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Abstract—We consider a general problem of optimal allo-
cation of a homogeneous resource (bandwidth) in a wireless
communication network, which is decomposed into several zones
(clusters). The network manager must satisfy different users
requirements. However, they may vary essentially from time
to time. This makes the fixed allocation rules inefficient and
requires certain adjustment procedure for each selected time
period. Besides, sometimes users requirements may exceed the
local network capacity in some zones, hence the network manager
can buy additional volumes of this resource. This approach leads
to a constrained convex optimization problem. We discuss several
ways to find a solution of this problem, which exploit its special
features. We suggest the dual Lagrangian method to be applied to
selected constraints. This in particular enables us to replace the
initial problem with one-dimensional dual one. We consider the
case of the affine cost (utility) functions, when each calculation of
the value of the dual function requires solution of a special linear
programming problem. We can also utilize the zonal resource
decomposition approach, which leads to a sequence of one-
dimensional optimization problems. The results of the numerical
experiments confirm the preferences of the first method.

Keywords—Resource allocation, wireless networks, band-
width, zonal network partition, dual Lagrange method, linear
search, zonal resource decomposition, linear programming.

I. I NTRODUCTION

THE current development of telecommunication sys-
tems creates a number of new challenges of efficient

management mechanisms involving various aspects. One
of them is the efficient allocation of limited communi-
cation networks resources. In fact, despite the existence
of powerful processing and transmission devices, increas-
ing demand of different communication services and its
variability in time, place, and quality, leads to serious
congestion effects and inefficient utilization of significant
network resources (e.g., bandwidth and batteries capacity),
especially in wireless telecommunication networks. This
situation forces one to replace the fixed allocation rules
with more flexible mechanisms; see e.g. [1]–[4]. Naturally,
treatment of these very complicated systems is often based
on a proper decomposition/clustering approach, which can
involve zonal, time, frequency and other decomposition
procedures for nodes/units; see e.g. [5], [6], [7], [8], [9].
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In [10], [11], several optimal resource allocation problems
in telecommunication networks and proper decomposition
based methods were suggested. They assumed that the
network manager can satisfy all the varying users re-
quirements. However, zonal resource amounts may be not
sufficient in some time periods due to instable behavior of
many users, hence the network manager can buy additional
volumes of the resource. We note that such a strategy is
rather typical for contemporary wireless communication
networks, where WiFi or femtocell communication services
are utilized in addition to the usual network resources;
see e.g. [12]. This approach leads to a constrained convex
optimization problem for some selected time period. We
discuss several ways to find a solution of this problem,
which exploit its special features. We suggest the dual
Lagrangian method to be applied to selected constraints.
The utilization of the dual decomposition in this problem
was also considered in [13]. It was based on an explicit
volume resource allocation procedure with a a sequence of
one-dimensional optimization problems and gave a multi-
level iterative procedure.

In this paper, we discuss several possible approaches to
the zonal resource allocation problem and give some other
way to enhance the performance of the solution method. It
consists in utilization of the Lagrangian multipliers only for
the total resource bound, which yields an one-dimensional
dual optimization problem. We consider the case of the
affine cost (utility) functions, when each calculation of the
value of the dual function requires solution of a special
linear programming problem. The results of the numerical
experiments confirms the preferences of the new method
over the previous ones.

II. PROBLEM DESCRIPTION

Let us consider a network with nodes (attributed to
users), which is divided inton zones (clusters) within
some fixed time period. For thek-th zone (k= 1, . . . , n),
Ik denotes the index set of nodes (currently) located in
this zone, bk is the maximal fixed resource value. We
suppose that users can move but that all the assignments
of users to zones are fixed within this time period. The
network manager satisfies users resource requirements in
the k-th zone by allocation of the own (inner) resource
valuexk ∈ [0, bk] and also by taking the external resource
value zk ∈ [0, ck]. Clearly, these values require proper
maintenance expensesfk(xk) and side paymentshk(zk)
for eachk = 1, . . . , n. We suppose also that there exists the
upper boundB for the total amount of the inner resource
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of the network. Next, if thei-th user receives the resource
amountyi with the upper boundai, then he/she pays the
chargeϕi(yi). The problem of the network manager is to
find an optimal allocation of the resource among the zones
and can be written as follows:

max →

n
∑

k=1

[

∑

i∈Ik

ϕi(yi)− fk(xk)− hk(zk)

]

(1)

subject to
∑

i∈Ik

yi = xk + zk, k = 1, . . . , n; (2)

0 ≤ yi ≤ ai, i ∈ Ik, 0 ≤ xk ≤ bk, 0 ≤ zk ≤ ck,

k = 1, . . . , n; (3)
n
∑

k=1

xk ≤ B. (4)

In what follows we shall also utilize the assumptions that
all the functionsϕi(yi), fk(xk), andhk(zk) are affine, i.e.

ϕi(yi) = α′
iyi + α′′

i , α
′
i > 0, i ∈ Ik, k = 1, . . . , n,

fk(xk) = β′
kxk + β′′

k , β
′
k > 0, k = 1, . . . , n, (5)

hk(zk) = γ′kzk + γ′′k , γ
′
k > 0, k = 1, . . . , n.

However, the basic exposition of the problem will be given
for the general case where the functions−ϕi(yi), fk(xk),
andhk(zk) are convex.

III. SOLUTION METHODS

Although problem (1)–(4) seems rather simple, but its
dimensionality can be rather large, so that the streamlined
application of the well-known iterative methods, say, pro-
jection or Newton type ones (see e.g. [14]), may cause
significant computational expenses. This is the case even
for the affine functionsϕi(yi), fk(xk), and hk(zk), i.e.
when (1)–(4) is a linear programming problem. In fact, a
decomposition approach, which exploits particular features
of this problem (see e.g. [15], [16]), will be more suitable
here. However, the creation of an efficient decomposition
method is also not a trivial task. In fact, problem (1)–(4) has
n + 1 functional constraints and many box type ones. For
instance, utilization of the Lagrangian function with respect
to all the functional constraints leads to a non-smooth dual
convex optimization problem inn+1 dual variables, whose
solution may cause certain algorithmic difficulties. For this
reason, we first describe a hierarchical approach from [13],
which yields a sequence of one-dimensional problems.

For eachk, we denote byµk(uk) the optimal value of
the parametric zonal optimization problem:

max →
∑

i∈Ik

ϕi(yi) (6)

subject to
∑

i∈Ik

yi ≤ uk, 0 ≤ yi ≤ ai, i ∈ Ik; (7)

whereuk is the total amount of the resource for thek-th
zone, which should be chosen by the network manager. We

setµk(uk) = −∞ if the constraints in (7) are inconsistent.
Hence,µk(uk) gives the total profit from consumers of
zonek if the total resource value for this zone equalsuk.
This function is concave if allϕi are so.

Then the manager problem (1)–(4) can be equivalently
rewritten as follows:

max →
n
∑

k=1

[µk(uk)− fk(xk)− hk(zk)] (8)

subject to

xk + zk = uk, 0 ≤ xk ≤ bk, 0 ≤ zk ≤ ck, k = 1, . . . , n;(9)
n
∑

k=1

xk ≤ B. (10)

Let us take the Lagrange function with respect to constraint
(10):

M(x, u, z, λ) =

n
∑

k=1

[µk(uk)− fk(xk)− hk(zk)]

− λ

(

n
∑

k=1

xk −B

)

and set

V = V1 × . . .× Vn,

Vk = {(xk, zk, uk) | xk + zk = uk, 0 ≤ xk ≤ bk, 0 ≤ zk ≤ ck, }

for k = 1, . . . , n.

Then we can replace (8)–(10) with its one-dimensional
dual:

min
λ≥0

→ ψ(λ), (11)

where

ψ(λ) = max
(x,z,u)∈V

L(x, u, z, λ)

= λB + max
(x,z,u)∈V

n
∑

k=1

[µk(uk)− (fk(xk) + λxk)− hk(zk)]

= λB +
n
∑

k=1

max
(xk,zk,uk)∈Vk

[µk(uk)− (fk(xk) + λxk)− hk(zk)].

Let us take thek-th inner problem above:

max
(xk,zk,uk)∈Vk

→ [µk(uk)− (fk(xk) + λxk)− hk(zk)],

for each k = 1, . . . , n. We can again apply the dual
approach. First we write the particular Lagrange function
with respect to the constraintuk = xk + zk:

Mk(uk, xk, zk, ηk)

= µk(uk)− (fk(xk) + λxk)− hk(zk) + ηk(uk − xk − zk)

= (µk(uk) + ηkuk)− (fk(xk) + xk(λ+ ηk))

−(hk(zk) + ηkzk)

and then define the dual problem

min
ηk∈R

→ τk(ηk), (12)
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Fig. 1. The ordering method for thek-th zonal problem,lk = 4. Solution:
yi1 = ai1 , yi2 = ai2 , yi3 = uk − ai1 − ai2 , yi4 = 0.

where

τk(ηk) = max
0≤xk≤bk,

0≤zk≤ck,uk∈R

Mk(uk, xk, zk, ηk)

= max
uk∈R

[µk(uk) + ηkuk]− min
0≤xk≤bk

[fk(xk) + xk(λ+ ηk)]

− min
0≤zk≤ck

[hk(zk) + ηkzk].

Thus, the initial problem (1)–(4) (or (8)–(10)) is replaced
by its one-dimensional dual (11) with the cost function
ψ(λ), such that calculation of its value reduces to solution
of n one-dimensional problems of form (12), whose calcu-
lation again reduces to solution of three one-dimensional
problems.

Moreover, each functionµk will be also given algorith-
mically, i.e. via solution of rather simple problem (6)–(7),
and we can apply gradient or dual type methods to find the
value ofµk(uk). As above, the dual method first requires
to introduce the the Lagrange function

M̃k(y, θk) =
∑

i∈Ik

ϕi(yi)− θk

[

∑

i∈Ik

yi − uk

]

,

and then to solve the one-dimensional dual:

min
θk≥0

→ ζk(y), (13)

where

ζk(y) = θkuk +
∑

i∈Ik

max
0≤yi≤ai

[ϕi(yi)− θkyi].

However, in the affine case (6)–(7) is a linear program-
ming problem and its solution can be found by the simple
ordering algorithm. Let|Ik| = lk, i.e. let the index set
Ik containlk elements. Rearrange the indices ofIk into a
sequence{i1, . . . , ilk} such thatα′

is
≥ α′

is+1
, this requires

O(ln(lk)) operations. Then we should assign sequentially
the maximal feasible value for each resource amount

yis = min{ais , uk −
∑

p<s

yip}, s = 1, . . . , lk;

which yields the desired solution; see Figure 1. Note
that the rearrangement of index sets of each zone should
be made only one time before the starting the iteration

process. This clearly gives an alternative to the previous
dual method.

Therefore, we should in fact use only algorithms for
a set of hierarchical one-dimensional problems. At the
same time, this requires additional concordance rules for
accuracies of all these problems, which can not be solved
exactly. Indeed, each marginal functionµk(uk) is non-
linear and non-smooth.

IV. A TWO-LEVEL DUAL SOLUTION METHOD

We now present some other way to enhance the perfor-
mance of the previous dual method. It consists in utilization
of the Lagrangian multipliers only for the total resource
bound, which yields a two-level iterative procedure with a
single-dimensional dual optimization problem.

For the sake of clarity, we re-write problem (1)–(4) as
follows:

max
(x,y,z)∈W,

n∑

k=1

xk≤B

→ µ(x, y, z) (14)

where

µ(x, y, z) =

n
∑

k=1

[

∑

i∈Ik

ϕi(yi)− fk(xk)− hk(zk)

]

, (15)

and

W =

{

(x, y, z)

∑

i∈Ik
yi = xk + zk, 0 ≤ yi ≤ ai, i ∈ Ik,

0 ≤ xk ≤ bk, 0 ≤ zk ≤ ck, k = 1, . . . , n

}

.

(16)
Let us define the Lagrange function of problem (14)–(16)

with respect to the total resource constraint:

L(x, u, z, λ) = µ(x, y, z)− λ

(

n
∑

k=1

xk −B

)

,

whereλ is the corresponding Lagrange multiplier. We can
now replace problem (14)–(16) with its one-dimensional
dual:

min
λ≥0

→ ψ(λ), (17)

where

ψ(λ) = max
(x,y,z) ∈ W

L(x, y, z, λ) = λB

+ max
(x,y,z) ∈ W

n
∑

k=1

[

∑

i∈Ik

ϕi(yi)− (fk(xk) + λxk)− hk(zk)

]

Its solution can be found by one of well-known single-
dimensional optimization problem.

In order to calculate the value ofψ(λ) we have to solve
the inner problem:

max →

n
∑

k=1

[

∑

i∈Ik

ϕi(yi)− (fk(xk) + λxk)− hk(zk)

]

subject to
∑

i∈Ik

yi = xk + zk, 0 ≤ yi ≤ ai, i ∈ Ik,

0 ≤ xk ≤ bk, 0 ≤ zk ≤ ck, k = 1, . . . , n.
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Fig. 2. The ordering method for thek-th zonal problem, caselk = 4,
β′

k
+ λ < γ′

k
. Solution: xk = bk, zk = 0, yi1 = ai1 , yi2 = ai2 ,

yi3 = bk − ai1 − ai2 , yi4 = 0.

Obviously, this problem decomposes inton independent
zonal convex optimization problems

max →

[

∑

i∈Ik

ϕi(yi)− (fk(xk) + λxk)− hk(zk)

]

,(18)

∑

i∈Ik

yi = xk + zk, 0 ≤ yi ≤ ai, i ∈ Ik, (19)

0 ≤ xk ≤ bk, 0 ≤ zk ≤ ck, (20)

for k = 1, . . . , n. Note that in the affine case (5) the cost
function in (18) is rewritten as

∑

i∈Ik

α′
iyi − (β′

k + λ)xk − γ′kzk,

i.e. (18)–(20) is a linear programming problem. It follows
that we can find very easily an exact solution of each
of these problems in a finite number of iterations by a
simple ordering algorithm, similar to that applied to the
problem(6)–(7); see Figure 2.

Inserting these procedures into a suitable single-
dimensional optimization method for solving (17), we ob-
tain an efficient method for the initial problem (14)–(16)
as an alternative to the method of the previous section.

V. NUMERICAL EXPERIMENTS

In order to evaluate the performance of all the methods
we made several series of computational experiments for
the affine case (5). The methods of Section III with solving
of auxiliary problem (6)–(7) by the dual algorithm (see
(13)) and by the ordering algorithm are denoted by (DML)
and (DMLS), respectively. The method of Section IV is
denoted as (SDM).

We utilized the golden section method for solving the
single-dimensional optimization problems. The methods
were implemented in C++ with a PC with the following
facilities: Intel(R) Core(TM) i7-4500, CPU 1.80 GHz,
RAM 6 Gb.

The initial intervals for choosing the dual variableλ (and
the additional dual variables in (DML) and (DMLS)) were
taken as [0,1000]. The initial intervals for choosing the
zonal allocation sharesuk in (DML) were taken as[0, R]

ε Nε Tε (DML) Tε (DMLS) Tε (SDM)
10−1 20 3.3907 0.0447 0.0050
10−2 24 3.9427 0.0520 0.0038
10−3 29 4.9633 0.0613 0.0043
10−4 34 5.7347 0.0713 0.0057

TABLE I
RESULTS OF TESTING WITHJ = 510, n = 70, δ = 10−2

(DML) (DMLA) (DMLS) (DMLAS) (SDM)
J Nε Tε Tε Tε Tε Tε

210 24 1.7453 1.2240 0.0266 0.0187 0.0009
310 24 2.4480 1.7967 0.0337 0.0238 0.0025
410 24 3.1980 2.3910 0.0403 0.0303 0.0028
510 24 3.9427 2.9007 0.0520 0.0363 0.0038
610 24 4.6097 3.4167 0.0588 0.0431 0.0038
710 24 5.3070 3.9220 0.0659 0.0487 0.0040
810 24 6.0260 4.4427 0.0754 0.0540 0.0031
910 24 6.9170 4.9533 0.0910 0.0665 0.0047
1010 24 7.4843 5.4797 0.0988 0.0735 0.0047

TABLE II
RESULTS OF TESTING WITHn = 70, ε = 10−2 , δ = 10−2

with R = B+
∑n

k=1 ck, B was chosen to be 1000. Values
of bk and ck were chosen by trigonometric functions in
[1, 11], values ofai were chosen by trigonometric functions
in [1, 2], as well as the coefficients of all the functions
fk, hk, and ϕi in (5). The number of zones was varied
from 5 to 105, the number of users was varied from 210 to
1010. Users were distributed in zones either uniformly or
according to the normal distribution. The processor time
and number of iterations, which were necessary to find
an approximate solution of problem (6) within the same
accuracy, were not significantly different for these two cases
of distributions.

Further we report the results of tests, which include the
time and number of iterations needed to find a solution of
problem (6) within some accuracies. Letε and δ denote
the desired accuracy of finding a solution of problem (6)
and solutions of auxiliary inner problems in (DML) and
(DMLS). Let J denote the total number of users,Nε the
number of upper iterations inλ, Tε the total processor
time in seconds. For the same accuracy, both the methods
gave the same numbers of upper iterations, so that the
main difference was in the processor time. The results of
computations are given in Tables I–III. We inserted also
the results for (DML) and (DMLS) with adaptive strategy
of choosing the inner accuracies. We named by (DMLA)
and (DMLAS), respectively, this version of (DML) and
(DMLS). In Table I, we vary the accuracyε, in Tables II
and III we vary the total number of users and the number
of zones, respectively.

From the results we can conclude that (DMLS) has the
significant preference over (DML), and that the adaptive
versions enhance the performance of these methods. At
the same time, (SDM) has the significant preference over
(DMLS) and (DMLAS), i.e. it showed the best results for
all the test problems. This enables us to apply (SDM) for
online solution of these resource allocation problems.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 188



(DML) (DMLA) (DMLS) (DMLAS) (SDM)
n Nε Tε Tε Tε Tε Tε

15 24 3.6200 2.6877 0.0425 0.0302 0.0019
25 24 3.6927 2.7240 0.0460 0.0321 0.0016
35 24 3.7500 2.7917 0.0476 0.0337 0.0013
45 24 3.7970 2.7970 0.0488 0.0366 0.0034
55 24 3.8487 2.8383 0.0497 0.0388 0.0034
65 24 3.9480 2.8857 0.0519 0.0378 0.0044
75 24 3.9740 2.9167 0.0512 0.0384 0.0047
85 24 4.0210 2.9530 0.0506 0.0397 0.0038
95 24 4.1720 3.0260 0.0535 0.0416 0.0035
105 24 4.2187 3.0467 0.0564 0.0429 0.0053

TABLE III
RESULTS OF TESTING WITHJ = 510, ε = 10−2 , δ = 10−2

VI. CONCLUSIONS

In this work, we considered a problem of managing
limited resources in a zonal wireless communication net-
work and gave its constrained convex optimization problem
formulation. We proposed several dual based methods and
analyzed their performance. We suggested procedures for
solving subproblems in the case of the affine cost (utility)
functions, which are based on simple ordering rules. The
results of the numerical experiments confirmed the rapid
convergence of these methods.
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