1 -0.7348 0M

− <
− × − − × >


− ⇒ − × > ≺

    

(68) 

 

The overvaluation of N (x) 

 

2
1

2
1

3
3

3
3

0.01sin 0.01
0.01 (1 )(sin )

3 3

0.03sin 0.01
( ) 0.02 (1 )(sin )

3 3

0.02

x

x

x
e x

x
N x e x

−

−

 −
+ + + 

 
 

= − + + 
 
 
 
       

(69) 

gives:                              

0.02

0.0367

0.02

N

 
 =  
                                

 (70)                        

 

It comes out: 

 

( ) 3

0.0349

0.0196

0.137

lim

2
t

Dp z
→+∞

 
 ≤ = 
                                  

(71) 

 

The following figure shows the evolution of the error between 

the process with and without uncertainties  

 

 

 
Fig. 3. Attractor 3D and evolution of the state vector 

 

CONCLUSION 

The use of aggregation techniques and of comparison systems 

enables to estimate by overvaluation the maximum error 

induced by the use of a non-perturbed model for the 

determination of the control law of a nonlinear process in 

presence of uncertainties and/or of bounded perturbations. 

APPENDIX 

Appendix A. Vector Norms Definition 

 

Definition1 :  Let nE R= and k1 2E , E E…  be subspaces of the 

space 1 2 kE, E E E E∪= …∪ .
 

Let x be an n vector defined on E and i ix P x=  the projection 

of x on Ei , where iP is a projection operator from E into Ei, ip a 

scalar norm (i=1,2,…, k) defined on the subspace Ei and p
denotes a vector norm of dimension k and with its component  

( ) ( )i i ip x p x=  ,   ( ): n kp x R R
+

→
 

Let y be another vector in space E, with i iy yP= , we have the 

following properties  

 

 ( )
( )
( ) ( ) ( )
( ) ( )

i

i

0, E 1,2, ,k

0 0, 1,2, ,k

, , E 1,2, ,k

, 1,2, ,k,

i i i

i i i

i i i i i i i i i

i i i i i

p x x i

p x x i

p x y p x p y x y i

p x p x x i R











≥ ∀ ∈ ∀ = …

= ↔ = ∀ = …

+ ≤ + ∀ ∈ ∀ = …

= ∀ ∀ = … ∀ ∪λ λ λ
 

 

 

 

If k-1 of the subspaces Ei are insufficient to define the whole 

space E , the vector norm is surjective. If in addition the 

subspaces Ei are in disjoint pairs, E Ei j∩ = ∅ , 

1,2, ,ki j∀ ≠ = … , the vector norm p  is said to be regular. 

 

Appendix B. Overvaluing and comparison systems 

 

Let the differential equation ( , )x A x t x=ɺ . The overvaluing 

system is defined by the use of the vector norm ( )p x of the 

state vector x and the use of the right-band derivation

( ) i iD p x+ proposed by [22, 23] ( ) i iD p x+ is taken along the 

motion of x in the subspace Ei  and ( ) D p x+
along the motion 

of x in E. 

 

Definition 2: The matrix ( )M x,t defines an overvaluing 

system of S with respect to the vector norm p if and only if the 

following inequality is verified for each corresponding 

component: ( ) ( )D p(x ) M x,t  p x+ ≤  

If for the same system we can define a constant overvaluing 

matrix M, we have ( , )M M x t≥  and with z M z=ɺ  we have 

( ) ( ( ))z t p x t≥  for 0t t≥  as soon as this property is satisfied at 

the origin 0t  

When an overvaluing matrix ( , )M x t  of a matrix ( , )A x t is 

defined with respect to a regular vector norm p we have the 

following properties: 

- The off- diagonal elements of matrix ( , )M x t  are non 

negative. 

- If we denote by Re( )Mλ  the real part of the 

eigenvalue of the maximum real part of ( , )M x t  the following 

inequality is verified 

Re( ) Re( ) , n
A M M t xλ λ λ τ≤ = ∀ ∈ ×ℝ ,  

whatever the eigenvalue  Aλ  of matrix ( , )A x t  

- When all the real parts of the eigenvalues of M (x,t) 

are negative this matrix is the opposite of an M-matrix and it 

admits an inverse whose elements are all non positive. 

−0.2
0

0.2
0.4

0.6
0.8

1
1.2

−0.1
0

0.1
0.2

0.3
0.4

0.5
0.6

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x3
x2

x
1

D3
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- When due to perturbations and/or uncertainties it is 

not possible to define an homogeneous overvaluing system we 

can define a non homogeneous overvaluing system of the form 

( ) ( ) ( )D p(x ) M x,t  p x N x,t+ ≤ + , where all the elements of 

vector norm nonnegative and when M and N are constant,  we 

can define the comparison system z Mz N= +ɺ  

 

Remark 1. With { }(.) (.)ijM m= the verification of the 

Kotelyanski lemma by the matrix (.)M  prove that (.)M  is 

the opposite of an M-matrix 

 

 
1,1 1,2 1,

1,1 1,2 2,1 2,2 2,

1,1
2,1 2,2

,1 ,2 ,

0, 0, , ( 1) 0

k

kk

k k k k

m m m

m m m m m
m

m m

m m m

−

⋯

⋯
≺ ≻ … ≻

⋮ ⋮ ⋯ ⋮

⋯

 
 

 

 

Remark 2. A less conservative approach consists to use a 

vector norm of size k=n, for example 

1 2( ) , , ,
T

np x x x x =  …
 

 
Remark 3. If (.)M  is an overvaluing matrix of a matrix (.)A , 

*(.)M M+  where the elements of 
*M  are all non negative is 

also an overvaluing matrix of (.)A . This property can be used 

to simplify the determination of an overvaluing matrix of (.)A  

when some elements of (.)A  are ill defined or subject to 

uncertainties.  
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