
  
Abstract—An ordinary differential equation describing a curve for 
which the tangential and normal acceleration components of the 
object remains constant is derived.  The equation and initial 
conditions are expressed in dimensionless form. In its dimensionless 
form, the curves are effected only by a parameter which represents 
the ratio of the tangential acceleration to the normal acceleration. For 
constant velocity case, the equation can be solved analytically 
yielding a circular arc solution as expected. For nonzero tangential 
acceleration, closed form solutions are not available. Using a series 
solution, the curve is approximated by polynomials of arbitrary order. 
The general recursion relation for the polynomial coefficients are 
given. Two different perturbation solutions are also presented. In the 
first perturbation approach, the curve parameter is selected as the 
perturbation parameter. In the second approach, the depending 
variable is assumed to be small by introducing an alternative 
perturbation parameter. It is found that the second perturbation 
solution yields identical results with the series solutions. The 
approximate solutions and the numerical solutions are contrasted and 
within the range of validity, the curves can be successfully 
approximated by the analytical solutions. Potential application areas 
can be the design of highway curves, highway exits, railroads, route 
selection for ships and aircrafts. A practical application to highway 
exits is considered as an example.   
 
Keywords— Curve Design, Highways, Kinematics, Numerical 
Solution, Perturbation Solution, Series Solution, Vehicle Routes 

 

I. INTRODUCTION 
During transportation, aerial, marine and land vehicles 

cannot travel always in straight routes. Tracking a curved path 
is inevitable at least for some portion of the travel. To seek for 
an ideal curve path becomes then a technological problem.  
Especially at high speeds, smooth transitions in curvatures are 
needed when entering curved routes. Abrupt changes in the 
curvatures affect safety and comfort of the travel negatively.  

Usually entering to the curves, the velocity should be 
reduced and the straight path velocity can no longer be 
maintained. For a constant tangential deceleration, the goal in 
this study is to seek a specific curve for which the normal 
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acceleration component throughout the curve remains 
constant.   

In curved parts of roads, a special function named clothoid 
is used [1-3]. The clothoid has the property that its curvature 
varies linearly with its arc length. Since they are transcendental 
functions, they have been approximated by polynomials, 
power series, continued fractions and rational functions [2]. 
Clothoids are especially useful in transportation engineering, 
since they can be navigated at constant speed by linear steering 
and a constant rate of angular acceleration [3]. The parametric 
representations of clothoids are also used in optics [4]. The 
aesthetic aspect of logarithmic spiral, clothoid and involute 
curves were studied [5]. Curve generation algorithms were 
discussed in [6]. The curves derived in this study are not 
clothoids, since the basic assumption is not a constant velocity 
with a constant angular acceleration, rather the assumption is a 
constant tangential and normal (centripetal) acceleration 
components with respect to the curve.  
 The equation determining the curve is derived using basic 
principles of kinematics. Equation and initial conditions are 
expressed in dimensionless form. The curves depend on a 
single parameter which is the ratio of the tangential 
acceleration to the normal acceleration. For vanishing of the 
parameter, the curve is a circular arc for which constant 
normal acceleration with constant velocity implies constant 
radius of curvature. For non-zero parameters, closed form 
solutions do not exist. The next best choice is to find 
approximate analytical solutions. A polynomial series solution 
is constructed to approximate the curve function. Furthermore, 
the curve parameter is selected as the perturbation parameter 
and a first order uniform perturbation solution is also 
presented. Finally, numerical solutions are calculated using a 
variable step size Runge-Kutta algorithm.  It is found that the 
numerical solutions can be replaced with the approximate 
solutions in a wide range of the interval.  

II. DERIVATION OF THE CURVE EQUATION 
Assume that the object enters a curve with initial radius of 

curvature ρ0 and velocity v0. The object has a constant 
deceleration a0 throughout the curve. s is the length coordinate 
along the curve with s=0 representing the entrance and 
cartesian coordinates are selected as shown in Figure 1.   
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Figure 1- Sketch of the curve 

If the normal (centripetal) acceleration [7] remains constant 
within the curve 
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where v(s) and ρ(s) represent velocity and radius of curvature 
at distance s from the entrance. For a constant tangential 
deceleration component a0, the reduced speed at location s is 
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From calculus, the length of a curve and the radius of 
curvature are given as [8] 
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where prime denotes differentiation with respect to x. Upon 
substitution of (2)-(4) into (1),  
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solving for the parenthesis, differentiating once to eliminate 
the integral, and rearranging yields 
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which is the differential equation determining a constant 
normal and tangential acceleration curve. For the specific 
coordinates chosen, the initial conditions are 
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The first condition is evident from the origin of coordinate 
location, the second condition requires a tangent slope at the 
entrance for smooth transition and the last condition is due to 
the initial curvature of the function. For universality of results, 
the system is represented in dimensionless form by defining 
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and substituting into (6) and (7) 
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For simplicity, the symbol star is not shown on the variables 
keeping in mind that the variables are all dimensionless. The 
above differential system defines a constant tangential and 
normal acceleration curve. The family of curves depend on 
only one parameter ε which is the ratio of the tangential 
acceleration to the normal acceleration. Rather than choosing 
separately the accelerations, radius of curvatures and 
velocities, it is sufficient to choose ε, the combination of all 
parameters in the analysis which reduces substantially the 
calculations and presentations in the form of figures. Note that 
the equation is highly nonlinear possessing quadratic and cubic 
nonlinearities.  
  

III. ANALYTICAL SOLUTIONS 
Analytical solutions of the model are presented in this 

section. The degenerate case of ε=0 can be solved in closed 
form functions. However, ε≠0 case cannot be solved in closed 
form functions and approximations are inevitable. A series 
solution as well as two different perturbation type solutions are 
presented in this section.  

For the degenerate case, the equation is  
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A straightforward calculation by employing reduction of order 
and successive integrations yield 
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which represents a circular arc since ε=0 corresponds to no 
tangential acceleration and the normal component of the 
acceleration remains constant only in a circular path if the 
speed is constant.   
 
Series Solution  

Assume a power series solution for the problem with 
nonzero ε,  
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Inserting into (9), performing the necessary algebra, the 
recursive relationship between the coefficients is 
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The leading coefficients are 
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With the aid of (16), calculations can be carried to any 
arbitrary order using a symbolic computation program. The 
higher order coefficients are not given here for brevity. Initial 
conditions (13) require 
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Substituting (22) into (17)-(21) yields 
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Hence the polynomial approximation is 
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For vanishing curve parameter, the Taylor expansion of the 
circular solution (14) is obtained. The original circular 
solution is an even power polynomial and deformations from 
this solution with the curve parameter introduces the odd 
powers also.  
 
Perturbation Solution 1 

If the curve parameter is our perturbation parameter, an 
approximate solution   
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can be constructed. Substituting the expansion into (9) and 
(10), separating at different orders yields  
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The first order solution is the circular arc solution presented 
before 
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Substituting this solution to the next order 
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and solving yields 
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The approximate solution is 
 

)(
1

)(cosh2

1

211)( 2

2

1

2

2 επε O
x

x

x

xxxy +










−
+

−

−
−−−=

−

 (31) 

 
Since the function is not defined near x=1, the singularity at 
this point is unimportant. 
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Perturbation Solution 2 

An alternative perturbation solution can be 
constructed by assuming the dependent variable to be small. If 
α is the perturbation parameter, the smallness of the dependent 
variable is represented by the transformation 
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and the equation in terms of this transformation becomes 
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The expansion in terms of the perturbation parameter is  
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Substituting and separation at different orders yields 
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The equations can be solved consecutively 
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Substituting into (35) and back transforming to the original 
variable y(x) 
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which is the same solution with the series solution up to the 
approximation considered. The first perturbation solution 
which assumes the curve parameter to be small is of functional 
type and the solution presented here is of polynomial type. 
Since this second perturbation solution is similar to the series 
solution, it will not be considered further in numerical 
comparisons.  

IV. COMPARISONS WITH THE NUMERICAL 
SOLUTIONS 

The series solution and the first perturbation solution is 
compared with the numerical solution. Equation (9) and (10) is 
cast into a suitable form first by defining 
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the system is reduced to a system with three equations of first 
order. The above system is solved by employing a variable 
step size Runge-Kutta algorithm. Figure 2 shows that as the 
number of terms in the series solution increases, convergence 
to the numerical solution is achieved. Note that the figure is 
drawn for a fairly large curve parameter of ε=1. Since the 
curve parameter is the ratio of tangential acceleration to the 
normal one, ε=1 corresponds to equal acceleration 
components.  

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x

y

5
terms

7
terms

11
terms

9
terms

numerical

 
Figure 2- Convergence of series solutions to numerical 

solution (ε=1) 
 

For ε=0.2, the 7 and 11-term series solution and the 
perturbation solution is contrasted with the numerical solution 
in Figure 3.   The one correction term perturbation solution 
(i.e. equation 31) performs slightly better than the 7-term 
series solution.   
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Figure 3- Comparisons of the series, perturbation and 

numerical solutions (ε=0.2) 
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Finally an intermediate value of ε=0.6 is considered in Figure 
4. Five-term series solution performs slightly better than the 
perturbation solution. In conclusion, perturbation solution can 
replace the numerical solution for small curve parameter 
values. For larger parameter values, the series solution with 
sufficient number of terms better approximates the numerical 
solutions.  
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Figure 4- Comparisons of the series, perturbation and 

numerical solutions (ε=0.6) 
 
In practical calculations, back substitution to dimensional 

quantities should be done as a final step.  
 The error analysis is also done for the three curve 
parameters considered. In Figure 5, the residual error 
corresponding to ε=1 is presented. As the number of terms 
increase, the residual error decrease in most of the domain. 
However, in a narrow region at the right, a reverse behavior is 
observed and as the number of terms increase, the residual 
error increases. For larger x values, the higher order 
polynomial terms added is the reason of this residual error. As 
can be seen from Figure 2, the absolute error is still smaller for 
higher term polynomials in this region also.  
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Figure 5- The residual error of polynomial solution (ε=1) 

 
For a smaller value of the curve parameter (i.e. ε=0.2), the 
residual errors of 7 and 11-term solutions are contrasted. A 

similar behavior is observed. Adding terms reduces the 
residual errors in most of the domain except in a narrow region 
of higher x values.  
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Figure 6- The residual error of polynomial solution (ε=0.2) 

 
Finally, residual error analysis for ε=0.6 is presented in Figure 
7. The qualitative behavior is the same with the previous 
figures.  
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 Figure 7- The residual error of polynomial solution (ε=0.6) 

 
 In conclusion, to decrease the absolute and residual errors, 
the series solution should be truncated and not recommended 
for usage for high x values.  
 

V. APPLICATION TO HIGHWAY EXITS 
One of the potential application areas might be the design of 

curves of highway exits and entrances. In Figure 8, a sketch of 
a typical highway exit and entrance to another highway 
perpendicular to the previous one is given.  
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Figure 8-Sketch of a highway exit and entrance 
 
The vehicle cannot maintain its initial velocity of v0 after 
entering the exit. So, to the middle of the route, there will be a 
constant deceleration phase and after the middle point there 
will be an equivalent acceleration phase.  
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Figure 9-The curve design of the exit and entrance 

 
In Figure 9, the curve is designed with dimensionless 

quantities for the curve parameter selected as ε=0.44. The exit 
diverges from the first highway at point (0,0) and connects the 
other highway at point (0.7,-0.7). To compare with the circular 
path having tangency to the both highways, the curve 
corresponding to ε=0 is also drawn. The circular path starts 
from (-0.3,0) and ends at  (0.7,-1). It can be seen that, the new 
curve proposed occupies a smaller area compared to the 
circular path. The circular path is not realistic because the 
vehicles do not travel at speed limits of the highway and a 
reduction of speed is inevitable.  

For an efficient usage of the curves, the recommended 
reduced speeds should be indicated on the traffic signs at 
sufficient number of locations. Nevertheless, for most of the 
time, the drivers intuitively adjust their speeds for the curves 

and the proposed curves will help better during steering than 
the alternatives.   

Although, for land vehicles, the routes are predetermined 
and the vehicles have no choice but to follow the given paths, 
it is not the case for marine and aerial vehicles. Within the 
given loose constraints, they can choose a path from many 
alternatives. Especially, when there is a need to follow a 
curved path, the proposed curves might be a good alternative 
among the others.  

VI.CONCLUDING REMARKS 
A new family of curves which can be used in 

highways, routes of marine and aerial vehicles is derived. 
Throughout the curve, the tangential and normal accelerations 
remain constant, providing a comfortable transport within the 
vehicle. Although the curves are derived under the assumption 
of tangential deceleration, if they are tracked from the reverse, 
the curves will represent motion with tangential acceleration. 
An application might be the highway exits and entrances to 
other highways, where the vehicle should reduce its speed in 
entering the exit and then has to accelerate to adjust its speed 
to the next highway.  

Usually, only a portion of the curve is used in the 
applications. For such analysis, rather than using the 
numerically calculated curves, the polynomial approximations 
or the perturbation solutions can be used within the given 
validity ranges.  

Similar to clothoids which find vast application areas from 
transportation to optics and manufacturing engineering, the 
proposed curves outlined may find other application areas as 
well in the future.     
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