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Abstract—This work discusses the identification of nonlinear
systems structured in blocks. Presently, the proposed method is
addressed to Wiener-Hammerstein models. Hammerstein and
Wiener models are nonlinear representations of systems composed
by connecting of a nonlinearity element f(.) and a linear subsystem
G(s) in the form f(.)-G(s) and G(s)-f(.) respectively. The
identification of nonlinearity blocks and linear subsystems is not a
trivial problem, and has attracted a lot of research interest. The
linear subsystems Gi(s) and Go(s) are allowed to be nonparametric
and of unknown structure. Presently, the system nonlinearity is
static and may be noninvertible. Moreover, this latter is of
unknown structure and is only supposed to be well approximated,
within any subinterval belonging to the working interval, with a
polynomial of unknown order and parameters. Then, using a
frequency identification method, a two-phase algorithm is
presented for identifying the linear subsystems Gi(s) and Go(s) (the
frequency complex gains) and the nonlinearity element f(.).

The procedure is illustrated with simulated and experimental
data. The proposed strategy involves simples input signals.

Key-Words—Block-oriented models, Nonlinear systems,
Wiener systems, Hammerstein systems, Frequency identification,
nonparametric systems.

I. INTRODUCTION

Wiener-Hammerstein systems consist of a series
connection including a nonlinear static element sandwiched
with two linear subsystems (Fig. 1). Clearly, this model
structure is a generalization of Hammerstein and Wiener
models and so it is expected to feature a superior modelling
capability. This has been confirmed by several practical
applications e.g. paralyzed skeletal muscle dynamics (Bai et
al., 2009). As a matter of fact, Wiener-Hammerstein (WH)
systems are more difficult to identify than the simpler
Hammerstein and Wiener models. The complexity of the
former lies in the fact that these systems involve two internal
signals not accessible to measurements, whereas the latter
only involve one. Then, it is not surprising that only a few
methods are available that deal with WH system
identification. The available methods have been developed
following three main approaches i.e. iterative nonlinear
optimization procedures (e.g. Marconato et al., 2012),
stochastic methods (Bershad et al., 2001; Pillonetto et al.,
2011); frequency methods (Giri et al., 2013; Brouri et al.,
2014). The proposed identification methods also differ by the
type of assumptions, made on both the system dynamics and
the input signals, and the nature of convergence analysis
results. Roughly, the iterative methods necessitate a large
amount of data, since computation time and memory usage
drastically increase, and have local convergence properties

* ENSAM, L2MC, Moulay Ismail University, Morocco.
Adil Brouri is with the ENSAM, L2MC, AEEE Department, Moulay

Ismail University, Meknes, Morocco (e-mail: a.brouri@ensam-umi.ac.ma &
brouri_adil@ yahoo.fr).

which necessitates that a fairly accurate parameter estimates
are available to initialize the search process. This prior
knowledge is not required in stochastic methods but these are
generally relied on specific assumption on the input signals
(e.g. gaussianity, persistent excitation....) and on system
model (e.g. MA linear subsystems, smooth nonlinearity). The
frequency methods are generally applied to nonparametric
systems under minimal assumptions and only require simple
periodic excitations. But, they sometime necessitate several
data generation experiments.

In this paper, the problem of identifying WH systems is
addressed, for simplicity, in the continuous-time. Unlike
many previous works, the model structure of the two linear
subsystems is entirely unknown. Furthermore, the static
nonlinearity is also of unknown structure and is not required
to be invertible. This is only supposed to be well
approximated, within any subinterval belonging to the
working interval, with a polynomial of unknown order and
parameters. The order p and the parameters of the polynomial
can vary from one subinterval to another. It turns out that the
complexity of the identification problem lies in: (i) the fact
that the internal signals iu and ou are not accessible to
measurement (Fig. 1); (ii) the nonparametric and nonlinear
nature of the system. Given the system nonparametric nature,
the identification problem is presently dealt with by
developing a two-stage frequency identification method,
involving periodic inputs. First, a set of points of the
nonlinearity is identified using simple experiments; the size
of this set is arbitrarily chosen by the user. Then, the
frequency responses of the two linear subsystems are
estimated for a number of frequencies; in turn, this number
can be made arbitrarily large. The frequency gain estimator
design relies on input/output Fourier series expansions.
Compared to previous works, all involved estimators are
presently shown to be consistent. Furthermore, the input
excitation signals are deterministic and no particular
assumption is made on the external noise except for
stationarity.

This paper is organized as follows: the identification
problem is formally described in Section 2; then, the
identification of the nonlinearity is coped with in Section 3;
the identification of the linear subsystems is dealt with in
Section 4. Simulation examples are provided in Section 5 to
illustrate the performances of the whole identification
method.

Figure 1. Wiener-Hammerstein System Model.
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II. IDENTIFICATION PROBLEM STATEMENT

We are interested in systems that can be described by the
Wiener-Hammerstein model of Fig. 1 where the different
blocs are analytically described as follows

 ξwy   

 ( )o ow G s u  

 ( )o iu f u  ( )i iu G s v  

where ( )iG s and ( )oG s are the transfer functions of the
linear subsystems, (.)f denotes the static nonlinearity, and
 is an external noise. As, the signals iu , ou , w and  are
not accessible to measurements, the identification procedure
of the nonlinear system must only relay on the external
signals v and y . The signal  is supposed to be a zero-
mean stationary sequence of independent random variables
and ergodic. The static nonlinear element (.)f has any shape
and, in particular, may be noninvertible. It is only assumed
that (.)f is smooth so that it can be accurately represented,
within any finite interval, with a polynomial of finite order.
Of course the polynomial order depends on the interval
length.

The transfer functions ( )iG s and ( )oG s are of unknown
structures. There are only supposed to be asymptotically
stable and with nonzero static gain (i.e. (0) 0iG  and

(0) 0oG  ). System stability is coherent with open-loop
system identification. Also, note that the nonzero static-gain
requirement is satisfied by most real life systems. In fact,
only derivative systems make an exception that can be coped
with using ad-hoc adaptations of the method developed in
this paper. The problem complexity also lies in the fact that
the (unavailable) internal signals ( iu , ou , w and  ) are not
uniquely defined from an input-output viewpoint. In effect, if
( ( ), ( ), ( ))i oG s f x G s is representative of the system then, any

model of the form 1 2 1 2( ( ) / , ( ), ( ) / )i oG s k k f k x G s k is also
representative whatever the real numbers 1 20, 0k k  .

Therefore, the fact that (0) 0iG  and (0) 0oG  implies that,
without reducing the problem generality, one can assume

(0) (0) 1i oG G  .

Remark 1. The present identification method is quite
different of previous frequency methods. In (Bershad et al.,
2001; Pillonetto et al., 2011) the identification methods
require a special design of the input signal. In (Paduart et al.,
2012) the identification method is based on the best linear
approximation technique using class of Gaussian signals.

III. IDENTIFICATION OF STATIC NONLINEARITY

In this section, we want to treat the problem of identifying
a set of points belonging to non-linearity. In Section 2 it was
shown that, if 1k and 2k are any nonzero real numbers, then

any model of the form 1 2 1 2( ( ) / , ( ), ( ) / )i oG s k k f k x G s k is

representative of the system. Accordingly, the system to be
identified is described by the transfer functions

 ( ) ( ) / (0)i i iG s G s G  ( ) ( ) / (0)o o oG s G s G  a

  ( ) (0) (0)o if x G f G x  b

Then, (0) (0) 1i oG G  . Under these conditions, if )(tv
is constant then the steady-state undisturbed output )(tw
depends only on the input value and the nonlinearity (.)f .
The number n of points is arbitrary. Let

1 2m n MV v V V v     be the selected abscissas. To
determine the points ( , ( ))j jV f V , letting

 ( ) jv t V  )0( t for nj 1  

As the linear subsystem ( )iG s is asymptotically stable,

therefore the internal signal ( )iu t is constant, and one has

( ) j
ii t

u t U

 , then in the steady-state

 (0)j
i i jU G V for nj 1 and rt NT  

where rT should be comparable to the system rise time i.e.
the time that is necessary for a system step response to reach

%90 of its final value. Then, as the system is asymptotically
stable, its step response settles down (i.e. gets very close to
final value) after a transient period of rNT seconds with

1N .

As the linear subsystem ( )oG s is asymptotically stable, it

follows that the steady-state of the internal signal ( )ou t is

constant i.e. ( ) j
oo t

u t U

 , and is written for rNTt 

 ( ) ( (0) )i j
j j

o iU f U f G V  for nj 1  

In which case, the undisturbed output )(tw is also

constant (in the steady-state) i.e. ( ) jW
t

w t

 . It readily

follows from (4b) and (7) that jW can be expressed as
follows

 (0) ( )j
j o o jW G U f V  for nj 1  

Finally, notice that the steady-state undisturbed output

jW )1( nj  can simply be estimated using the fact that

)()()( ttwty  and )(t is zero-mean. Specifically, jW

can be recovered by averaging )(ty on a sufficiently large
interval. Hence, a number of points of the nonlinear function

(.)f can thus be accurately estimated by repeating the above
experiment successively for 1V to nV .

These ideas are formalized in the two-stage identification
procedure of Table 1.
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TABLE I. NONLINEARITY IDENTIFICATION (NI)

1. Data acquisition
Apply the piecewise signal analytically defined as follows,

for all  ( 1) r rt j NT jNT  with nj 1

( ) jv t V (9)

Record the resulting output )(ty ,  0 rt nNT .

2. Nonlinearity points estimation

Compute the (undisturbed output) mean value on each

interval  ( 1) r rj NT jNT with nj 1

( 1)

1ˆ ( ) ( )
jNT

j NT

r

r
j

r
W N y t dt

NT 
  (10)

Then, the set of couples  ˆ, ( )j jV W N with nj 1 ,

are estimates of n points all belonging to the trajectory of

nonlinearity (.)f .

The set of couples  ˆ, ( )j jV W N , with nj 1 , is the

number of different positions occupied by the working point.
Note that each input value jV )1( nj  is kept on during

rN T seconds making possible for the output signal to settle

down within each interval of the form  ( 1) r rj NT jNT with
nj 1 . Practically, one can determine a suitable value of

N by observing any step response of the system.

Proposition 1. The points of coordinates  ˆ, ( )j jV W N , for

nj 1 , obtained from the data collected on the time

interval  0 rnNT , converge (in probability) to the trajectory

of nonlinearity (.)f as N .

Proof. From the asymptotic stability of linear subsystems
( )iG s and ( )oG s , after the step Data acquisition, it follows

from (5)-(8) that, in the steady-state, for each subinterval
 ( 1) r rj NT jNT with nj 1 , the working point

 )(),( twtv moves on the path of nonlinearity (.)f .
Accordingly, for all values of input jV )1( nj  the set of
points  , ( )jV w t , in the steady-state, occupy n positions on

the trajectory of nonlinearity (.)f . On the other hand, using
the fact that the noise  in (1) is zero-mean


( 1)

1ˆlim ( ) lim ( )
jNTr

j NTr
jN N

r
W N y t dt

NT  
   


( 1)

1lim ( )r

r

jNT

j NTN
r

w t dt
NT 

  for nj 1  

Specifically, one has for nj 1


( 1)

1ˆlim ( ) lim ( ) ( )r

r

jNT

j jj NTN N
r

W N y t dt f V
NT  

   

Finally we can conclude that

    ˆlim , ( ) , ( )j j j jN
V W N V f V


 for nj 1  

which proves the Proposition 1.

IV. LINEAR SUBSYSTEM IDENTIFICATION

In this section, an identification method is proposed to
obtain estimates of the complex gain corresponding to the
two linear subsystems ( )iG s and ( )oG s at the frequencies
k ( 0,1, )k   whatever 0 . From the NI procedure

(Table 1), one gets estimates of n different points on the path
of nonlinearity (.)f . Furthermore, the larger the parameter
N is, the better the estimation accuracy. For simplicity, we
presently suppose that the estimated points have been exactly
determined.

Recall that, the static nonlinearity (.)f can be accurately
represented, within any finite interval, with a polynomial of
finite order, where the polynomial order depends on the
interval length.Then, one has for all  m Mx v v


0

( )
p

l
l

l
f x c x


  with p    a

Then, it is readily seen, using (4b) and (14a), that (.)f can be
developed as follows


0

( )
p

l
l

l
f x c x


  b

with (0) (0)l
o il lc G G c ( 0 )l p  . All along this Section,

the identified system is submitted to a given sine input

 0( ) sin( )v t x V t   0  

where the amplitude 0V and x0 is any point in the working
interval, this latter may be chosen equal to zero. Let T be the
corresponding period )/2( T . As the linear subsystem

( )i sG is asymptotically stable with unit static gain, it follows

from (3)-(4a) that the internal signal ( )iu t turns out to be (in
steady state)

  0( ) ( ) sin ( )i i iu t x V G j t       

with  ( ) arg ( )i iG j   . Also, it is readily obtained using
(3), (14a-b) and (16)

   0
0

( ) ( ) sin ( )
p l

o l i i
l

u t c x V G j t   


    

The factor multiplying
lc in (17) is written as
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
  

  
0

0
0

( ) sin ( )

         ( ) sin ( )

l

i i

l l rl r
r i i

r

x V G j t

C x V G j t

   

   




 

 
 a

where the value of the binomial coefficient l
rC is given

explicitly by


!)!(

!
rrl

lC l
r 
  b

Indeed, it is readily obtained by combining (17)-(18b)

    0
0 0

( ) ( ) sin( ( ))
p l l r l rl r

o l r i i
l r

u t c C x V G j t   
 

 

    

Furthermore, the power formulas l2)(sin and 12)(sin l can
also be given respectively as

  



 



1

0

2
12

2
2

2 )(2cos)1(
2

)1(
2
1)(sin

l

r

l
r

r
l

l
l

ll
l rlCC  a

  


 



l

r

l
r

r
l

l
l rlC

0

1212 )212(sin)1(
4

)1()(sin   b

Finally, the internal signal )(tuo can be expressed as

    
0 0

( ) ( ) sin ( ( ))
p l

o l k i k i
l k

u t c A G j k t k    
 

    

where the amplitude kA particularly depends on ( )iG j .

The phase k depends on the term )(i . We note that, (21)
may have the following form

     
0

( ) ( ) sin ( ), ( )
p

o k i k i i
k

u t B G j k t G j     


  

The amplitude kB particularly depends on ( )iG j and

coefficients lc ( 0,..., )l p . The phase k depends on all
these parameters in addition to the phase )(i . As the linear

subsystem ( )o sG is asymptotically stable with (0) 1oG  , let

 ( ) arg ( )o oG j   . The final output of system is written

  
0

( ) ( ) sin ( ) ( )
p

k o k o
k

y t B G jk k t k t     


     

On the other hand, one can notice that the steady-state
undisturbed output )(tw is periodic of same period as the
input, it can be developed in Fourier series

 )sin()cos(
2

)(
1

0 tkbtkaatw k
k

k   




 

with

  T
k dttktw

T
a

0
)cos()(

2
   T

k dttktw
T

b
0

)sin()(
2

  

where ,...2,1,0k . As )()()( ttwty  , one immediately
gets from (24)

 )()sin()cos(
2

)(
1

0 ttkbtkaaty k
k

k   




 

Using the standard trigonometric formulas, the right side of
(26) simplifies to

 )()sin()(
1

0 ttkssty
k

kk   




 

with

 22
kkk bas  for 1, 2, ...k   a










 

k

k
k b

a1tan for 1, 2, ...k   b

 
T

dttw
T

as
0

0
0 )(1

2
 c

Knowing that

 0lim 


ks
k

 d

Remark 2. a) Considering the above assumptions,
practically, it is reasonable to limit the development in
Fourier series of y(t) to those frequencies for which the
Fourier series coefficients are significant. Furthermore, it

readily follows from (26)-(28d) that
2

1

0
2
k

k p

s

 

 as p .

Then, it is reasonable to consider as significant only the
coefficient list ks ( pk ,...,2,1,0 ).

b) The choice of the polynomial order p is as follows:

For any point x0 in the working interval and a given error 
( 1%,  2%,  ... ), let tP and pP denote, respectively, the total
power and the power of the first p components of the output
signal. Using the Parseval’s identity (e.g. Ljung, 1987)

 


 








dtty
T

ssbaaP
T

k

k

k

kk
t 0

2

1

2
2
0

1

222
0 )(1

224
 a

 


 


p

k

k
p

k

kk
p

ssbaaP
1

2
2
0

1

222
0

224
 b

Finally, for 1,2,...p  , we seek the minimum order p
satisfying the following condition

 tp PP 









100

100 
 

for some 0 100 %  that is chosen by the user. The
amplitude V of the input signal is reduced if necessary. 

If the condition (30) holds, then the right side of (27)
simplifies to

 )()sin()(
1

0 ttkssty
p

k
kk   



 

By using (23) and (31), we deduce the following relations
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  ( ) ( )k i o kB G j G jk s   for 1...k p  a

  ( ), ( ) ( )k i i o kG j k       

for 1...k p  b

Accordingly, equations (23) and (31) show how to obtain
the complex amplitudes ( )i jG  and ( )o jkG  using the two

couples  kkB , and  kks , ( 0,1, ..., )k p . This is
performed noticing that the right side of (23) is nothing other
than the Fourier series expansion of the output signal )(ty ,
up to noise )(t . Consequently, the procedure to estimate
the output )(ty is as follows: First, we assume that the
condition (30) holds, so the equation (31) is maintained.
Next, given that all deterministic terms on the right side of
(31) are periodic, with common period T , and )(t is a
zero-mean ergodic white noise, the effect of the latter can be
filtered considering the following trans-period averaging of
the output

 



M

i
f Tity

M
Mty

1
))1((1),(  Tt 0  

for some (large enough) integer M . Indeed, it is readily
obtained using (31) and (33)



0
1

1

0
1

lim ( , ) sin( )

1                      lim ( ( 1) )

                      sin( )

p

f k kM k
M

M i
p

k k
k

y t M s s k t

t i T
M

s s k t

 



 









  

  

  







 

where the last equality holds with probability 1 because  is

ergodic and zero-mean. That is, the ks ’s and k ’s turn out to
be (w.p.1) the limits of Fourier series parameters of

),( Mty f as M . These parameters are given by the
usual expressions

 22 )()()( MMM kkk bas   ),...,2,1( pk   a
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a  ),...,2,1( pk   b


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1
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0 0

Ma
dtMt
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
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( 0 ... )k p  

Then, it follows from (34)-(36) that

 kk
M

sMs 


)(lim  w.pfor ( 0 ... )k p  a

 kk
M

M  


)(lim w.pfor ( 1 ... )k p  b

Accordingly, the above results lead to get the estimates
),(ˆ MjGi  and ),(ˆ MjkGo  of the respective complex gains

( )i jG  and ( )o jkG  ( 1, , )k p  , for any fixed 0 . This
is performed using the identification procedure of Table 2.

Proposition 2. The estimates ),(ˆ MjGi  and ˆ ( , )oG jk M
obtained by the FGI procedure are consistent i.e.
ˆ ( , ) ( )iiG j M jG  and ˆ ( , ) ( )o oG jk M jkG  w.p.1 as

M . 

Proof. Dice that (39) is verified, furthermore using results
of (34)-(37b) and making use of (41a-b), it is readily seen
that the estimates ),(ˆ MjGi  and ˆ ( , )oG jk M converge in

probability, respectively, to ( )i jG  and ( )o jkG  .

Remark 4. For a single experiment (a single frequency
 ), p estimates of the complex gain ( )o jG  are obtained

(i.e. ),(ˆ MjkGo  and ),(ˆ Mjko  for pk ,...,2,1 ) in

addition to the estimate of ( )i jG  . 

V. SIMULATION

The system to be identified is analytically described by
equations (1)-(3) with

 0.01( )
( 0.1)( 0.5)iG s
s s


 

 0.1( )
( 0.2)( 0.01)oG s
s s


 

a

 ( ) exp( )f x x  b

Then, the parameterized system will be identified

 0.05( )
( 0.1)( 0.5)iG s
s s


 

 0.002( )
( 0.2)( 0.01)oG s
s s


 

a

  ( ) (0) (0) 50 exp(0.2 )o if x G f G x x   b

( )t is a sequence of uniform random numbers in

 1  1 . The above system is submitted to piecewise
constant input (Fig. 2). Fig. 2 also shows the output signal.
Fig. 3 shows the nonlinearity (.)f considered in simulation
and the couples estimates  )(ˆ, NWV jj

( 1 7j   ) for 10N  .

TABLE II. FREQUENCY GAINS IDENTIFICATION (FGI)

1. Data acquisition
 Choose a frequency  N ,...,, 21 , let  /2T .

 Apply the sine signal, with period T, defined as follows:

)sin()( 0 tVxtv  0t (38)

where  0 m Mx v v is arbitrarily chosen.

 Take a sufficiently long record of the resulting steady-state
output signal. Let it be denoted )(ty ,  MTt 0 for some
integer 1M .

2. Estimate of the filtered output
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1. Data acquisition
 Fix a given error  (1%, 2%, ... ), select an order p

satisfying the following condition

tp PP 









100

100  (39)

where tP is the total power output signal and pP is the

power of the first p harmonics of )(ty .
 If necessary, vary the point x0 and reduce the amplitude V.
 Generate the filtered output ),( Mty f using (33) and

compute its Fourier series coefficients )(Mka and )(Mkb
using (36). Then, deduce the parameters )(Mks and

)(Mk using (35a-c).

3. Data processing

 From the input sequence v(t), using the equations (14a)-
(22) and accompanying remarks, develop the Fourier
series decomposition of the undisturbed output w(t)
according to the parameters of linear subsystems; the latter
may have the following expression

 
0

( ) ( ) sin ( )
p

k o k o
k

w t B G jk k t k    


   (40)

where the parameter kB (resp. k ), for pk 1 ,

depends on ( )iG j (resp. )(i and ( )iG j ) for

fixed V and 0x .

 Compute the estimates ),(ˆ MjGi  and ),(ˆ MjkGo 

using the filtered output ),( Mty f and (40), i.e. for

1, ...,k p

 ( ) ( ) ( )k i o kB G j G jk s M   (41a)

 ( ), ( ) ( ) ( )k i i o kG j k M        (41b)

4. Estimation for all frequencies

 Repeat steps 1 through 3 for all frequencies  1,..., N  .

Figure 2. Shape of the resulting disturbed output signal.

Figure 3. Nonlinear element (.)f and  )(ˆ, NWV jj
.

The system is now excited by the sine signal (38). For an
error 0.6%  and 1.5V  , the condition (39) is satisfied if

3p  . Let fix 3p  . Then, it follows from the power
formulas (20a-b), the standard trigonometric formulas and
using the procedure as explained in Section 4, one
immediately gets
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 
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b

The coefficients lc ( 0,...,3)l  can be estimated using the NI

procedure for 4 values 1.5jV  ( 1,...,4)j 

 0
ˆ 49.7c   1̂ 10.1c  

2
ˆ 0.97c   3

ˆ 0.075c   

The Fourier coefficients ks and k can be determined by
using the filtered output (33) and the equations (35a)-(36).
Then the gains ( )iG j and ( )oG jk (with 0, ..., 3k  ) can

be estimated directly from (44a). The estimation of phases is
performed by exciting with frequencies equal to 2 and 3
. Finally, for 0.01 /rd s  and 40M  , the following
results are obtained

( , ) ( , ) ( 2 , )

( 3 , ) ( , ) ( , )

( 2 , ) ( 3 , )

( 3 , ) ( 4 , ) ( 6 , )

ˆ ˆ ˆ1.03; 0.74; 0.41;

ˆ ˆ ˆ0.29; 0.11; 0.85;

ˆ ˆ ˆ0.27; ( 2 , ) 1.18; 0.33;

ˆ ˆ ˆ1.42; 1.55; 1.64;

ˆ

i o o

o o

o

o o o

o

i

i i

j M j M j M

j M j M j M

j M j M

j M j M j M

G G G

G

j M
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 
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  


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    

     

     

( 9 , ) 1.85j M  

 

― The real nonlinearity
+ The estimated points
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Remark 3. During the identification of the phase of the
linear subsystems, the number of unknown parameters is
sometimes greater than the number of equations, to solve this
problem the FGI procedure (Table 2) is repeated for
multiples of frequency  (i.e. 2 ,..., p  ). 

VI. CONCLUSION

We have developed a new two-stage frequency
identification method to deal with WH systems
identification. The originality of the present study lies in the
fact that the phases of the two linear subsystems can be
separated, also both linear subsystems are nonparametric and
of unknown structure. Accordingly, the linear subsystems
are not necessarily finite order. The nonlinear element (.)f
has any form and, in particular, may be noninvertible. This is
only supposed to be accurately represented, within any finite
interval, with a polynomial of finite order. Another feature
of the method is the fact that the excitation signals are easily
generated and the estimation algorithms can be simply
implemented, compared with several published approaches.
Finally, we note that the choice of the frequency band of
interest is not required.
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